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Abstract: Background: Primary macronodular adrenocortical hyperplasia (PMAH) is a rare form
of adrenal Cushing’s syndrome with incomplete penetrance which may be sporadic or autosomal
dominant. The inactivation of the ARMC5 gene, a potential tumor suppressor gene, is one of the
associated causes of PMAH. This study aimed to identify the variant responsible for Iranian familial
PMAH. Methods: The proband, a 44-year-old woman, was directed to whole-exome sequencing
(WES) of the blood sample to discover a germline variant. In addition, the identified causative
variant was confirmed and segregated in other and available unaffected family members. Results:
The novel germline heterozygous missense variant, c.2105C>A in the ARMC5 gene, was found, and
the same germline variant as the proband was confirmed in two affected sisters. This variant was
detected in the brother of the proband with an asymptomatic condition and this considered because
of incomplete penetrance and age-dependent appearance. The function of the ARMC5 protein would
be damaged by the identified variant, according to in silico and computer analyses that followed.
Conclusion: The new germline ARMC5 variation (c.2105C>A, (p. Ala702Glu)) was interpreted as a
likely pathogenic variant based on ACMG and Sherloc standards. PMAH may be diagnosed early
using genetic testing that shows inherited autosomal dominant mutations in the ARMC5 gene.

Keywords: PMAH; whole-exome sequencing; ARMC5; novel germline variant

1. Introduction

Primary macronodular adrenal hyperplasia (PMAH) is an endogenous Cushing’s
syndrome (CS) that represents < 2% of CS cases [1–4]. It is characteristically diagnosed
during the 1950s to 1960s and is mostly associated with mild hypercortisolism and multiple
nodules in the adrenal glands [1]. PMAH was initially reported as a sporadic disease but is
found to be dominantly inherited in several families [5].

Numerous molecular mechanisms have contributed to the pathogenesis of PMAH,
mostly the cyclic AMP/protein kinase A (cAMP/PKA) signaling pathway (Figure 1) [1].
Using an integrated genomics approach in 2013, the loss of heterozygosity (LOH) on the
short arm of chromosome 16 has been identified as the first responsible genetic defect for
AIMAH [6]. Subsequently, using a single-nucleotide polymorphism (SNP) array, frequent
events in adrenal tumor tissues have been detected [4]. Recent advances in molecular
genetics research revealed germline and somatic mutations of several genes were involved
in the mechanisms causing PMAH [7].
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Figure 1. Genetics of Primary macronodular adrenal hyperplasia. 

For instance, mutations in tumor suppressor genes, such as adenomatous polyposis 
coli gene (APC), menin (MEN1), fumarate hydratase (FH), and armadillo repeat-contain-
ing protein 5 (ARMC5), which later is detected in 20% to 50% of PMAH cases [8]. Recently, 
the other tumor suppressor gene, lysine (K)-specific demethylase 1A (KDM1A) was iden-
tified in PMAH associated with food-dependent Cushing’s syndrome[9–12]. Furthermore, 
mutations in the ACTH receptor gene and guanine nucleotide-binding protein alpha-
stimulating activity polypeptide (GNAS), cAMP-dependent protein kinase catalytic sub-
unit alpha (PRKACA), phosphodiesterase 11A (PDE11A), and phosphodiesterase 8B 
(PDE8B) less frequently occurred in patients [8]. 

ARMC5 germline mutations are responsible for up to 50% (near to 80% in Japanese) 
of familial or sporadic PMAH and lead to larger adrenal hyperplasia, higher hypercorti-
solism, a higher number of nodules, hypertension, higher fasting glucose, and HbA1c 
[4,6]. Owing to the disease severity, patients carrying ARMC5 mutations often need sur-
gery [6]. Therefore, awareness of a patient’s ARMC5 status will support the diagnosis of 
PMAH. Moreover, screening family members of affected patients may help clinicians in 
the early identification and prevention of morbidity and even mortality caused by CS. In 
this study, we performed clinical data collection and whole exome sequencing (WES) to 
discover the disease-causing variant in one PMAH family. A novel germline variant in the 
ARMC5 gene was detected, and the candidate variant in the family members was con-
firmed and segregated by Sanger sequencing.  

2. Materials and Methods 
2.1. Sample Collection and Ethics Statement 

This research was approved by the ethics committee of the Iran University of Medical 
Sciences, Tehran, IRAN, and all study subjects signed the informed consent for genetic 
investigation and publication of clinical evidence. Available members of the pedigree 
were enrolled in this manuscript. Germline genomic DNAs from four patients (II-3, III-3, 
III-5,  and III-6) with the clinical diagnosis of primary macronodular adrenocortical hyper-
plasia (PMAH) and four unaffected family members (III-2, III-7, III-8, and IV-2) were iso-
lated from the blood samples by applying the standard salting-out standard protocol [13]. 
In addition, the available tumor genomic DNA of these patients (III-3, III-5,  and III-6) was 
extracted using the RIBO-prep nucleic acid extraction kit (AmpliSens).  

Figure 1. Genetics of Primary macronodular adrenal hyperplasia.

For instance, mutations in tumor suppressor genes, such as adenomatous polyposis
coli gene (APC), menin (MEN1), fumarate hydratase (FH), and armadillo repeat-containing
protein 5 (ARMC5), which later is detected in 20% to 50% of PMAH cases [8]. Recently, the
other tumor suppressor gene, lysine (K)-specific demethylase 1A (KDM1A) was identified
in PMAH associated with food-dependent Cushing’s syndrome [9–12]. Furthermore,
mutations in the ACTH receptor gene and guanine nucleotide-binding protein alpha-
stimulating activity polypeptide (GNAS), cAMP-dependent protein kinase catalytic subunit
alpha (PRKACA), phosphodiesterase 11A (PDE11A), and phosphodiesterase 8B (PDE8B)
less frequently occurred in patients [8].

ARMC5 germline mutations are responsible for up to 50% (near to 80% in Japanese)
of familial or sporadic PMAH and lead to larger adrenal hyperplasia, higher hypercorti-
solism, a higher number of nodules, hypertension, higher fasting glucose, and HbA1c [4,6].
Owing to the disease severity, patients carrying ARMC5 mutations often need surgery [6].
Therefore, awareness of a patient’s ARMC5 status will support the diagnosis of PMAH.
Moreover, screening family members of affected patients may help clinicians in the early
identification and prevention of morbidity and even mortality caused by CS. In this study,
we performed clinical data collection and whole exome sequencing (WES) to discover the
disease-causing variant in one PMAH family. A novel germline variant in the ARMC5
gene was detected, and the candidate variant in the family members was confirmed and
segregated by Sanger sequencing.

2. Materials and Methods
2.1. Sample Collection and Ethics Statement

This research was approved by the ethics committee of the Iran University of Medical
Sciences, Tehran, IRAN, and all study subjects signed the informed consent for genetic
investigation and publication of clinical evidence. Available members of the pedigree were
enrolled in this manuscript. Germline genomic DNAs from four patients (II-3, III-3, III-5,
and III-6) with the clinical diagnosis of primary macronodular adrenocortical hyperplasia
(PMAH) and four unaffected family members (III-2, III-7, III-8, and IV-2) were isolated
from the blood samples by applying the standard salting-out standard protocol [13]. In
addition, the available tumor genomic DNA of these patients (III-3, III-5, and III-6) was
extracted using the RIBO-prep nucleic acid extraction kit (AmpliSens).

Each patient experienced clinical, laboratory, and radiological assessments for the
presence of PMAH. All medical records of healthcare, routine physical, and fundus exami-
nations were collected. Whole exome sequencing was only performed on proband III-6 and
recognized variants confirmed by Sanger sequencing in other mentioned family members.
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2.2. Whole-Exome Sequencing and Bioinformatics Analysis

Whole-exome sequencing through the Illumina NextSeq platform was performed for
proband III-6. In the library preparation step, a paired-end DNA sequencing library was
prepared using the Agilent SureSelect V7 Target Enrichment Kit (Agilent Technologies,
Santa Clara, CA, USA). The constructed library was sequenced with a mean coverage of
nearly 200X. After the base calling and quality assessment of sequencing data, paired-end
150-bp sequence reads were mapped to the UCSC human reference genome (GRCh37/hg19
assembly) by BWA with ‘mem’ mode [14]. The following was performed by removing
duplicates and low-quality reads (QBase < 20).

After mapping, the generated Sequence Alignment/Map (SAM) file was converted to
a BAM file using Samtools [15], and this software was also used for sorting and indexing
the bam file. The created BAM and BAM index files were applied for the viewing vari-
ant’s location and visualization of the read depth by an integrated genome viewer (IGV)
softwareversion 2.8.2 [16]. Variant calling of single nucleotide variants (SNVs) and short
insertions or deletions (Indels) were performed through the GATK (v4.1.9.0) tool. The
output of this step was a variant call format (VCF) file and subsequently was submitted to
the wANNOVAR (the access date: 22 October 2021) (http://wannovar.wglab.org/ access
date: 22 October 2021) and Franklin (https://franklin.genoox.com/ access date: 22 October
2021) for annotating.

An in-house filtering pipeline was used to detect the proband’s candidate causative
variant/variants. The stepwise approach for data analysis is mentioned in (Figure 2).
In this regard, common variants were excluded with minor allele frequency exceeding
0.05 using datasets from dbSNP4, 1000 Genomes Project, ExAC database, ESP (Exon
Sequencing Projects), gnomAD database, and Iranome (http://www.iranome.ir/ access
date: 22 October 2021). Then, intronic, synonymous, upstream/downstream variants were
removed, and only point variants and indels (<20 bp) located in exonic regions or canonical
splicing sites were included in annotated files for further analysis.
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The residual variants were prioritized and filtered as follows:

(1) Including and selecting known/unknown missense variants and loss-of-function
(LOF) variants.

(2) Checking variants in the Human Gene Mutation Database (HGMD) (http://www.
hgmd.cf.ac.uk/ac/ access date: 22 October 2021) and ClinVar (https://www.ncbi.nlm.
nih.gov/clinvar access date: 22 October 2021) to detect formerly reported mutations
as pathogenic or likely pathogenic.

(3) In silico analysis was directed by PolyPhen2 [17], Combined Annotation Dependent
Depletion (CADD) [18], Mutation Taster [19], DANN score [20], HOPE web (https:
//www3.cmbi.umcn.nl/hope/ access date: 22 October 2021), and GERP score [21] to
evaluate the potential pathogenicity of the variants based on the function or structure
prediction. Additionally, the GERP score was used to assess the conservation score.

(4) To find related variants with the patient’s clinical information, we used the Human
Phenotype Ontology (HPO) as the phenotype–gene association database and the On-
line Mendelian Inheritance in Man (OMIM) as the gene–disease association database
to discover the damaged genes related to the phenotype of the patients.

(5) Finally, the interpretation of the novel variants was completed using the manual
approach to the American College of Medical Genetics and Genomics (ACMG) guide-
lines [22] and semiquantitative-, hierarchical evidence-based rules for locus interpre-
tation (Sherloc) [23].

2.3. The Variant Validation and Co-Segregation Analysis

Following data filtering, the detected causative variant was confirmed by Sanger se-
quencing in DNA samples of the proband and other family members to show co-segregation
of this variant in the causative genes related to the PMAH phenotype. For this purpose,
specific primers were designed with the Primer3 website and Gene Runner 6.0 software for
the region including the detected variant, and PCR-amplified products were sequenced by
the ABI 3500 Genetic Analyzer (Applied Biosystems, Foster City, CA, US). For data analysis
of the sequence, traces were used in the Ensemble reference sequences and Chromas v2.33
software, and CodonCode aligner software.

2.4. Protein Structure Analysis

Original protein sequences of ARMC5 were retrieved from UniProtKB with ID of Q96C12
(ARMC5_HUMAN), which was cross-referenced with other IDs such as NP_001275969,
NM_001105247.2, and XP_005255637. Since no structure information was available for the area
of interest (between ARM7 repeat and BTB homo-dimerization domain) in ARMC5 protein
using the SWISS-MODEL Repository (SMR), the Protein Homology/analogY Recognition
Engine (Phyre v2.0) was used to predict the secondary structure of ARMC5 [24,25]. Then, the
predicted secondary structure of both ARMC5 variants (either with Ala702 or Glu702 in the
445–747 region, which from now on will be called “ARMC5-Ala702” and “ARMC5-Glu702”)
were compared. The tertiary structure of 1XQR with 97.9% confidence was chosen as the
highest-scoring template. Substitution of His58 by either Ala or Glu residues in 1XQR[A]-5
was performed using the mutate tool of Hyperchem software (v 8.0.10) [26], which resulted
in the development of 1XQR[A]-5-Ala58 and 1XQR[A]-5-Glu58 variants, respectively. Opti-
mizing the geometry of the 1XQR[A]-5 (amino acids of 274–350) was performed using the
Polak–Ribiere algorithm, as well as 1XQR[A]-5 variants. To calculate the hydrophobicity
of ARMC5 variants, their corresponding sequences were tested using the GRAVY index of
ProtParam from Expacy online service [27].

3. Results
3.1. Subjects

The clinical data and laboratory findings are gathered for the subjects. The histopatho-
logical data and CT scan images of the proband were shown in Figure 3 and also the family
information is included in Figure 4a.

http://www.hgmd.cf.ac.uk/ac/
http://www.hgmd.cf.ac.uk/ac/
https://www.ncbi.nlm.nih.gov/clinvar
https://www.ncbi.nlm.nih.gov/clinvar
https://www3.cmbi.umcn.nl/hope/
https://www3.cmbi.umcn.nl/hope/
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Figure 3. Clinical data of the proband (III-6). (A,B) Abdominal CT scan images showed bilateral
irregular adrenal masses, adrenal glands are replaced by multiple nodules. (C) Macroscopic cross-
sectional view of the resected formaldehyde fixed right adrenal gland with yellowish nodules of
various sizes. (D,E) Histological view of hematoxylin-eosin (HE) staining of resected tissues showed
diffuse hyperplasia of zona fasciculate.

A 44-year-old female (III-5, Figure 4a) admitted to the neurology ward with blurred
vision and a headache underwent initial evaluation. The patient had a history of weight
gain, central obesity, proximal muscle weakness, hypertension (HTN), facial puffiness,
and lower extremity edema which had started and progressed 2 years before admission.
Due to HTN and mild hypokalemia, the patient was referred to an endocrinologist and
admitted and treated with valsartan (80 mg), amlodipine (5 mg), and metoprolol succinate
(50 mg). She did not have a familial history of endocrine disorders, but her father suffered
from cardiovascular disorder (CVD) and died at the age of 80 due to an ischemic heart
attack. Her mother also died at the age of 65, suffering from HTN, uncontrolled diabetes
mellitus (DM), and CVD. On admission, she was 84 kg in weight, 163 cm in height, and
had a body mass index (BMI) of 31.6 kg/m2 and BP = 170/98 mmHg. On neurological
assessments, no pathological finding was found in the central nervous system (CNS).
Initial lab data assessing resistant HTN showed K+ 3.4 mmol/lit, HCO3- 34.2 mmol/lit,
cortisol 8 am 360.2 mcg/L, ACTH 4.2 pg/mL, UFC 364 mcg/24 h, and elevated aldosterone
renin ratio (ARR). On an overnight 1 mg dexamethasone suppression test, 8 am cortisol
was 25 mcg/dl. Subsequently, a low-dose dexamethasone-suppression (LDDS) test was
performed to diagnose Cushing’s syndrome and, on the third day, 8 am serum cortisol
was 12.2 mcg/dl (Table S1). Therefore, the patient underwent an abdominal and pelvic
CT scan in contrast with the primary diagnosis of Cushing’s syndrome, and the results
showed bilateral macronodular enlargement of adrenal glands. The diagnosis of PMAH
was made, and a unilateral adrenalectomy was performed on her. Three days after the
operation, cortisol at 8 am was 11.01 mcg/dl, and UFC 174 mcg/24h. She lost 10 kg of
weight 6 months after surgery and her blood pressure was controlled to be at 130/80 mmHg
on valsartan (80 mg) BID. About two years after the surgery, clinical symptoms and lab
abnormalities have reappeared and an adrenalectomy of the remaining adrenal gland is
currently planned for her.

The second case was a 46-year-old woman (III-3, Figure 4a), under treatment for hy-
pertension with amlodipine (5 mg) and losartan (50 mg) during the past 2 years before her
recent complications. On her current visit to the endocrinologist, she presented with com-
plications such as weight gain (15 kg in 6 months) plus muscle weakness (past 6 months).
Three months before her visit, the patient’s sister (III-5) had undergone surgery with the
diagnosis of PMAH. Due to her HTN, hypokalemia (3.2 mmol/L), Cushing’s syndrome
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signs, and familial history, the patient was a candidate for more work-up (assessment
shown in Table S1). Further lab work assessing the Cushing’s possibility showed 8 am
cortisol level of 340.2 mcg/L, UFC level of 283 mcg/24 h, and ACTH of 1.82 pg/mL. In
an overnight dexamethasone suppression test with 1 mg dexamethasone, serum cortisol
turned out to be 8.2 mcg/dL. Afterward, the dexamethasone suppression test (LDDS test)
confirmed the diagnosis of Cushing’s syndrome, and an abdominal-pelvic CT scan was
performed and confirmed PMAH in our patient. Unilateral adrenalectomy was the next
step in our patient, which has led to the resolution of any abnormal lab data or clinical
manifestation remaining asymptomatic up to the present time.
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Figure 4. The pedigree of the family with familial PMAH, predicted secondary structure of ARMC5
and its tertiary structure (Adopted from 1XQR), BAM interfaces, and sanger confirmation results.
(a) The pedigree of the patient (III-6). The arrows indicates the proband. (b) Sanger sequencing
confirmation for the candidate causative variant of ARMC5 in the peripheral blood sample and (c) the
tissue of the Patient (III-6). (d) The WES reads were visualized by using the Integrative Genomics
Viewer (IGV). (e) Secondary structures of ARMC5 variants were obtained, using the Phyre online
service. The substituted residues are highlighted in orange rectangles. (f) Tertiary structure of
1XQR is demonstrated in the top left. The 1XQR[A]-5 domain is highlighted in green, which is also
electrostatically colored (on the right side of the arrow). The red, white, and blue represent negative,
neutral, and positive charges, respectively, and the white circle represents the position of residues
of interest either in 1XQR[A]-5 or in its variants. In 1XQR[A]-5 variants’, His58 is substituted with
Ala58 and Glu58, which are named 1XQR[A]-5-Ala58 and 1XQR[A]-5-Glu58, respectively.

After a diagnosis of PMAH in her two sisters, a 39-year-old woman (proband III-6,
Figure 4a) presented with a weight gain of about 18 kg in 6 months, proximal muscle weak-
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ness and facial puffiness, and a plethora of purple stria to her endocrinologist. Considering
the mentioned familial history and her clinical signs evaluated for Cushing’s syndrome
(initial lab data and further test results are mentioned in Table S1). CT scanning confirmed
PMAH as in her two sisters. Eventually, the patient underwent unilateral adrenalectomy
leading to complete remission of her signs and symptoms. All three cases’ pathological
reports confirmed PMAH findings as well.

As shown in Table S1, primary aldosteronism was observed in three patients. For the
confirmation of primary aldosteronism, a saline infusion test was performed. The infusion
test was followed by the intravenous administration of 2 L of isotonic saline over four hours
(from 8 a.m. to 12 p.m.), ideally, while the patient is seated. In ordinary people, aldosterone
is suppressed, whereas values above 10 ng/dL (277 pmol/L) are consistent with primary
aldosteronism [28,29]. An intravenous saline infusion test was conducted in patients’
hospitalization course of admission. After administering 2 L of saline, aldosterone levels
for patients were as mentioned: the first case was 15 ng/dl, the second case was 12.5 ng/dl,
and the third one was 11 ng/dl. This implies the diagnosis of hyperaldosteronism in these
patients. This emphasizes concurrent high levels of cortisol along with aldosterone.

3.2. Whole-Exome Sequencing Results

Whole-exome sequencing (WES) was performed to find the genetic variants of III-6
proband related to PMAH and approximately 18 Gb data (121,128,400 million read pairs
(150 × 2)) were generated and 115,158,269 read counts were mapped. The quality control
of this data exposed 98.1% of the read bases had Q30. Coverage data indicated that 96.9%
of the sequenced target regions were at more than 10× reads. Also, as indicated in Table 1,
the minimum mean coverage of target regions was 97.7% for >1×, 94.7% for >25×, and
85.4% for >50× of the data.

Table 1. The summary explanation of data analysis from the WES.

Analytical Characteristic Proband III-6

Total number of reads 121,128,400

Average read length (bp) 150

Target region (Mbp) 36

% Bases QV > 30 98.16

% Initial mappable reads 99

% Minimum coverage of target regions
(For depth 1×, 5×, 10×, 25×, 50× and 100×)

97.7, 97.3, 96.9, 94.7, 85.4 and 52.7

% Of duplicate reads
(pre-alignment)

25

% Of duplicate reads
(post-alignment)

6

% On target reads
(post-alignment)

55
66,811,296 (reads)

3.3. Genetic Findings

278,284 variants were detected in the III-6 proband’s annotated VCF file which in-
cluded 250,964 SNVs and 27,320 indels. Variant filtering, as mentioned above, was per-
formed by the following steps to reduce the number of potentially pathogenic variants.
The variants were filtered with the minor allele frequency (MAF) > 0.05 from population
databases to identify the rare variants and conserve coding and splicing variants. To eval-
uate the pathogenicity of rare variants, several in silico analyses were performed such
as CADD-PHRED-Score > 15, disease-causing variants evaluated by a Mutation Taster,
pathogenic alterations with the DANN-Score (the value range is 0–1), and variants with
GERP-Score (−12.3 to 6.17) and Polyphen-2 (greater than 0.9, “probably damaging”). Also,
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the candidate causative variants were checked in the HGMD and ClinVar databases. Then,
we investigated rare OMIM genes, including the PMAH-associated genes. To find variants
related to the patient’s phenotypes, we used HPO terms extracted from the HPO database;
such as adrenal hyperplasia (HP:0008221), macronodular adrenal hyperplasia (HP:0008231),
and Cushing’s syndrome (HP:0003118).

As a consequence, a novel heterozygous missense variant in the ARMC5 gene
(NM_001105247.2: c.2105C>A; p. Ala702Glu) was identified in proband III-6, which accord-
ing to ACMG guidelines and Sherloc evidence, classified as “likely pathogenic”. The results
of in silico analysis of the pathogenicity of the variants are shown in Table 2. The validation
of this variant by Sanger sequencing on proband III-6 was followed by co-segregation
analysis in all available family members. The proband III-6 and affected family cases (II-3,
III-3, and III-5) have shown this germline variant as a heterozygous state but were absent
in unaffected family members (III-7, III-8, and IV-2), except the clinically healthy brother
of the proband (III-2). In addition, this heterozygous candidate variant was confirmed by
extracted genomic DNA from the tissue of hyperplastic adrenal glands of the proband
(Figure 4c). Also, this variant was confirmed in the tissue sample of two sisters (III-3 and
III-5) of the proband as a heterozygous state.

Table 2. The variant illustration of recognized variants such as in silico analysis and variant frequency
in population databases.

Patient Proband III-6

Variant Definition
-Gene name ARMC5 (NM_001105247.2)
-Varian name c.2105C>A
-Protein change p. Ala702Glu
-Chromosome position (GRCh37) Chr16: 31477507
-Zygosity Heterozygote

In-silico predictive tools
-CADD (Phred score) 25 (deleterious)
-DANN 0.9948 (deleterious)
-GERP 5
-Mutation taster Disease-causing
-Polyphen Probably-damaging

Population databases
-1000 GP -
-ExAC -
-ESP -
-GnomAD -
-Iranome -

Related phenotypes
(OMIM number)

ACTH-independent macronodular adrenal
hyperplasia 2/AIMAH2 (OMIM: 615954)

Variant classification
(Evidence based on ACMG guideline)
(Evidence based on Sherloc)

Likely pathogenic
(PM2, PP3, PP4-strong, and PP1)

(PM2, PP3, PP4, PP1, and LAB-assay points)

3.4. Protein Assessment Results

The predicted secondary structure of “ARMC5-Ala702” and “ARMC5-Glu702” vari-
ants showed that ARMC5 with high confidence has an alpha–helix structure, regardless
of whether it is an “ARMC5-Ala702” or “ARMC5-Glu702” variant (Figure 4e). The ter-
tiary structure of ARMC5, which was adopted from 1XQR[A]-5, represented an increased
negative charge in 1XQR[A]-5-Glu58 variant, compared with the 1XQR[A]-5-Ala58 and
1XQR[A]-5 (Figure 4f). Physicochemical evaluation of ARMC5 variants confirmed that
“ARMC5-Ala702” is slightly more hydrophobic than “ARMC5-Glu702” due to an increased
grand average of hydropathy (GRAVY) index.
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4. Discussion

Three sisters in the family were diagnosed with primary non-pituitary ACTH-dependent
macronodular adrenal hyperplasia. The genetic testing of the proband (III-6) using ex-
ome analysis showed a heterozygous germline variant in c.2105C>A on the ARMC5 gene
(NM_001105247.2) in exon 6 which resulted in an amino acid change near BTB/POZ (broad
complex/tramtrack/bric-a-brac/pox virus and zinc finger) domain. Overall, 69 mutations
were discovered for ARMC5 based on HGMD data, including missense and nonsense, splicing,
and small and gross indels. The detected substitution mutation in this study is a missense
variant that changes the wild-type amino acid alanine to glutamic acid at position 702 of the
ARMC5 protein (p. Ala702Glu). Based on HGMD, there are 21 missense mutations that cause
macronodular adrenal hyperplasia.

As predicted by the HOPE project and shown by the protein structure analysis, the
mutant residue was found to be bigger and negatively charged and was less hydrophobic
than the wild-type residue. Additionally, the wild-type residue has been conserved accord-
ing to evolutionary methods like GERP (GERP score: 5.0). In addition, ARMC5 protein
showed natural variations in amino acids 702–706 in isoform 1, which had no pathogenic
consequences. On the other hand, massive enlargement of adrenal glands was seen in the
CT scans of individuals with primary bilateral macronodular adrenal hyperplasia (PBMAH)
when deletion mutation occurred in amino acids 702–706 of ARMC5 [30]. Cancer-related
proteins are more charged and less hydrophobic than non-cancerous proteins, according
to earlier studies [31,32]. Compared with wild-type ARMC5, the charged and less hy-
drophobic (according to the GRAVY index) replacement of Ala702 by Glu702 increases
ARMC5-Glu’s characteristics more in favor of carcinogenic protein (With Ala in position
702). Nevertheless, this conclusion is based on computational thinking and should be
empirically confirmed.

Based on ACMG guidelines, the identified missense variant is characterized as a
likely pathogenic variant based on the following explanations: this variant is absent in
any of the population databases (GenomAD, 1000GP, ExAC, ESP, and Iranome) (PM2);
the computational prediction tools support a deleterious effect on the gene ARMC5 (PP3);
co-segregation with the disease in multiple affected family members (PP1) and the patient’s
phenotype and family history were highly specific for PMAH with a single genetic etiology
(PP4). Thus, PP4 evidence can be considered as a strong piece of evidence by biopsy
analysis (pathological tests and results) that is pathognomonic of a specific genetic cause
of a disorder and, in the lack of genetic confirmation, would be considered a diagnostic
finding [33].

To do a comprehensive investigation and increase specificity for the interpretation
of this variant, we used the Sherloc classification, which finally predicted this candidate
variant as a likely pathogenic variant. These Sherloc points (P) include: (1) This does not
exist in any of the population databases (GenomAD, 1000GP, ExAC, ESP, and Iranome) (1P).
Multiple general protein predictors (PolyPhen-2, CADD, and DANN) indicate a deleterious
effect on ARMC5 protein (0.5P) as well as weak segregation of the disease with at least
three affected individuals (II-3, III-3, and III-5) in this family for dominant genes (1P).
This heterozygous variant of the ARMC5 gene is associated with a dominant disease with
well-established diagnostic guidelines and greater than 75% test sensitivity (1P). Also, CT
scans and lab findings (pathological results) are pathognomonic for this disorder (1P). We
could consider the (c.2105C>A, p. Ala702Glu) variant in ARMC5 as a causative variant
for PMAH; nevertheless, to discover other affected unrelated families, further studies on
the effects of this variant on protein structure and functional studies would help gather
more evidence.

The ARMC5 gene was found to be the major genetic cause of PMAH and included
nearly 80% of familial cases with PMAH and 30% of apparently sporadic forms [4,12].
ARMC5 has germline and somatic mutations, according to genetic analysis [7]. The
germline-detected variant was investigated in blood samples of family members which
were segregated into affected members but not unaffected ones. PMAH with ARMC5



Diagnostics 2022, 12, 3028 10 of 13

mutations has an autosomal dominant inheritance pattern with incomplete penetrance [34].
Stratakis et al. also suggested that ARMC5 inactivation in mice is age-dependent and
plays the role of ARMC5 haploinsufficiency on adrenocortical function [35]. This article
mentioned ARMC5 heterozygote mice (Armc5+/−) at 12 months of age replicates the
genetics of younger patients with ARMC5-inactivating mutations in which their corticos-
terone levels decreased. However, around 18 months of age, these corticosterone levels
were compensated for and increased, indicating a role for the PKA and Wnt/ β catenin
signaling pathways in the age-dependent development of PMAH in older adults with
ARMC5 mutations.

In addition, the manifestation of disease could be observed in late-onset age (the fifth
and sixth decades of life) [36–38]. For example, a PMAH patient with the mutation was
detected after the sixth decade of life [34] and several AIMAH patients with a mean age of
56 years showed clinical symptoms [36]. The putative germline mutation was confirmed
and segregated into three cases (III-3, III-5, and III-6) that were diagnosed with PMAH
based on clinical and laboratory findings in this family lineage. However, we discovered
the proband’s brother, an asymptomatic ARMC5 variant carrier (III:2), among the family
members. This 39-year-old unaffected member exhibited no laboratory nor clinical PMAH
symptoms. Therefore, this young asymptomatic male carrier with a germline ARMC5
mutation might express the disease in the following decades of his life, taking into account
that the disease may display incomplete penetrance due to the potential of the diagnosis at
late-onset age.

PMAH patients with ARMC5 mutations have a higher number of nodules, larger
nodules, and autonomous cortisol secretion with low circulating ACTH than cases without
ARMC5 mutations [30,39,40]. ARMC5, which contains an N-terminal armadillo repeat
domain and a C-terminal BTB, has a role in the regulation of apoptosis and steroidogene-
sis. Functional studies showed that the inactivation of ARMC5 leads to the inhibition of
apoptosis and decreases the expression of MC2R and steroidogenic enzymes which may
be involved in adrenal hyperplasia. It seems that hypercortisolism in PMAH is related to
the increased number of adrenocortical cells supposedly caused by mutations in ARMC5
and the contribution of aberrant G-coupled receptors and intra-adrenal ACTH in hyper-
plastic adrenal cells is suggested by mechanisms of the autonomous cortisol production in
PMAH [34,41,42].

As mentioned above, the germline and somatic variants were described in ARMC5
and the germline variants were documented in sporadic and familial PMAH cases in 50% of
investigated individuals [4,34,42]. ARMC5 was considered as a tumor suppressor gene and
the germline variants in ARMC5 should be transmitted to family members in pedigree. The
second somatic variants or another second hit may induce tumorigenesis and/or contribute
to the progression of macronodules [4,42–44]. Hence, the study has some limitations. Due
to a lack of sufficient funding, we were unable to investigate the functional consensuses of
the detected variant and to sequence the whole ARMC5 gene to find any somatic variations.
Given that somatic mutations can only be detected by Sanger sequencing in around 20% [45]
and that many genes are involved in the pathogenesis of PMAH, NGS techniques must be
used for all patient tissues. These techniques thus include all potential pathogenic genes
and provide sufficient coverage to find low-frequency somatic mutations.

In conclusion, our results indicate that a novel missense variant, c.2105C>A, in the
ARMC5 gene might be the genetic cause of PMAH, and based on the standard guidelines,
the recognized variant was characterized as likely pathogenic; however, we essentially
advise performing functional analysis to assess the distinct role of the variant pathogenicity.
The finding of pathogenic/likely pathogenic ARMC5 gene mutations enhances the early
stage of PMAH diagnosis (in an age-dependent way). Consequently, the confirmation of a
germline variation is used to conduct healthy life-long follow-ups in asymptomatic variant
carriers of PMAH families. Furthermore, the diagnosis of an inherited germline mutation
in cancer predisposition genes, such as ARMC5, can be applied in preimplantation genetic
diagnosis (PGD) [46–48] to prevent the occurrence of cancerous patients.
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