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Abstract: Thyroid carcinomas (TC) are rare in the pediatric population; however, they constitute the
most common endocrine malignancy. Despite some similarities with adult carcinomas, they have
distinct clinical behavior and responses to therapy due to their unique pathology and molecular
characteristics. The age cut-off used for defining the pediatric age group has been variable across
different studies, and the universally accepted recommendations influence accurate interpretation
of the available data. Moreover, factors such as radiation exposure and germline mutations have
greater impact in children than in adults. Papillary TC is the most common and the most evaluated
pediatric TC. Others, including follicular, poorly differentiated and medullary carcinomas, are rarer
and have limited available literature. Most studies are from the West. Asian studies are primarily
from Japan, with few from China, India, Saudi Arabia and Republic of Korea. This review provides a
comprehensive account of the well-established and novel biomarkers in the field, including point
mutations, fusions, miRNA, and thyroid differentiation genes. Familial and syndromic associations
are also discussed. Current management guidelines for pediatric patients are largely derived from
those for adults. An awareness of the molecular landscape is essential to acknowledge the uniqueness
of these tumors and establish specific diagnostic and therapeutic guidelines.

Keywords: pediatric thyroid cancer; molecular; somatic mutations; fusions; familial; miRNA; thyroid
differentiation genes

1. Introduction

Thyroid malignancies commonly arise from follicular cells and encompass differ-
entiated thyroid carcinoma (DTC), poorly differentiated thyroid carcinoma (PDTC), and
anaplastic thyroid carcinoma (ATC). DTCs maintain the normal physiologic characteristics
of thyroid follicular cells [1], and papillary thyroid carcinoma (PTC) forms the bulk (>90%),
followed by follicular thyroid carcinoma (FTC) (<10%) [2]. Medullary thyroid carcinoma
(MTC) is another subset of thyroid tumors which arises from the parafollicular cells [2].

Though rare, thyroid malignancy is the most common endocrine malignancy in the
pediatric age group [3,4]. The World Health Organization considers 19 years the age cut-
off for segregating the pediatric population from adults. Subjects younger than 9 years
old are considered children, and subjects of 10–19 years are considered adolescents [5].
The American Thyroid Association (ATA) takes 18 years as the cut-off [6,7], whereas the
American Academy of Pediatrics identified the upper age limit as 21 years [8]. There
is, to date, no consensus on the age cut-off to be used to define the pediatric age group
for thyroid malignancies; the upper limit varies from 18 years [9,10] to 22 years [11,12]
in different studies. A recent Japanese study recommended 14 years as the cut-off. The
authors found better disease-free survival and distant metastasis-free survival in DTC
patients aged <15 years [13].
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In contrast to adults, thyroid nodules are rarer (1–3%) in the pediatric age group, but
when present, are more likely to be malignant (19–26%) [14,15], with the peak incidence of
malignancy being among 15–19 years old. Fortunately, despite an advanced stage of disease
at presentation and higher recurrence rates, the mortality rate remains low (<2%) [4,6,15,16].
Pediatric patients are also more likely to respond to radioactive iodine therapy (RAI) than
adults [17]. This has been partly ascribed to the distinct molecular landscape of pediatric
tumors.

Owing to the apparent differences in the clinical behavior and pathophysiology of
thyroid cancer involving the pediatric age group, the ATA has laid down separate rec-
ommendations for the management of these patients [6]. The molecular makeup of these
tumors has been variably evaluated. This review provides a comprehensive synopsis
of the molecular profile of thyroid cancers occurring in pediatric patients, along with a
comparison with adults, while focusing on the Asian literature.

2. Epidemiology

Thyroid malignancy is rare in the pediatric age group. The recent Surveillance, Epi-
demiology, and End Results (SEER) database revealed an incidence of only 1.9% of all
cancers in patients less than 20 years of age [3]. As is the case in adults, PTC is the most
common histological type (80–90%), followed by FTC (5–10%) [18,19]. Other primary
thyroid carcinomas, such as MTC (3–5%), PDTC and ATC are even rarer. Most patients
present in the second decade, with FTC showing a predisposition for slightly older patients
than PTC [17]. There is a female preponderance. The incidence rates in males and females
are 0.2 and 0.6 per 1,000,000 in children aged 0–14 years, and 1.2 and 6 per 1,000,000 in
the age group 15–19 years [3]. Hence, the differences in the incidence rates in males and
females are more pronounced in the post-pubertal age group.

As per the GLOBOCAN (Global cancer observatory) data 2020, Asia contributes more
than half (56%) of total new thyroid carcinoma cases in the pediatric age group (0–19 years).
Considering individual countries, China (23.2%) supersedes all, followed by the United
States of America (9.2%) and India (8.6%) (Figure 1) [20]. The data are influenced by the
size of the population, environmental factors and the disease surveillance system specific
to the country. The presence of mixed ethnicity in countries such as the United States of
America also plays an essential part in determining disease epidemiology.
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Figure 1. (a) Continent-wise and (b) Country-wise, percentage of new cases of thyroid cancer between
0–19 years; adapted from GLOBOCAN 2020 [20].
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3. Risk Factors

Most pediatric DTCs are sporadic [21]. Exposure to radiation/radiotherapy, autoim-
mune thyroid disorders, iodine deficiency and familial/genetic syndromes are the common
predisposing factors.

3.1. Exposure to Radiation/Radiotherapy

Radiation-induced thyroid malignancies occur at an early age and are more often
multifocal [1]. Radiation exposure can be external (head and neck radiotherapy) or internal
(radioiodine intake post-nuclear plant accidents, such as Chernobyl). The carcinogenic
effect of radiation has been seen with exposures of >50 cGy, with up to 17% incidence of
DTC following exposure. The incidence of thyroid malignancies increased dramatically in
Belarus, Ukraine and Russia within four years of the Chernobyl accident when compared
with a decade before that [22–25]. Radiation exposure is associated with genetic alterations
that are distinct from children with sporadic PTC. Studies conducted on post-Chernobyl
PTC patients have reported a higher prevalence of RET/PTC3 (55–60%) translocations than
RET/PTC1 (15–25%). A reverse pattern is seen in sporadic cases (15–20%, and 45–55%,
respectively) [26–28]. New fusion partners of RET, namely PTC5, PTC6, PTC7, RFGX, RFGX,
AFAP1L2 and PPFIBP2 not otherwise reported in sporadic cases, have also been found in
post-radiation PTCs [28–30]. The difference in the molecular profile is also reflected in the
histopathological subtype of PTC seen in these patients. Nikiforov et al. reported a higher
prevalence of the solid subtype (37%) in radiation-induced PTC compared with sporadic
PTCs in children (4%) [26].

Additional molecular alterations have been reported in post-radiation thyroid carci-
noma. In a study by Nikiforov, three of the 17 cases (18%) of pediatric post-Chernobyl PTCs
revealed the presence of minisatellite instability, which was absent in the 20 sporadic cases
tested. While minisatellites are segments of repetitive DNA 10–100 bp long, microsatellites
are shorter, at 1–9 bp long. The authors found microsatellite instability in only one (6%)
tumor. Hence, they suggested the involvement of somatic minisatellite mutations in the
pathogenesis of radiation-induced thyroid tumorigenesis [22].

3.2. Autoimmune Thyroiditis

The association of thyroid malignancy with autoimmune thyroiditis has been contro-
versial, with some even hypothesizing a favorable clinical outcome due to the protective
environment provided by infiltrating lymphocytes [31–34]. Corrias et al. examined this
association in a large multicentric cohort from Italy, and reported a prevalence of thyroid
nodules and thyroid cancer in 31.5% and 3%, respectively; PTC was the only histotype
detected [35]. Sur et al., in their recent review, observed that 3.07% of the patients with
Hashimoto thyroiditis developed PTC over 2–10 years. [36]. There are studies with con-
trasting results, too. A study from China evaluated clinicopathological features of pediatric
patients of DTC < 18 years of age; while 44.2% of these had coexistent HT, a similar percent-
age (41.3%) had nodular goiter [37]. Overall, PTCs with background HT are more likely to
be multifocal, but show favorable histological features. Increased production of thyroid-
stimulating hormone and the chronic inflammatory infiltrate with the ensuing cellular
proliferation, increased angiogenesis and reduced apoptosis are contributing factors [38].
Subhi et al. analyzed the microarray expression profiles of cases of HT and those of PTC
with HT. They found upregulation in the number of immunoglobulin kappa variable genes,
as well as other immune-related genes, including those associated with oxidative stress,
reactive oxygen species, DNA damage, DNA repair, cell cycle and apoptosis [39].

3.3. Iodine Content

The association of thyroid cancers with iodine content in the body has been controver-
sial. Earlier reports indicated an increased incidence with iodine-deficient status, whereas
later research has shown a reverse association. Studies on rat models reported both iodine
deficiency and iodine excess acted as tumor promoters. However, there is no conclusive
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proof of the same in humans. Moreover, the distribution of iodine varies in different
geographic regions, precluding actual measurement of the iodine intake and its content
in food items. Interestingly, research has demonstrated an association of different thyroid
cancer subtypes with the iodine status of the individual, with FTC and ATC being more
common in deficiency, and PTC in excess [40–42].

3.4. Familial/Genetic Syndromes

Familial thyroid cancers can arise from C-cells or follicular cells. While the former
is more common and leads to the development of MTC, the latter are called ‘familial
non-medullary thyroid carcinomas’ (FNMTC) [43]. FNMTCs form 5–15% of all thyroid
malignancies and can be syndromic or non-syndromic [44]. The syndromic ones include
familial adenomatous polyposis (FAP), Cowden syndrome, Werner syndrome, Carney
complex, DICER1-pleuropulmonary blastoma familial tumor predisposition syndrome and
Pendred syndrome. Patients with FAP have a predisposition to developing the cribriform
morular thyroid carcinoma with a prevalence of 2–12%. Besides the germline adenoma-
tous polyposis coli (APC) mutation, the tumors show additional somatic single or multiple
molecular alterations in APC, CTNNB1, RET/PTC, or RAS [1,45]. Patients with Cowden
syndrome have follicular neoplasms in up to 10% of patients with only co-incidental detec-
tion of PTC. In the Carney complex, caused by mutations in the protein kinase A regulatory
subunit type Ia gene (PRKAR1A), both PTCs and follicular neoplasms may be found. Pen-
dred syndrome results from mutations in the SLC26A4 (PDS) gene, which encodes for the
protein pendrin. It is characterized by the triad of bilateral sensorineural deafness, mutism,
and goiter. The development of thyroid carcinoma is rare and usually related to chronic
stimulation by thyroid-stimulating hormone. Those with Werner syndrome harbor the
WRN gene mutation and have an increased risk of developing PTC, FTC, and ATC [46].
DICER1 mutations have now been identified as important drivers in pediatric thyroid
nodules, with an overall reported rate of 30%, in contrast to about 1% in adults [47]. These
may be germline or somatic, and phenotypic presentation may be in the form of benign or
malignant thyroid disease. The disease is usually multifocal and nodular, ranging from
adenomatous goiter to true neoplasms. The latter include FA, PTC, FTC, PDTC, and the
very rare carcinosarcoma, and malignant teratoma [48–53]. While macrofollicular architec-
ture is associated with somatic alterations [50], co-occurrence of DTC and Sertoli–Leydig
cell tumor has been suggested to be highly indicative of DICER1 syndrome [54]. DTCs
have also been reported in other syndromes including Beckwith–Wiedemann syndrome,
Li–Fraumeni syndrome, familial paraganglioma syndromes, McCune–Albright syndrome,
and Peutz–Jeghers syndrome [6]. Non-syndromic diseases with a preponderance of NMTC
include PTC associated with papillary renal cell neoplasia (PTC-PRN), familial multin-
odular goiter with PTC (MNG-PTC), familial PTC (fPTC) and familial thyroid carcinoma
with and without oxyphilia (TCO). Genetic susceptibility to the development of the above
familial tumors has been attributed to six potential regions harboring the following genes:
MNG1 (14q32), TCO (19p13.2), fPTC/PTC-PRN (1q21), NMTC1 (2q21), FTEN (8p23.1–p22),
and the telomere–telomerase complex [44]. The BRAF V600E mutation, commonly found
in sporadic PTCs, is not seen in familial cases [44]. Furthermore, FNMTC can also be found
in isolation, without any identifiable susceptibility loci and in the absence of the commonly
found mutations in sporadic DTCs. Although ATA has not recommended the screening of
family members of these patients, some authors suggest screening with ultrasonography,
if three or more family members are affected, starting from the age of 20, or 10 years
before the earliest age of diagnosis in the family [55]. Approximately 10–20% of MTCs are
familial [56], developing in multiple endocrine neoplasia (MEN) 2A syndrome (Sipple’s
syndrome), MEN 2B syndrome, and familial MTC, all having RET mutations as driver
alteration [57].
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4. Molecular Profile of Differentiated Thyroid Carcinomas

The mutational landscape of DTCs involves somatic point mutations of BRAF and RAS
genes, and fusions involving the RET and NTRK1 tyrosine kinases. There is consequent
activation of the mitogen-activated protein kinase (MAPK) and phosphoinositide 3-kinase
(PI3K) signaling pathways. Point mutations are commonly seen in adults (~70%), but are
less frequent in children (~30%); instead, gene fusions, which occur at a lower rate in adults
(~15%), predominate (~50%) [1].

4.1. Papillary Thyroid Carcinoma

PTCs account for about 90% of all childhood thyroid cancers. The classic and the
follicular subtypes of PTC, considered ‘low-risk’ in adults, are also the most common
histological types encountered in this age group. As most of the studies on pediatric
thyroid neoplasms are from the pre-noninvasive follicular thyroid neoplasm with papillary-
like nuclear features (NIFTP) period, its exact proportion is unknown. Limited evidence
suggests that NIFTP constitutes about 4.5% of all PTC cases [58]. About 15–40% of pediatric
PTCs are subtypes categorized as ‘high-risk’ in adults, namely tall cell, diffuse sclerosing,
and solid/trabecular subtypes [14,59]. Although there are limited follow-up data, there
is a suggestion that some of these ‘high-risk’ subtypes tend not to have a worse rate of
event-free survival in the pediatric population [60,61].

In contrast to those in adults, PTCs in children are more commonly multifocal and
have a more aggressive presentation, with higher rates of distant and nodal metastases.
Despite a higher recurrence rate and more aggressive clinical presentation, their prognosis
is excellent, with a very low mortality rate [6]. These differences are probably related to
significant differences in the underlying molecular genetics of pediatric compared with
adult DTC [62]. In addition, a decrease in the male-to-female incidence ratio in post-
puberty indicates that other factors, such as different endocrine, metabolic and immune
characteristics of the pediatric age, may also be involved. Being the predominant thyroid
cancer type in the pediatric population, PTC has been studied relatively more than other
thyroid cancers for molecular drivers.

In adult-onset PTCs, the most frequent genetic alteration observed is the mutational
activation of the BRAF oncogene. A transversion of thymidine to adenine (T1799A) results
in the substitution of valine to glutamate at residue 600 (V600E). Of the 402 cases of
PTC evaluated in the Cancer Genome Atlas (TCGA) study, 58.5% harbored BRAF V600E
mutation. Most patients were adults, except for nine patients aged < 20 years. Only 22% of
the tumors developing in the latter group showed this mutation [63]. Although radiation
exposure has a bearing on oncogenic molecular events, overall, BRAF V600E point mutation
is less common in pediatric cases. Most of the available literature is from the West, with
limited data from Asian countries, to which the largest contribution is from Japan [64]. In
their study from Japan, Oishi et al. showed a higher prevalence of BRAF V600E in adult
PTCs (85%) than in pediatric patients (54%). They also documented a greater frequency in
patients aged 16–20 years (62%) compared with those < 15 years (28%) [65]. Other studies
have also documented an increased prevalence of BRAF V600E mutation in patients of an
age > 15 years. Sporadic cases tend to show a higher frequency (0–63%) of BRAF V600E
mutation than those developing post radiation exposure (0–8%) [62,64]. There is high
variability in the reported frequency of the mutation, with one series reporting it to be as
high as 63% [66]. The reason for this may be the higher cut-off age of 22 years used [67].
Recently, Mitsutake et al. evaluated the genetic profile of PTCs detected during a survey
following the Fukushima Daiichi nuclear reactor accident, and, unlike post-Chernobyl
PTCs, found a higher prevalence of BRAF V600E [68].

In adults, BRAF mutation has been suggested to be a poor prognostic factor contribut-
ing to progressive disease and poor response to therapy [69]. This correlation remains
unconfirmed in pediatric patients, but most of the available data suggest a lack of any
such association [65,70]. Recently, Chakraborty from India evaluated 98 pediatric PTC
patients for BRAF V600E mutation using Sanger sequencing, and found a prevalence of
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14.3%. Their study cohort included 68 patients aged ≤ 18 years and 30 patients aged
19–20 years of age. This multivariate analysis revealed RAI refractoriness to be significantly
associated with BRAF V600E mutation. However, none of the 17 patients with distant
metastases had BRAF V600E mutation, and there was a lack of any significant associa-
tion of BRAF V600E mutation with the status of disease recurrence or progression [71].
Contrasting results were reported by Alzahrani, who found persistent/recurrent disease
to be significantly more common in patients with BRAF V600E mutation than in those
without [7]. However, a subsequent study by the same group on a larger cohort did not
find any association of BRAF V600E with any of the aggressive clinicopathological features,
including persistent/recurrent disease [72].

Besides point mutations, the TCGA study reported BRAF fusions in 2.7% of their PTC
cases. There is enough evidence documenting a higher prevalence of BRAF fusions in
the pediatric age. The most common ones include Acylglycerol kinase (AGK)/BRAF and
A-kinase anchoring protein 9 (AKAP9)/BRAF. Both fusions result from paracentric inversions
involving chromosome 7; inv (7)(q34), and inv(7)(q21q34), respectively. Initially identi-
fied in post-radiation-exposed individuals, the fusions have been found even in sporadic
pediatric cases [73]. Their prevalence is especially high in younger patients < 10 years of
age [73,74]. While the reported frequency of AKAP9/BRAF has ranged from 0–1%, and
0–11% in sporadic and post-Chernobyl tumors, AGK/BRAF occurs at a rate of 0–19%,
and 0–4%, respectively [73]. Cordioli et al., in two separate studies from their institute,
documented for the first time the presence of AGK/BRAF in 10% and 19% of their sporadic
pediatric PTC cases, respectively [74,75]. There is limited evidence suggesting an associ-
ation of AGK/BRAF fusion with younger age and distant metastasis [75]. Interestingly,
AGK/BRAF shows geographic variation in distribution [76], being more common in Brazil
than in the United States or the Czech Republic [73]. Novel BRAF fusion partners identified
in some geographical regions of the world include OPTN, CUL1 (Czech Republic) and
SND1, MACF, MBP, POR, and ZBTB8A (post-Chernobyl Ukrainian-American patients) [73].
Pekova et al. studied novel fusion genes in 93 pediatric PTC patients up to 20 years of
age, of which 30 had a family history of thyroid disorder. They found 20 different types
of fusion genes in 56% of patients, and 5 were novel. Fusion gene-positive cases were
associated with aggressive disease, more frequent extrathyroidal extension, and lymph
node and distant metastases, and also required higher doses of RAI treatment [77]. The
Ukrainian-American population studied by Efanov et al. included 65 PTCs developing in
patients < 18 years of age post exposure to radiation during the Chernobyl accident. Gene
fusions were observed in 46 patients, including novel fusions, as described above [78].

RET (rearranged during transfection) is absent in the normal thyroid follicular cells. It
has approximately 20 fusion partners, of which RET/PTC is the most commonly associated
with both sporadic and radiation-induced PTC [1,79]. RET/PTC rearrangements were
found in 6.3% of the PTC tumors included in the TCGA cohort, but were much more
frequent (22%) in their pediatric cohort [63]. Interestingly, these represent the most common
molecular alterations encountered in children and adolescents [76], both in sporadic cases
(22–65%) and tumors developing after radiation exposure (33–77%) [62,73]. RET/PTC1 and
RET/PTC3 are the most common rearrangements. Among these, RET/PTC3 is associated
with more aggressive disease [1,73]. Classic, solid, and diffuse sclerosing PTC histotypes,
and the aggressive clinicopathological parameters such as extrathyroidal extension, lymph
node and distant metastases are more commonly associated with RET fusions [1]. The
prevalence of RET/PTC and BRAF V600E mutations varies with age and ethnicity. While
RET/PTC fusions are more common in Caucasian children < 15 years of age, BRAF V600E
is more common in the older Hispanic population [67].

Point mutations in the RAS genes (HRAS, NRAS and KRAS) are found in up to 25%
of PTC cases, particularly in the follicular subtype [80]. 12% of the PTC cases included in
the TCGA cohort harbored RAS mutations [63]. The incidence is lesser in the pediatric
age group (<10%). Codon 61 of the NRAS gene is the most commonly involved, and as in
adults, there is an association with the follicular subtype [1,72]. Kumagai from Japan found
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RAS mutations in two of their 77 cases (2.6%) of PTC involving children, adolescents and
young adults. None of the patients aged < 15 years harbored this mutation [81]. Alzahrani
also reported a low frequency of 2.5% in 79 PTC patients < 18 years of age [72]. Mitsutake
did not find these in any of their 67 PTC cases [68].

TERT C288T and C250T promoter mutations occur in 10–20% of adult DTCs [43].
These were present in 9.4% of the cases of the TCGA cohort. None of their pediatric patients
had this alteration [63]. In a recent study from India, none of the 98 patients harbored TERT
promoter mutations [71]. In another study based on 81 sporadic pediatric PTC patients
from Japan, TERT promoter mutations were absent in all [65]. Using NGS, Franco found
TERT C288T mutation in a single case of PTC (follicular subtype) out of 29 PTC cases [82].
Most other authors have also observed low frequencies [73,83]. A single study from China
has documented a higher prevalence of TERT promoter mutations. Geng observed TERT
C228T mutation in 27% of their 48 PTC patients. The molecular alterations significantly
correlated with aggressive clinicopathological features. None of their cases had the C250T
mutation [84].

Additional oncogenic mutations associated with pediatric PTCs are PAX8/PPARG
and the NTRK1 and NTRK3 fusions; however, data are limited. Using ThyGeNEXT, an
NGS panel for detecting mutations in ALK, BRAF, GNAS, HRAS, KRAS, NRAS, PIK3CA,
PTEN, RET, or TERT, and 38 fusion transcripts involving oncogenes ALK, BRAF, NTRK,
or RET, Franco documented STRN/ALK, ETV6/NTRK3, and PAX8/PPARG, each in 6.9%
(2/29) of their PTC cases [82]. Of the nine pediatric tumors included in the TCGA cohort,
ETV6/NTRK3 was found in a single patient and PAX8/PPARG in none [63]. The STRN/ALK
rearrangement, though rare, is present in up to 7% of pediatric tumors, compared with a
lower reported range of 0–3% in adults [73]. Half of the cases (3/6) evaluated by Franco
were of the follicular subtype, the remaining being classical PTC (n = 2) and the diffuse
sclerosing PTC (n = 1) [82]. Other studies have also shown the association of these fusions
with the follicular subtype [1,77]. A solid growth pattern in PTC has also been associated
with NTRK fusions [85].

Only a handful of studies have explored the role of PIK3CA mutations in sporadic PTCs.
In one study, these were found in 2 of the 79 PTC cases assessed by direct sequencing [72].
In another, PIK3CA mutations co-existed with BRAF V600E or NRAS Q61R, respectively, in
two PTC cases [72,82]. Similarly, there are limited data on the status of DICER1 mutations
in pediatric PTCs, with a single study from Korea reporting a frequency of 7.6% in their
PTC cohort [83].

An age-dependent variation exists for the molecular profile among pediatric thyroid
carcinomas. Lee et al. [83] from Republic of Korea comprehensively characterized age-
associated genetic alterations in a large cohort of pediatric PTCs. They divided their
pediatric patients into three age groups (<10 years, 10–15 years and 15–20 years). Fusions
occurred at a frequency of 92.9%, 27.5%, and 13.5%, respectively, in the different age groups.
The frequency of RET fusions decreased with increasing age. Point mutations (BRAF V600E,
TERT, DICER1 and RAS) were observed in 7.1%, 30.0%, and 67.3%, respectively. Of these,
BRAF V600E mutation was the most frequent, seen in 0%, 27.5%, and 57.7%, respectively.
Notably, none of their cases showed RAS mutations [83].

Research on the role of molecular alterations as prognostic biomarkers in pediatric
PTC is still in its infancy. A recent study investigated predictors of cervical lymph node
metastases. While 68% of patients requiring neck dissection had somatic mutations, only
38% of those without lymph node metastases revealed molecular alterations. The difference
was significant on univariate statistical analysis. The authors, hence, suggested that genetic
mutation status is a predictor of nodal spread, and such patients should be kept on close
follow-up if neck dissection was not initially required [86].

4.2. Follicular Thyroid Carcinoma

FTC is rare in the pediatric age group [87]. It presents with a larger mean tumor size,
but with a favorable clinical outcome in contrast to adults [88,89]. In a study from Japan,
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Ito followed up 292 minimally invasive and 79 widely invasive FTC patients for a mean
duration of 127 (6–339) and 123 months (3–332 months), respectively. Patients younger
than 20 years were less likely to die of disease, irrespective of recurrence status [89].

Studies on FTC involving adult patients demonstrated RAS mutations (10–57%) and
PAX8/PPARG fusions (up to 35–50%) to be the key players [90–94]. There are limited
data on the molecular profile of pediatric FTC [14]. Vuong from Japan investigated a
substantial cohort of 41 patients aged < 21 years. NRAS mutations were present in 12%
and PAX8/PPARG fusions in none [88]. Studies from the West have also found a lower
prevalence of 20–22% for RAS mutations and 0–20% for PAX8/PPARG fusions. However,
the studies had a relatively small sample size [67,95].

Franco used ThyGeNEXT to assess 6 FTC cases in patients < 18 years of age. HRAS
G13R, HRAS Q61R, and KRAS G12V were detected in one case each (3/6; 50%). Of their
47 benign non-neoplastic and neoplastic lesions, five showed molecular alterations. GNAS
mutations were found in a case of multinodular goiter and two cases of follicular adenoma.
One of the latter two cases showed an additional PAX8/PPARG translocation. A third
follicular adenoma harbored PTEN mutation, and TERT C288T was identified in a case of
diffuse hyperplasia. Notably, RAS mutations, often detected in adult benign nodules, were
absent among their cases [82]. Using NGS, Ballester found a CTNNB1 (β-catenin) p.S45P
mutation in the single case of FTC assessed by them [96]. Among thyroid tumors, CTNNB1
mutations have been reported primarily in PTC with fibromatosis/fasciitis-like/desmoid-
type stroma [97], and ATC as a late event involved in cancer progression [98]. There are
limited data on the role of β-catenin in FTC. Cell culture studies have revealed β-catenin
activation to be dependent on PI3K/AKT activity, a pathway involved in FTC [99]. Another
molecule of the Wnt/β-catenin signaling pathway which has been evaluated in FTC is
Wnt-5a, an activator of the non-canonical Wnt pathways. When compared with normal
thyroid tissue, experimental studies have revealed overexpression of Wnt-5a in FTC. The
molecule promotes mesenchymal–epithelial transition by inducing cadherin expression
and re-localization of β-catenin from the nuclei to the membrane [98,100].

FTC has also been associated with mutations in phosphatase and tensin homolog
deleted on chromosome ten (PTEN), a tumor suppressor gene located at chromosome
10q23.3. Heterozygous germline mutation of PTEN leads to PTEN hamartoma tumor
syndrome, an autosomal dominant disorder. There is a predisposition to developing
malignancies in various organ systems [43]. FTC occurs in about 25% of carriers of PTEN
mutation [101] and is one of the major criteria for the diagnosis of PTEN hamartoma tumor
syndrome [102]. It has been recommended that all children diagnosed with FTC should
undergo genetic counselling and testing for germline PTEN mutation [6]. Alzahrani and
colleagues are the only ones to have studied PTEN in sporadic pediatric PTC patients and
found exon 5 (c.295G > A) mutation in a single patient (1.4%) [72].

DICER1 is another gene which has recently been implicated in the pathogenesis
of pediatric FTC. The reported frequency has ranged from 25–53% [47,49]. Importantly,
DICER1 alterations are associated with the macrofollicular subtype of FTC [50]; hence, there
is a need to evaluate young patients with this FTC variant for DICER1 alterations.

Table 1 summarizes the differences in the clinical, pathological and molecular charac-
teristics of adult and pediatric DTCs, and Table 2 details the literature available from Asia
on the molecular alterations found in pediatric DTC.
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Table 1. Clinical, pathological and molecular characteristics of adult and pediatric thyroid carcinomas.

Characteristics Adults References Pediatric Age Group References

Clinical symptoms

Hoarseness, dysphagia,
cough.

Nodule common but rarely
(<5–10%) malignant

[14,59]

Asymptomatic, incidentally
detected.

Nodule uncommon but
frequently (22–26%) malignant

if present

[14,59]

Upfront lymph node involvement 20–50% [103] 40–90% [103]

Distant metastasis 2% [103] 20–30% [103]

Radiation exposure Risk of cancer less [104]
5–10 fold increased risk; higher

rates reported
post-radiotherapy

[104,105]

FNAC
• USG guidance
• Nodule size
• Hyperfunctioning nodule
• The Bethesda system for

reporting
• ROM
Bethesda III
• Recommended management

Bethesda III
• ROM
Bethesda IV
• Recommended management
Bethesda IV
• Molecular testing of nodules

with indeterminate cytology

Not mandatory
<1 cm: FNAC usually not

recommended
FNAC not recommended

Recommended
6–18%

Repeat FNAC/molecular
testing/lobectomy

10–40%
Molecular testing/lobectomy

Recommended

[6]
[6,103]

[6]
[6,15]

[14,106]
[106]

[14,106]
[106]
[69]

Mandatory
Size not a criterion for decision

making
FNAC not recommended

(should be removed surgically)
Recommended

28%
Lobectomy plus
isthmusectomy

58%
Lobectomy plus
isthmusectomy

Not recommended

[6]
[6,103]

[6]
[6,15]

[6,14,15]
[6]
[14]
[6]

[6,69]

Tumor classification system AJCC TNM classification [6] AJCC TNM classification with
ATA risk-stratification system * [6]

5-year relative survival 98.3% [3] 99.7% [3]

PTC
multifocality 20% [107] 65% [6]

Histopathological subtypes of
PTC

High risk subtypes less
common (<20%) [108]

Classic PTC 20–50%; high risk
subtypes (tall cell, diffuse

sclerosing, solid/trabecular)
form 15–40%

[14,60,61,109]

Molecular profile (PTC)
BRAF V600E 30–90% [107] 0–63% (sporadic)

0–70% (post-radiation) [14,73]

BRAF fusions <3% [63,73] 0–20% (sporadic)
0–11% (post-radiation) [14,73]

RET fusions 5–35% [107] 22–65% (sporadic)
33–77% (post-radiation) [62,73]

H-/K-/N-RAS mutations 0–35% [107] <10% [1,72]

TERT promoter mutations (C250T,
C228T) 5–25% [107] 0–27% [73,83]

NTRK fusions 1–5% [73] 0–20% (sporadic)
1–15% (post-radiation) [73,77]

PAX8/PPARG fusion 0–5% [73] 0–9% (sporadic)
4% (post-radiation) [73]

DICER1 mutations ∼4% ** [110] 7.6% [83]

ALK fusions 0–3% [73] 0–7% (sporadic)
1–7% (post-radiation) [73]

Molecular profile (FTC)
H-/K-/N-RAS mutations 10–57% [90,91,93,94] 0–50% [14,82,88]

PAX8/PPARG fusion 35–50% [90,92–94] 0–20% [67,88,95]

PTEN mutations <1% [63]
<2% (sporadic)

25% (carriers of PTEN
mutation)

[72,101]

DICER1 mutations 1% [47] 25–53% *** [47,49]

FNAC, fine needle aspiration cytology; USG, ultrasonography; ROM, risk of malignancy; AJCC, American Joint
Committee on Cancer; TNM, tumor node metastasis; ATA, American Thyroid Association; PTC, papillary thyroid
carcinoma; FTC, follicular thyroid carcinoma. * For PTC. ** 85.7% germline. *** 50% germline in one study [49].
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Table 2. Studies from Asian countries with details of genetic alterations in pediatric patients.

Studies Year Country Age Range
(Years) n

Sporadic/
Post

Radiation
Subtypes Molecular Method

Used
BRAF
V600E RET/PTC BRAF

Fusion

TERT
Promoter
Mutation

RAS
Muta-
tion

NTRK
Fusions

Addi
tional Alterations

Motomura
et al. [111] 1998 Japan 9–14 10 Sporadic

Classical (6)
F-PTC (2)

DS-PTC (1)
S-PTC (1)

RT-PCR followed
by southern

hybridization
- RET/PTC1 20%

RET/PTC3 10% - - - - -

Kumagai
et al. [81] 2005 Japan

<15 31 Sporadic

Classical (27)
F-PTC (2)
FTC (1)

PDTC (1)

Direct sequencing,
RT-PCR

3.2% - - - 0 - -

≤15 15 Radiation #

Classical (2)
S-PTC (4)
F-PTC (2)
Mixed (7)

0 - - - 0 33.3% -

15–31 33 Radiation #

Classical (7)
S-PTC (1)
F-PTC (9)

Mixed (16)

24.2% - - - 6.1% 36.4% -

Mitsutake
et al. [68] 2015 Japan ≤22 68

Likely
sporadic $

Classical (61)
F-PTC (2)
CMTC (4)
PDTC (1)

Direct sequencing,
RT-PCR 63.2% RET/PTC1 8.8%

RET/PTC3 1.5% 0 0 0 5.9% -

Alzahrani
et al. [7] 2016 Saudi

Arabia ≤18 55 Sporadic

Classical (44)
FV (6)

TC-PTC (1)
DS-PTC (1)

FTC (2)
PDTC (1)

Direct sequencing 22.6% - - 1.8% - - -

Alzahrani
et al. * [72] 2017 Saudi

Arabia ≤18 yrs 79 Sporadic Classical (72)
F-PTC (7) Direct sequencing 24.1% - - 1.3% 2.5% -

PIK3CA exon 9:
1.4%

PIK3CA exon 20:
1.3%

PTEN exon 5: 1.4%

Geng et al. ◦

[112] 2017 China 3–13 48 Sporadic
Classical (41)

F-PTC (5)
DS-PTC (2)

Direct sequencing 35.4% - - - - - -

Oishi et al.
[65] 2017 Japan ≤20 81 Sporadic

Classical (66)
CMTC (1)
F-PTC (2)

DS-PTC (4)
S-PTC (8)

Allele specific PCR
and/or Sanger

sequencing
54% - - 0% - - -

Vuong et al.
[88] 2017 Japan <21 41 Sporadic FTC (41) Direct sequencing

and RT-PCR - - - - 12.2% - 0% (PAX8/PPARG)
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Table 2. Cont.

Studies Year Country Age Range
(Years) n

Sporadic/
Post

Radiation
Subtypes Molecular Method

Used
BRAF
V600E RET/PTC BRAF

Fusion

TERT
Promoter
Mutation

RAS
Muta-
tion

NTRK
Fusions

Addi
tional Alterations

Geng et al. ◦

[84] 2019 China 3–13 48 Sporadic
Classical (41)

F-PTC (5)
DS-PTC (2)

Direct sequencing - - - 27.1% - - -

Kure et al.
[113] 2019 Japan 13–19 7 Sporadic

Classical (5)
CMTC (1)

Classical with poorly
differentiated
component (1)

Direct sequencing 29% - - - - - -

Iwadate el
al. & [114] 2020 Japan 0–24 138

Likely
sporadic $

Classical (125)
CMTC (4)
F-PTC (3)

DS-PTC (2)
S-PTC (2)
PDTC (1)
Others (1)

Direct sequencing
and RT-PCR

70.6%
of PTCs

RET/PTC1 5.9% of
PTCs

RET/PTC3 0.7% of
PTCs

- - - 5.9% of
PTCs

AFAP1L2/RET
(0.7% of PTCs)

PPFIBP2/RET (0.7%
of PTCs)

STRN/ALK (1.5% of
PTCs)

KIAA1217/RET
(0.7% of PTCs)
Delta RFP/RET
(0.7% of PTCs)

Chakra-
borty et al.

[71]
2020 India ≤20 100 Sporadic

Classical (72)
F-PTC (24)
TC-PTC (2)

FTC (2)

Direct sequencing 14% - - 0% - - -

Lee et al.
[49] 2020 Republic of

Korea <20 15

10 sporadic,
4 DICER1

syndrome, 1
PTEN

hamartoma
syndrome

FTC WES, targeted NGS,
direct sequencing - - - 0% 0% -

DICER1 (53.3%),
PTEN (6.7%),

PAX8/PPARG
(6.7%)

Bae et al.
[47] 2021

Japan,
Republic of

Korea
<18 41 Sporadic Follicular-patterned

tumors ∗ Targeted NGS 0% 0% 0% 0% 20% 0%

DICER1 (22%),
FGFR3 (15%),
PTEN (12%),
STK11 (10%),

APC (5%),
TSHR (5%),

CTNNB1 (2%),
TP53 (2%),

EIF1AX (2%),
FGFR4 (2%),
GNAS (2%),

RET (2%),
SOS1 (2%),

THADA/IGF2
BP3 (2%)
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Table 2. Cont.

Studies Year Country Age Range
(Years) n

Sporadic/
Post

Radiation
Subtypes Molecular Method

Used
BRAF
V600E RET/PTC BRAF

Fusion

TERT
Promoter
Mutation

RAS
Muta-
tion

NTRK
Fusions

Addi
tional Alterations

Lee et al.
[83] 2021 Republic of

Korea

<10 14
Sporadic

and
radiation ˆ

Classical (75)
DS-PTC (14)
Others (15)

NGS, direct
sequencing, FISH,

and/or IHC.
0% 64.3% - 7.1% 0% 14.3% 0% (DICER1)

10–15 40 27.5% 20% - 0% 0% 5% 2.5% (DICER1)

15–20 52 57.7% 7.7% - 1.9% 0% 0% 7.7% (DICER1)

1 Abbreviations: Classical: classical PTC; CMTC: cribriform morular thyroid carcinoma; DS-PTC: diffuse sclerosing subtype of PTC; FISH: fluorescence in situ hybridization; FTC:
follicular thyroid carcinoma; F-PTC: follicular subtype of PTC; Hobnail: hobnail subtype of PTC IHC: immunohistochemistry; NGS: next generation sequencing; PDTC: poorly
differentiated thyroid carcinoma; S-PTC: solid subtype of PTC; TC-PTC: tall cell subtype of PTC # post-Chernobyl, $ post-Fukushima Daiichi Nuclear Power Plant accident, but unlikely
to be radiation-induced. * Includes patients from their previous study [7]. ◦ Includes the same cohort in both studies. & Includes patients from their previous study [68]. ˆ Prior history of
radiotherapy.
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4.3. Poorly Differentiated Thyroid Carcinoma

There are negligible data on pediatric PDTC [7,51,68,81]. Mitsutake did not find any of
the assessed driver mutations, namely BRAF (exon 15), H/K/NRAS (codons 12, 13 and 61),
TERT promoter (C250T and C228T), RET/PTC1, RET/PTC3, AKAP9/BRAF or ETV6 (exons
4 and 5)/NTRK3 rearrangements in the single case of PDTC evaluated by them as a part
of their larger cohort containing tumors detected following the accident at the Fukushima
Daiichi Nuclear Power Plant in Japan [68]. In another study from Japan, 31 Japanese
and 48 post-Chernobyl Ukrainian thyroid carcinomas involving children, adolescents
and young adults were evaluated for BRAF V600E and RAS mutations. The single case
of PDTC included was found to harbor BRAF V600E mutation. This tumor was focally
immunopositive for CD15 and suggestive of dedifferentiation from PTC [81]. In a study
from Saudi Arabia, Sanger sequencing did not reveal BRAF V600E and TERT promoter
mutations in the single case of pediatric PDTC evaluated as a part of a mixed cohort of
pediatric thyroid cancers [7]. Interestingly, instead of these known driver mutations, a high
prevalence (83%; 5/6) of DICER1 mutations was documented by Chernock. Additional
mutations were found in ATM, CDC73, TP53, MAP2K2, RBM10, ARID1A, FLT3, and EGFR
genes. None of the cases had BRAF, RAS, TERT, or RET/PTC alterations [51].

4.4. Medullary Thyroid Carcinoma

MTC is rare in children, having an annual incidence of 0.03 per 100,000 [57]. In
contrast to adults, pediatric patients are more likely to have localized disease (70% vs. 52%),
negative regional lymph nodes (48% vs. 31%), and a better 10-year cancer-specific survival
rate (80% vs. 96%) [115]. While most (65–75%) of the cases in adults are sporadic, pediatric
cases usually occur as a part of autosomal dominant syndromes associated with gain-of-
function germline mutations in the RET proto-oncogene [18,57]. MEN type 2A syndrome
(Sipple’s syndrome) is the most frequent. It is highly penetrant and usually presents before
six years of age. The mutations involve the extracellular cysteine-rich region of the RET
tyrosine kinase receptor, usually in exon 10 (codons 609, 611, 618 or 620) or exon 11 (codon
634). Bilateral pheochromocytomas and hyperparathyroidism are other common features of
this syndrome [57,116]. Patients with MEN2B syndrome are also predisposed to developing
MTC and pheochromocytoma. They may also develop gastrointestinal ganglioneuromas,
oral and conjunctival mucosal neuromas and a marfanoid habitus. The mutation, usually
Met918Thr in exon 16, occurs in the tyrosine kinase domain in the intracellular portion
of the receptor, leading to ligand-independent catalytic activity. The mutation can be
either inherited (25%) or arise de novo (75%) [59,117,118]. Patients with MEN2B develop
MTC very early, within the first year of life, and have an average life expectancy of about
21 years [116]. Hence, prophylactic thyroidectomy is recommended in the first year of
life [57,118].

Familial MTC (FMTC) harbors mutations similar to MEN2A, involving either the
extracellular or the intracellular domain of the tyrosine kinase receptor; it is now considered
an MEN2A variant. As it has less clinical penetrance; MTC is usually the sole clinical
presentation. The tumor is also less aggressive and manifests in the second or third decade
of life [57].

When familial, MTC is associated with a precursor lesion, the C-cell hyperplasia.
The tumors are multifocal, bilateral and typically located at the junction of the upper
one-third and the lower two-thirds of the thyroid lobes. As the risk of development and
progression of MTC are related to the mutated codon, the management protocol of these
patients is decided based on the variant present. MEN2B patients, having a mutation in
the RET codon M918T, have the highest risk of developing MTC, and should be subjected
to prophylactic thyroidectomy within the first few months up to the first year of life. The
high-risk category includes patients with mutations in A883F or C634 codons. They should
undergo thyroidectomy by 5 years of age; the timing and extent of the surgery are guided
by serum calcitonin levels. The rest of the mutations have a moderate risk of disease.
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Children in the moderate risk category can undergo thyroidectomy either when serum
calcitonin levels rise, or earlier if parents desire [118].

5. Role of miRNA in Pediatric Thyroid Carcinoma

MicroRNAs (miRNA) are small non-coding RNAs that regulate post-transcriptional
gene expression. The utility of miRNA as potential diagnostic, prognostic, and therapeutic
biomarkers in adult thyroid malignancies has been widely explored [43]. However, the
literature on pediatric patients is limited to a single study [82]. The thyroid miRNA classifier
(ThyraMIR) (Interpace Diagnostics, Parsippany, NJ, USA) is a proprietary commercially
available molecular diagnostic test that uses relative expression of 10-miRNA (miR-222-3p,
miR-146b-5p, miR-375, miR-29b-1-5p, miR-31-5p, miR-138-1-3p, miR-139-5p, miR-155,
miR-204-5p, and miR-551b-3p) to stratify thyroid nodules categorized indeterminate on
cytology [119]. Franco and colleagues used the classifier to assess 113 tumors, including
47 benign and 66 primary thyroid carcinomas, from patients < 18 years of age. The same
tumors were also subjected to ThyGeNEXT. The ThyraMIR algorithm could correctly
identify 59% of the malignant lesions. None of the benign lesions had a positive ThyraMIR
test result. There were five miRNAs: miR-31-5p, miR-146b-5p, miR-222-3p, miR-375,
and miR-551b-3p, which were significantly overexpressed in malignant nodules when
compared with benign lesions. A positive result was also significantly associated with
intrathyroidal spread, extrathyroidal extension and lymph node metastasis. MicroRNA
expression patterns also varied with the histomorphological type of the cancers, and
were similar to those reported in adults. Furthermore, 11 of the 39 cases characterized as
malignant by ThyraMIR were found to be negative for mutations by ThyGeNEXT. The
sensitivity of ThyGeNEXT increased from 53% to 70% when used in combination with
ThyraMIR. Most malignant tumors found negative by molecular testing lacked aggressive
histopathological features. However, the authors suggested the need for optimizing the
ThyraMIR classifier for pediatric thyroid nodules [82]. The results need further validation
to determine the accuracy and application of miRNA for diagnostic, therapeutic and
prognostic purposes in pediatric patients.

6. Other Potential Biomolecules

PTCs, especially when BRAF-mutated, usually have a diminished expression of the
thyroid differentiation genes SLC5A5 (sodium/iodide symporter, or NIS), apical iodide
transporter, thyroperoxidase and thyroglobulin. In contrast, GLUT-1 expression increases.
This phenotype interferes with RAI responsiveness at both diagnostic and therapeutic levels,
wherein they are visible on 18-fluorodeoxyglucose positron emission tomography imaging
but are not RAI avid [120]. Pediatric thyroid carcinomas are more often RAI responsive,
possibly due to the increased expression of NIS in this group of patients [17]. However, a
recent study documented variation in the expression of genes regulating thyroid hormone
synthesis, namely SLC5A5, pendrin (PDS) and thyroid-stimulating hormone receptor
(TSHR), across different age groups. They found the expression of NIS in DTC involving
children < 10 years to be similar to adult tumors (>18 years). The expression levels of PDS
and TSHR were lower in DTCs from children compared with adolescents (10–18 years)
and adults [121]. Interestingly, a study from Korea found pediatric fusion-positive PTCs
in children < 10 years of age to have a lower expression of thyroid differentiation genes,
including SLC5A5, than adult fusion-positive PTCs. Two of their patients with fusion-
positive and RAI-refractory tumors had low NIS expression. The patients responded well
to fusion-targeted therapy with a decrease in tumor size and restoration of RAI uptake [83].

The other immunohistochemical biomarkers that have been evaluated in thyroid
pathology, primarily to aid the differential diagnosis of PTC from its benign mimics, in-
clude galectin-3, cytokeratin 19 and Hector Battifora mesothelial-1 (HBME-1). Galectin-3,
owing to its postulated role in the pathogenesis of PTC, is commonly used as an ancillary
immunohistochemical marker to aid PTC diagnosis. HBME-1, originally used to confirm
a mesothelial origin, has also found utility in PTC diagnosis. However, use of it in con-
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junction with other antibodies, instead of as a stand-alone marker, is preferred. When
used individually, the reported sensitivities and specificities of HBME-1, galectin-3 and CK
19 for diagnosing thyroid malignancies have varied between 75 to 100% and 70 to 85%,
respectively. When the three are used in conjunction, there is an increase in the reported
diagnostic accuracy [122–124]. Owing to the availability of advanced techniques, several
other new molecules are gaining recognition as potential biomarkers in thyroid oncology
practice [43]. However, most studies are adult-centric. There are, as of now, not enough
prospective and multi-center studies to allow strong recommendations regarding their role
in pediatric patients.

7. Targeted Therapy in Pediatric Patients

While treating pediatric thyroid cancers, it should be kept in mind that their unique
molecular makeup precludes the applicability of adult-standardized guidelines. Hence,
molecular profiling is useful in cases where targeted therapy is being considered. These
include metastatic symptomatic cancers that cannot be controlled with localized therapy,
or progressive cases of RAI-refractory DTC.

The common kinase inhibitors used in the treatment of thyroid malignancies include
Sorafenib (BRAF inhibitor), Lenvatinib (anti-VEGFR, anti-FGFR, anti-PDGFR and RET
inhibitor), Cabozantinib (anti-VEGFR), Donafenib (multikinase inhibitor), and Vandetanib
(RET and VEGFR2 and 3 inhibitor). As these are associated with significant side effects,
drugs targeting more specific mutations, such as gene fusions, are fast evolving. The TRK
inhibitors Entrectinib and Larotrectinib have been recommended by the FDA for use in both
pediatric and adult tumors with NTRK fusions. Larotrectinib is selective for TrkA, TrkB and
TrkC, whereas Entrectinib also inhibits ROS1 and ALK [125,126]. Selpercatinib has shown
efficacy in RET fusion-positive pediatric PTCs [83]. Restoration of radioiodine uptake by
these drugs suggests the occurrence of redifferentiation in these tumors. However, the
acquisition of drug resistance is a major obstacle. To overcome this, trials of novel agents
such as Selitrectinib (LOXO-195), Repotrectinib (TPX-0 0 05) and Taletrectinib (DS-6051b)
are currently underway [126].

8. Molecular Evaluation of Indeterminate Thyroid Nodules in Pediatric Patients

Knowledge of the molecular landscape of pediatric thyroid nodules is still evolving.
While a positive mutational test would be more likely to be associated with malignancy, a
negative genetic test does not reliably exclude it. In contrast to adult cases, owing to a lack
of validation, the ATA does not recommend molecular testing on cytology material in pedi-
atric thyroid nodules. Additionally, the reported risk of malignancy (ROM) in nodules with
indeterminate cytology is higher in children (up to 30%) than in adults (5–15%). Hence, the
ATA recommends upfront surgery (lobectomy with isthmusectomy) in these patients [6,69].
Wang et al. have challenged this approach. Their meta-analysis of pediatric thyroid nodules
revealed that the two indeterminate Bethesda categories (atypia of undetermined signifi-
cance/follicular lesion of undetermined significance and follicular neoplasm/suspicious
for a follicular neoplasm) had lower malignancy rates than previously reported. Moreover,
there is a higher risk of post-thyroidectomy complications in children. Thus, the authors
asserted the need for management guidelines specific to the Bethesda category, instead of
upfront surgery [127].

The antibodies galectin-3, HBME-1 and CK19 have also shown promise in the better
characterization of the cytologically indeterminate thyroid nodules [123,128]. Although
these antibodies have not been exclusively studied in pediatric patients, studies recom-
mending this cocktail have pediatric samples in their study cohort [129]. Other researchers
have advised molecular testing to help in surgical decision-making [12,95,130]. There is
limited evidence to support the utility of miRNA-based classification in pediatric thyroid
cytology. Franco and co-authors demonstrated a specificity of 100% for miRNA testing to
detect malignancy. Therefore, they suggested using this assay in nodules with indetermi-
nate cytology to increase diagnostic accuracy and improve risk stratification [82].
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9. Conclusions

Despite being the largest contributor to new cases of pediatric thyroid carcinomas,
there are limited molecular studies from Asia; the majority of the published literature is
from the West.

Instead of BRAF and RAS point mutations common in adult cases, irrespective of
the radiation status, chromosomal rearrangements are more frequent in pediatric PTCs.
RET/PTC gene rearrangement is the most common, followed by BRAF fusions. TERT
promoter mutations, markers of aggressive disease in adults, are uncommon in children.
There is a dearth of data on FTC, PDTC and ATC. Preliminarily, DICER1 mutations appear
to be the key players in pediatric FTCs and PDTC. MTC in children needs evaluation to
rule out a syndromic association. Non-MTC follicular cell-derived tumors can also be
rarely familial. The literature on the role of microRNA as a biomarker in pediatric thyroid
carcinomas is scarce. Any influence of the molecular profile on the expression of thyroid
differentiation genes also remains unconfirmed.

Due to the rarity of pediatric thyroid carcinomas, their molecular landscape is still
incompletely decoded. The cost and availability of high throughput techniques, especially
in the developing world, are other roadblocks. Understanding the applicability of their
molecular characteristics for diagnosis, prognostication, and therapeutics requires multi-
institutional studies utilizing sensitive and high-performance molecular techniques.
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