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Simple Summary: Osteosarcoma is the most common type of bone cancer seen in children to young
adults with poor prognosis. To find effective treatments, it is crucial to understand the mechanism
of the initiation and progression of the osteosarcoma tumors. In this paper, we introduce a PDE
model for the progression of osteosarcoma tumors by considering the location of different cell
types, including immune and cancer cells, in the tumors. We perform several simulations using the
developed model to investigate the importance and role of the different immune cells’ location in
the growth of the tumors. The results show that the co-localization of macrophages and cancer cells
promotes tumors’ growth.

Abstract: Osteosarcoma is the most common malignant bone tumor in children and adolescents with
a poor prognosis. To describe the progression of osteosarcoma, we expanded a system of data-driven
ODE from a previous study into a system of Reaction-Diffusion-Advection (RDA) equations and
coupled it with Biot equations of poroelasticity to form a bio-mechanical model. The RDA system
includes the spatio-temporal information of the key components of the tumor microenvironment.
The Biot equations are comprised of an equation for the solid phase, which governs the movement of
the solid tumor, and an equation for the fluid phase, which relates to the motion of cells. The model
predicts the total number of cells and cytokines of the tumor microenvironment and simulates the
tumor’s size growth. We simulated different scenarios using this model to investigate the impact of
several biomedical settings on tumors’ growth. The results indicate the importance of macrophages
in tumors’ growth. Particularly, we have observed a high co-localization of macrophages and cancer
cells, and the concentration of tumor cells increases as the number of macrophages increases.

Keywords: osteosarcoma; cancer modeling; tumor microenvironment; partial differential equation;
tumor growth; poroelasticity; Biot equations

1. Introduction

Osteosarcoma (also called osteogenic sarcoma) is the most common type of cancer
that starts in the bones. It happens most often in children, adolescents, and young adults.
Approximately 800 new cases of osteosarcoma are reported each year in the U.S.; of these
cases, about 400 are in children and teens [1]. Surgery, chemotherapy, radiation therapy,
and targeted therapy are the types of standard treatment for osteosarcoma [2].

There are many mathematical models to understand and investigate biomedical prob-
lems such as cancer. Mainly, bio-mechanical models are developed to investigate the
spatial interaction among cells and their movements in tumors using appropriate physical
laws [3,4]. In one study, the authors have developed a partial differential equation (PDE)
model to study the breast tumors’ progression in mice as a fluid structure because the
breast tumors are mainly confined in the mammary gland [5]. However, when the tissues
are porous, modeling with techniques of porous media can be more realistic [6–11]. Al-
though the Biot equations are the critical part of poroelasticity theory, few studies have
incorporated the equations for porous media (the Biot equations) into their model.
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There is a limited number of mathematical models for osteosarcoma, and to the best
of our knowledge, there is no PDE model for osteosarcoma. To find optimal treatments for
osteosarcoma patients based on their immune profiles, an ODE model has been recently
developed to study the key players in the tumors’ microenvironment and their interaction
network, which are shown in Figure 1. In this model, osteosarcoma tumors have been
grouped based on their immune profile. For each group, the models’ parameters that could
not be found in current literature have been estimated using the tumors’ gene expression
profiles [12,13].

Figure 1. Interaction network of the tumor microenvironment in osteosarcoma. Blue arrows show
activation and proliferation while inhibitions are indicated by red arrows.

Here, we propose a bio-mechanical multiphase model that describes the dynamics
of the tumor microenvironment of osteosarcoma. The model PDE consists of two parts:
the biological part and the mechanical part. The biological part is an extension of the
ODE system provided in [12] to a system of RDA equations. The coupling terms from the
mechanical part are the fluid velocity involved in the convection terms. The mechanical part
is derived from the first principles, following the same argument that leads to Biot equations.
Using the mechanical part, we model the motion of the fluid, which carries various kinds
of cells and chemokines, and is an essential part of the continuity equation as fluid flow
through porous media. The coupling term from the biological part is the additional strain
of the solid tumor caused by the increase or reduction of cells. We investigate the reference
case in the absence of influx and cases with different settings to examine the importance
of considering cell locations and their movements in the mathematical modeling of the
tumors’ growth.

2. Materials and Methods
2.1. Tumor Microenvironment and Interaction Network

The key players of the tumor microenvironment in osteosarcoma and their interaction
network are shown in Figure 1, which lay the foundation of the ODE paper [12].

The vector, [X] = ([X1], [X2], . . . , [X14]) represents the 14 key players we will investi-
gate. The values of [Xi]’s are re-scaled by the corresponding steady-state abundance of cells
or cytokines. The correspondence of [Xi]’s to the cells or molecules and the steady-state
abundance values are shown in Table 1.
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Table 1. Variable names corresponding to [Xi].

[Xi] Variable Name Biological Meaning (Concentration of) Scaling Factor †

[X1] Mn Naive macrophages 6.236× 106

[X2] M Macrophages 1.977× 107

[X3] Tn Naive T cells 4.926× 106

[X4] Th Helper T cells 7.092× 106

[X5] Tr Regulatory T cells 3.675× 106

[X6] Tc Cytotoxic T cells and NK cells 2.292× 107

[X7] Dn Naive dendritic cells 4.826× 105

[X8] D Dendritic cells 9.865× 105

[X9] C Cancer cells 1.343× 1010

[X10] N Necrotic cells 3.764× 108

[X11] Iγ IFN-γ 0.868
[X12] µ1 TGF-β, IL-4, IL-10, and IL-13 21.510
[X13] µ2 IL-6 and IL-17 2.067
[X14] Hn HMGB1 5.076

† These are values associated with cluster 1 in the ODE paper [12].

2.2. Biological Part of the Model

We adopt the Reaction-Diffusion-Advection equations by adding the diffusion term
Dcell∆[Xi] and the advection term b∇ · ([Xi]κ∇p) to the ODEs of each cell type. Here,
Dcell is the diffusion coefficient of cells, i = 2, 4, 5, 6, 7, 8, 9, b is the advection coefficient
which is set to be 1 for the sake of simplicity, and κ is the hydraulic conductivity of the
solid tumor.The derivation of the form of the advection term will be explained in detail
in the mechanical modeling part. We assume that necrotic cells are immotile, so we do
not consider any diffusion or advection for them [14]. As for the naive T-cells and naive
macrophages, since they activate mainly outside of the tumor microenvironment [15–17],
we are only interested in their level, not their spatial distributions. We, therefore model
their dynamics via ODEs.

We add the diffusion and advection terms to every ODE of cytokines. We denote the
diffusion coefficient of HMGB1 (H) by DH and the diffusion coefficients of other cytokines
(Iγ, µ1, and µ2 ) by Dcyto.

In summary, the biological part of our model can be written as

∂[Xi]

∂t
− Di∆[Xi] + bi∇ · ([Xi]κ∇p) = fi, i = 1, . . . , 14, (1)

where Di is 0, Dcell , Dcyto, or DH , depending on the specific equation, bi = 0 or 1, and
fi’s model the biochemical interactions which are given in [12] (please see Appendix A).
Consequently, the equations can be written in the following vector form

∂[X]
∂t
− D∆[X] + B∇ · ([X]κ∇p) = f, (2)

where D = diag{Di} and B = diag{bi} are diagonal coefficient matrices.

2.3. Mechanical Part of the Model

In the chapter “Cancer Models and Their Mathematical Analysis” of the book [14],
Friedman utilizes the continuity equation that generally takes the form

∂ρ

∂t
+∇ · (ρv) = f , (3)

where ρ is the density of the matter of interest, v is usually the fluid velocity, and f is the
external source. In the context of cancer modeling, v represents the continuous motion of
cells within the tumor. Later, Friedman specifies the meaning of v to be the velocity of the
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fluids that flow through porous media and applies Darcy’s law, treating the tumor tissue
as a porous medium and assuming the moving cells are carried with the flow.

Here, we will go one step further and take advantage of the full poroelasticity equa-
tions that cover Darcy’s law while maintaining a variable that describes the movement of
the solid body—the tumor. Therefore, we put the description of fluid flow into the theory
of porous media and obtain a source for the solid/mesh movement.

2.3.1. Governing Equations

We start with presenting the stress(σij)-strain(eij) relation for linear, isotropic poroelas-
tic material. In the spirit of Hooke’s law, the linear relation is

σij =

(
Ku −

2G
3

)
δije + 2Geij − αδijζ. (4)

Here, eij =
1
2

(∂ui
∂xj

+
∂uj

∂xi

)
is the stress, e = eii =

∂u1

∂x1
+

∂u2

∂x2
= ∇ · u is the total

volumetric strain, where u is the solid displacement of the material, δij is the Kronecker
delta, ζ is the fluid content, Ku is the undrained bulk modulus, G is the shear modulus, and
α is the Biot effective stress coefficient. The total stress comprises two parts, the contribution
from the displacement of the solid framework and the contribution from the fluid flow.
In our case, when building a multiphase model, we consider the contribution from the
variation of the number of cells that constitute the solid frame of the tumor, namely, the
cancer cells C, the necrotic cells N, the naive dendritic cells Dn, and the dendritic cells D,
since most tumors are infiltrated by dendritic cells [18].

The expression for the stress can be formally written as

stress = solid contribution + fluid contribution + biological contribution.

For the biological contribution, we apply Hooke’s law again. The spring constant is the
drained bulk modulus K, and the distance is induced by the volumetric change resulting
from the variations of cells’ number. The number of cells changes with respect to time in a
pattern that we have already given:

∂[Xi]

∂t
− Di∆[Xi] + bi∇ · ([Xi]v f ) = fi. i = 1, . . . , 14. (5)

The volume of cells that are a part of the solid tumor V is calculated through

V =
10

∑
i=7

AXi [Xi] (6)

where AXi is the size of the cell Xi. The variable Xi when i = 7, 8, 9, and 10 corresponds to
naive dendritic cells, dendritic cells, cancer cells, and necrotic cells. To summarize, if we
regard the tumor as isotropic, the stress-strain relation for the tumor is,

σij =

(
Ku −

2G
3

)
δije + 2Geij − αδijζ − KVδij. (7)

This expression is verified in the paper by Roose et al. [19], where they have used the
same form. Here, we have the density of cells at any time from solving the biological equations,
so we can calculate the volumetric change without resorting to the other given formulae of
tumor growth. We complete the set of governing equations with the following ones.

Definition of strain:

eij =
1
2

(
∂ui
∂xj

+
∂uj

∂xi

)
, (8)

where we define u as the solid displacement of the solid tumor, a macroscopic measure.
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Constitutive equation of the fluid pressure p:

p = M(ζ − αe), (9)

where M is the Biot modulus.
Equilibrium equation (Newton’s law of motion):

∂σij

∂xj
= 0. (10)

Darcy’s law (flow of a fluid with constant viscosity across a solid is a function of its
pressure difference and the solid properties):

qi = −κ
∂p
∂xi

. (11)

Here, q is the fluid-specific discharge vector, defined as the volume of fluid passing
through a unit area of the porous medium, per unit time, in the direction normal to the
area, which has the dimension of velocity, [L/T], and κ is the hydraulic conductivity.

Continuity equation (conservation of mass):

∂ζ

∂t
+

∂qi
∂xi

= 0. (12)

Solving the governing Equations (7)–(12) simultaneously, we obtain the mechanical
part of our model: In Ω(t)

−
(

K− 2G
3

)
∇(∇ · u)− G∆u + α∇p + K∇V = 0, (13)

∂

∂t
(c0 p + α∇ · u)− κ∆p = 0, (14)

which is to be aligned with the biological part (1)

∂[Xi]

∂t
− Di∆[Xi] + bi∇ · ([Xi]κ∇p) = fi, i = 1, . . . , 14. (15)

The parameter values of the local dynamics f of the biological part are shown in [12]
and other parameter values are shown in Table 2.

Table 2. Mechanical parameter values.

Parameter Name Value

φ Porosity 0.2
K Bulk modulus 40,000 (Pa) [19] †

G Shear modulus 30,000 (Pa) [19] †

α Biot effective stress coefficient 0.7 [20] ‡

κ Hydraulic conductivity 6.9× 10−14 (m2 · Pa−1 · s−1) [19] †

M Biot modulus 2× 105 (Pa) [20] ‡

Dcell Diffusion coefficient for cells 3.6× 10−8(cm2 · h−1) [21]
Dcyto Diffusion coefficient for cytokines 5.2× 10−5(cm2 · h−1) [22]
DH Diffusion coefficient for HMGB1 3.3× 10−3(cm2 · h−1) [23]

† These values are for sarcoma, not necessarily osteosarcoma; ‡ These values are for generic tumors, evaluated
through Artificial Neural Network (ANN) and then averaged among all reasonable values.
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2.3.2. Initial and Boundary Conditions

For the mechanical part, for simplicity, we set the initial displacement field to zero and
the interstitial fluid pressure equal to the blood pressure everywhere. This yields

u(x, 0) = (0, 0),

p(x, 0) = p0, (16)

where p0 is the average blood pressure of humans. Since we set u at time 0 as the reference,
we shall reset the biological coupling term in Equation (13) as K∇V∗ = K∇(V −V0) where
V0 is V(t = 0) so that at every time, V is to be compared with V0. At t = 0, it can be seen
that u = 0; hence compatibility is ensured. The initial conditions of the biological part can
be found in [12]; we have also listed them here in Table A1.

We use the no-flux boundary condition for u, in which case the tumor can grow freely
while ignoring mechanical influences from surrounding tissues. We also treat the boundary
of the tumor as the boundary of the normal tissues and set the pressure to be fixed as the
blood pressure.

∂u(x, t)
∂n

= 0, on ∂Ω, (17)

p(x, t) = p0, on ∂Ω, (18)

where n is the outward unit normal vector. To exclude translation or rotation of the domain,
two constraints are added [24]∫

∂Ω
udx = 0,

∫
∂Ω

u× ddx = 0, (19)

where d is the deformation vector.
We will apply both the no-flux boundary conditions and the Robin Boundary condi-

tions to the biological equations. A no-flux boundary condition resembles the case when
the tumors develop without interference, while the Robin boundary condition imitates the
case when immune cells infiltrate. They can be written as

∂[Xi]

∂n
= 0, on ∂Ω, (20)

or,

∂[Xi]

∂n
+ αi([Xi]− [X̂i]) = 0, on ∂Ω, (21)

where αi is the influx rate and is only non-zero for immune cells. The quantity [Xi
∗] pertains

to the maximum levels of immune cells in lymph nodes and blood.

2.4. Weak Formulation and Discretization
2.4.1. Weak Formulation

We first rewrite the biological equations in the Eulerian system. Noticing that the
definition of the material derivative is given by

D
Dt

=
∂

∂t
+ v f · ∇, (22)
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we have

∂[Xi]

∂t
− Di∆[Xi] + bi∇ · ([Xi]v f )

=
∂[Xi]

∂t
− Di∆[Xi] + bi∇[Xi] · v f + bi[Xi]∇ · v

=
D[Xi]

Dt
− Di∆[Xi] + bi[Xi]∇ · v f = fi, (23)

where v f is the fluid velocity. Let I = (0, T], V = (L2(I; H1(Ω)))3, Q = L2(I; H1(Ω)),

X = (L2(I; H1(Ω)))14, and a
(
u, v

)
=

((
K− 2G

3

)
∇ · u,∇ · v

)
+
(
G∇u,∇v

)
, the weak

formulation of the problem is: find (u, p, [X]) ∈ V×Q×X that satisfies (16) and Lagrange
multipliers λi such that for a.e. t ∈ (0, T]

a
(
u, v

)
+
(
α∇p, v

)
+
(
K∇V∗, v

)
−

3

∑
i=1

λi
(
v, zi

)
−

3

∑
i=1

ωi
(
u, zi

)
= 0, (24)

(
c0

∂p
∂t

, q
)
+
(

α
∂(∇ · u)

∂t
, q
)
+
(
κ∇p,∇q

)
= 0, (25)

and (D[X]
Dt

, Ξ
)
+
(

D∇[X],∇Ξ
)
+
(
b[X]κ∆p, Ξ

)
= (f, Ξ

)
, (26)

for all appropriate choices of test functions v, q and Ξ. The last two terms at the left-hand
side of Equation (24) are added to exclude rigid body movements, with the following
constraints of Lagrange multipliers λi and test functions ωi corresponding to the bases zi
of the space of rigid body movements:

3

∑
i=1

λi
(
vh, zi

)
+

3

∑
i=1

ωi
(
uh, zi

)
= 0, (27)

where zi ∈ {(1, 0), (0, 1), (−x2, x1)}.

2.4.2. Discretization

We only list the result of discretization in this section. The details about discretization
are given in Appendix B.

Denote by Vh, Qh, Xh the appropriate finite dimensional subspaces of V, Q, X, respec-
tively, and denote the time step size by k. Let un = u(tn) and pn = p(tn) and let Un and Pn

be their approximations, respectively. We use Lagrange elements for the two mechanical
equations. The fully discrete approximation for the mechanical problem is: find Un ∈ Vh
and Pn ∈ Qh for n = 1, 2, . . . , N, and Lagrange multipliers λi such that

a
(
Un, vh

)
+
(
∇Pn, vh

)
+
(
K∇V∗n, vh

)
−

3

∑
i=1

λi
(
vh, zi

)
−

3

∑
i=1

ωi
(
uh, zi

)
= 0, (28)

k−1(c0(Pn − Pn−1), qh
)
+ k−1(α∇ · (Un −Un−1), qh

)
+
(
κ∇Pn,∇qh

)
= 0, (29)

for all basis functions vh and qh of the spaces Vh and Qh.
After solving the mechanical problem (28) and (29), we obtain the mesh displacement

vector Un. We can apply it to the domain if we want to observe the shape and size of the
domain with respect to the reference frame, at any time.

We then solve the biological problem. We use a mixed finite element space enriched
with bubble elements for the biological equations. The fully discrete approximation for the
biological problem is: find Xn ∈ Qh for n = 1, 2, . . . , N, such that
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k−1([X]n − [X]n−1, Ξh

)
+
(

D∇[X]n,∇Ξh
)
+
(
b[X]nκ∆p, Ξh

)
= (f, Ξh

)
(30)

for all basis functions Ξh of the space Xh.

3. Results

There are three distinct groups of osteosarcoma tumors based on their immune
profile [25]. The recent ODE model [12] investigates the dynamics of key players given in
Table 1 for each of these three groups by finding their parameter values using tumors’ gene
expression profiles. In this paper, we have used the parameter values for the biochemical
interactions ( fi’s) obtained for the first group of osteosarcoma tumors using the TARGET
data with 88 samples (downloaded from the UCSC Xena web portal [26]). We simulated
several scenarios to evaluate the model’s performance and gather insights about the role
of the spatial interactions among key players and their movements during the tumors’
growth. We performed four main categories of simulations: the reference case Section 3.1,
with a different initial profile Section 3.2, with immune cells infiltration from the boundary
Section 3.3, and with external sources Sections 3.4–3.7, as shown below.

3.1. The Reference Case

The reference case has the simplest settings. In this case, the initial conditions of
the biological Equations (2) are uniform throughout the domain with no-flux boundary
condition, meaning that there is no infiltration of cells. Finally, there is no alteration
of biological coefficients, i.e., no treatments are modeled. Mathematically, we solve the
Equations (13)–(15) with the boundary conditions:

t(x, t) · n = 0, on ∂Ω, (31)

p(x, t) = p0, on ∂Ω, (32)

∂[X]
∂n

= 0, on ∂Ω, (33)

and initial conditions:

u(x, 0) = (0, 0), (34)

p(x, 0) = p0, (35)

[X](x, 0) = Ci, (36)

where Ci, for i = 1, 2, or 3 is the vector of initial condition for 3 clusters, shown in Table A1.
The domain Ω is initially a circle with a diameter 0.01 (m).

As expected, the number of cells is the same everywhere throughout the domain at
any time for all variables because the initial values of variables are uniform throughout
the entire domain. The values of C and D in the entire domain are shown in Figure 2a,d.
The perfect agreement between the results of the reference case (Figure 2a,e and the ones
obtained from the ODE model (green curves in Figure 2c,f) provide validation for the PDE
model and its implementation.

The size change of the domain is partly displayed in Figure 3. At t = 10, the number of
cells V decreases, implying that the size should decrease accordingly. The inward pointing
displacement vector field u shown in Figure 3b suggests the same trend. An opposite
example is given in Figure 3c, for t = 400. The domain at t = 10, 200 and 400 are shown in
the same frame in Figure 3d–f, respectively.
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Figure 2. Dynamics of variables C and D. Part (a) shows the value of C at time t = 400 for the first
group of osteosarcoma patients provided in [12]. The agreement of the curve in (b) with the green
curve (results of the first group of tumors) from (c) shows that the dynamics of C at any point in the
domain match the solution from the ODE paper. Sub-figure (d–f) show the dynamics of D.

Figure 3. Evolution of the domain. The original domain is plotted in (a). At t = 10, the arrows,
showing the vector field u, are pointing inward, since V is decreasing in (b) whereas in (c), they are
pointing outward since V is increasing, which means that the domain is growing at t = 400. Part
(d–f) show the size of the domain at time t = 10, 200, and 400, respectively.
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The solution of the reference case is essential because it can be used to validate
the model and compare the results of different scenarios with the reference case. We
calculate the total number of cells that are a part of the solid tumor: cancer cells, necrotic
cells, dendritic and naive dendritic cells. We aim to simulate the tumor’s size changes,
as indicated by the number of cells, by applying the solid displacement vector u to the
domain. Because the domain is selected to be the tumor or part of it, the solid displacement
vector u tells us how each point on the solid tumor moves with respect to the reference
frame at any time.

We use the initial total number of cells V0 and the initial diameter d0 = 0.01 (m) as
references. If, at one time, the total number of cells V reaches nV0, we have an intuitive
but crude estimate of the tumor size at that time, A = nA0 =

π

4
× 10−4n (m2), and an

estimate of the diameter of the tumor d =
√

nd0 (since we are working on 2D cases). For
example, by the time the total number of cells becomes 4V0, we expect the diameter to
reach approximately 0.02 (m). In fact, the size can be bigger because of the remnants of
dead cells inside the tumor or stronger angiogenesis, or it can be smaller if the squeezing
effect dominates. In [27], the authors have built a generalized linear model that connects
the tumor cell number with cell diameter and tumor diameter after studying 38 tumor
samples with R2 = 0.92. The relation is

No. of cells/colony = 2.40
(colony diameter)2.378

(cell diameter)2.804 . (37)

Using this formula, we obtain another estimate of the tumor’s diameter (Table 3).
Figure 4 provides a visualized comparison between different estimates. The number of
cells decreases in the first 17 days due to a sharp reduction of necrotic cells, then increase
rapidly, and finally remains unchanged at about 1100 days. We, therefore, can estimate
the evolution of a biological feature, the size of the tumor, using a calculated mechanical
quantity, the displacement vector.

0 100 200 300 400 500 600 700 800 900 1000

time(d)

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

d
ia

m
e

te
r(

m
)

A comparison between different estimations

crude estimation

model estimation

simulated diameter

Figure 4. The diameter of the tumor is estimated from different sources. The red line, blue line,
and black line represent the estimation from taking a square root, a linear model, and applying the
displacement vector. It can be seen that the estimate obtained from applying the displacement vector
is sound.
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Table 3. The total number of cells V, the ratios n = V/V0, the crude estimate of diameters 0.01
√

n,
the linear model’s prediction of diameters, and the diameter of the domain after we apply the solid
displacement vector u, at different times.

t Cell Number
V †

Ratio
n = V /V0

Crude
Estimate
0.01

√
n

Linear
Model

Estimate

Simulated
Domain

Diameter

0 33,726 1 0.01 0.01 0.01
10 24,264 0.785 0.0089 0.0087 0.0096
50 41,447 1.229 0.0111 0.0112 0.0102

100 71,778 2.128 0.0146 0.0153 0.0116
150 118,172 3.504 0.0187 0.0202 0.014
200 184,578 5.473 0.0234 0.0259 0.0176
250 273,510 8.110 0.0285 0.0324 0.0227
300 384,156 11.39 0.0337 0.0392 0.0291
350 510,781 15.14 0.0389 0.0459 0.0367
400 642,925 19.06 0.0437 0.0523 0.0451
450 768,233 22.78 0.0477 0.0578 0.0535
500 876,630 25.99 0.0510 0.0622 0.0614
550 963,109 28.56 0.0534 0.0656 0.0684
600 1,027,711 30.47 0.0552 0.0680 0.0743
650 1,073,622 31.83 0.0564 0.0697 0.0793
700 1,105,104 32.77 0.0572 0.0709 0.0834
750 1,126,165 33.39 0.0578 0.0716 0.0868
800 1,140,022 33.80 0.0581 0.0721 0.0897
850 1,149,042 34.07 0.0584 0.0724 0.0922
900 1,154,872 34.24 0.0585 0.0726 0.0944
950 1,158,622 34.35 0.0586 0.0728 0.0963

1000 1,160,215 34.40 0.0587 0.0728 0.098
† These values are cell numbers in a 2D area. A scale of 106 in a 2D area amounts to a scale of 109 in a 3D volume.

3.2. The Case of a High Level of M and Tc in the Middle of the Tumor at the Initial Time

This is to imitate the condition of a high initial biological activity in the middle of
the tumor. The initial concentration of M and Tc in the center is set to be 11 times higher
than the boundary, as shown in Figure 5a,c. The distribution of Tc over the domain rapidly
changes, as we can see from Figure 5d at t = 2.5. The concentration of Tc becomes higher on
the boundary, and the overall concentration greatly decreases. However, M maintains the
“higher concentration in the middle” profile throughout the process. The dynamics of M
and Tc over the domain are displayed in Figure 5b,e. We can see that the initial differences
last for less than 200 days. At t = 200, V = 6.25V0 (comparing with the reference case when
V = 5.48V0), C has higher concentration in the middle and ranges between 0.177 and 0.179,
Figure 5f. At t = 1000, V = 34.98V0 (comparing with the reference case when V = 34.6V0),
the distribution of C is close to uniform, Figure 5g. The initial differences in M and Tc have
not brought significant different behaviors in C. The steady-state value is still 1.

3.3. The Case of Using a Robin Boundary Condition for Five Types of Cells

To simulate the movements of the immune cell types: M, Tc, Th, Tr, and Dn between
the inside and outside of the tumor, we use the uniform initial value on the entire domain
for all cell types and Robin boundary condition by assigning αi = 100 and αi[X̂i] = 1
for these five immune cell types. Although we used the same boundary condition for all
these cells, it has resulted in different distributions of Tc, M, and Dn over the domain at
t = 200, respectively (Figure 6a–c). The value of M over the domain varies greatly while
Dn becomes nearly uniform after t = 100. At t = 200, V = 5.09V0 (comparing with the
reference case when V = 5.48V0), C has lower concentration over the boundary and ranges
between 0.143 and 0.147 (lower than 0.16 in the reference case), see Figure 6d. At t = 1000,
V = 33.04V0 (comparing with the reference case when V = 34.6V0), the dynamics of C at
the center and on the boundary are displayed in Figure 6h. In this case, we observe that
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the cells that activate the growth of cancer cells are outperformed by cells that inhibit the
growth of cancer cells. From applying the Robin boundary condition to every cell type one
at a time, we observe that the changes in macrophages result in the biggest changes in the
concentration of cancer cells compared to the other immune cell types.

Figure 5. Illustrations for the case of more M and Tc in the middle initially. Sub-figure (a,c) shows the
initial value of Tc and M through the domain, respectively; (d) shows Tc at t = 2.5, which marks a
drastic change in both the profile and values; the dynamics of M and Tc over the whole time interval
is shown in (b,e), respectively; the cancer cell concentrations at t = 100 and t = 1000 are shown in
(f,g), and the dynamics of C is shown in (h).

3.4. The Case of a Positive Source of M in the Middle

We simulated the case of adding a constant source of M at all times in the middle of
the tumor. The source has resulted in 200% higher concentration of M in the middle of the
tumor for most of the time interval, see Figure 7a–c. As a result, at t = 200, V = 6.70V0
(comparing with the reference case when V = 5.48V0), C has 20% higher concentration
in the middle and ranges between 0.18 and 0.21, see Figure 7d. Moreover, at t = 1000,
V = 38.00V0 (comparing with the reference case when V = 34.6V0), C has a higher
concentration in the middle and ranges between 1.08 and 1.15, see Figure 7e. The dynamics
of C at the center and on the boundary are displayed in Figure 7f.
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Figure 6. Illustrations for the case of using Robin boundary condition for 5 immune cell types. Sub-
figure (a–d) show the value of Tc, M, Dn, and C at t = 200; Sub-figure (e–h) show the maximum and
minimum in the whole interval for Tc, M, Dn, and C, respectively. Using the same boundary condition
for 5 immune cell types results in different profiles for these cell types.

Figure 7. Illustrations for the case of a source of M in the middle. Sub-figure (a,b) show the value
of M at t = 200 and t = 1000, respectively; (c) shows the dynamics of the maximum and minimum
of M, from where we can see that the source has introduced a significant amount of increase in the
middle; the cancer cell concentration at t = 200 and t = 1000 are shown in (d,e); the value of the
maximum and minimum of C over the whole time interval is shown in (f). These figures suggest
that the cancer cells will be at the place where there are more macrophages, yet the concentration still
reaches a steady state.
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3.5. The Case of a Positive Source of Tc in the Middle

We also simulated the condition of a constant source of Cytotoxic and NK cells Tc in
the middle of the tumor. The source has resulted in a roughly 0.6 higher concentration of Tc
at all times, see Figure 8a,b for two time points t = 200 and t = 1000 and Figure 8c for the
comparison of the maximum and minimum of Tc in the whole time interval. At t = 200,
V = 4.87V0 (comparing with the reference case when V = 5.48V0), C has more than 20%
higher concentration on the boundary and ranges between 0.11 and 0.14, see Figure 8d. At
t = 1000, V = 32.30V0 (comparing with the reference case when V = 34.6V0), C has a lower
concentration in the middle and ranges between 0.81 and 0.95, see Figure 8e. The dynamics
of C at the center and on the boundary are displayed in Figure 8f. The concentration of C is
approaching its steady-state value of 1 much slower in the middle of the tumor.

Figure 8. Illustrations for the case of a source of Tc in the middle. Part (a,b) show the value of Tc

at t = 200 and t = 1000, respectively; (c) shows the dynamics of the maximum and minimum of
Tc, depicting that the value of Tc in the middle is constantly higher than it on the boundary by a
considerable amount; the cancer cell concentration at t = 200 and t = 1000 are shown in (d,e); the
value of the maximum and minimum of C over the whole time interval is shown in (f), where the
growth of cancer cells in the middle are inhibited strongly by the higher concentration of Tc.

3.6. The Case of a Positive Source of Tc on the Boundary

We have simulated the condition of a constant source of cytotoxic and NK cells Tc on
the boundary of the tumor. The source has resulted in a roughly 33% higher concentration
of this cell type over the boundary at all times; see Figure 9a,b for two time points t = 200
and t = 1000 and Figure 9c for the comparison of the maximum and minimum of Tc
in the whole time interval. At t = 200, V = 4.77V0 (comparing with the reference case
when V = 5.48V0), C has a lower concentration over the boundary and ranges between
0.127 and 0.142 (significantly lower than 0.16 in the reference case), see Figure 9d. At
t = 1000, V = 32.00V0 (comparing with the reference case when V = 34.6V0), C has
a higher concentration in the middle and ranges between 0.89 and 0.95, see Figure 9e.
The dynamics of C at the center and on the boundary are displayed in Figure 9f.
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Figure 9. Illustrations for the case of a constant source of Tc on the boundary. Su-figures (a,b) shows
the value of Tc at t = 200 and t = 1000, respectively; (c) shows the dynamics of the maximum
and minimum of Tc, depicting that the value of Tc on the boundary is constantly higher than it is
elsewhere; the cancer cell concentration at t = 200 and t = 1000 are shown in (d,e); the value of
the maximum and minimum of C over the whole time interval is shown in (f), where the growth of
cancer cells, especially near the boundary, are inhibited strongly by the higher concentration of Tc.

3.7. The Case of a Positive Source of M on the Boundary

We have also simulated a constant source of macrophages M on the boundary of the
tumor. The source has resulted in up to 133% higher concentration of this cell type over
the boundary at most of the time points; see Figure 10a,b for two time points t = 200 and
t = 1000 and Figure 10c for the comparison of the maximum and minimum of Tc in the
whole time interval. At t = 200, V = 8.88V0 (comparing with the reference case when
V = 5.48V0), C has a lower concentration over the boundary and ranges between 0.23
and 0.27 (significantly higher than 0.16 in the reference case), see Figure 10d. At t = 1000,
V = 42.09V0 (comparing with the reference case when V = 34.6V0), C has a higher
concentration in the middle and ranges between 1.2 and 1.25, see Figure 10e. The dynamics
of C at the center and on the boundary are displayed in Figure 10f. We can see that the cancer
cell concentrations C approach different values, positively related to the concentrations of
Macrophages M. Still, both M and C reach steady states.

Remark 1. Simulations associated with all three clusters of patients’ data from the ODE paper
have been done. The results are qualitatively the same. Thus, only the results obtained from using
data from cluster 1 have been shown in this paper.
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Figure 10. Illustrations for the case of a source of M on the boundary. Sub-figure (a,b) show the
value of Tc at t = 200 and t = 1000, respectively; (c) show the dynamics of the maximum and
minimum of M, depicting that the value of M on the boundary is substantially higher than it is
elsewhere; the cancer cell concentration at t = 200 and t = 1000 are shown in (d,e); the value of the
maximum and minimum of C over the whole time interval is shown in (f). We can see that the cancer
cell concentrations approach different steady-state values, positively related to the concentrations
of Macrophages.

4. Discussion

Accumulating evidence demonstrates the critical roles of the tumor-infiltrating im-
mune cells in tumors’ progression [28–30]. For example, it has been shown that cytotoxic
T-cells are effector cells of adaptive immunity targeting osteosarcoma [31] and significantly
affect the immune responses of osteosarcoma patients [32]. In addition, treatments with
anti-tumor immunocompetence, such as NK cells and γδ T-cells appear to be effective for
some osteosarcoma tumors [33,34].

Many mathematical models have been developed to study tumors’ initiation, and
progression [35–42]. Some computational models include bone modeling, osteoblast cells,
or osteosarcoma treatments [43–47]. Recently a data-driven ODE model for the progression
of osteosarcoma tumors, which considers immune cells’ interactions with tumor cells, has
been developed [12]. However, to the best of our knowledge, there is no PDE model for
osteosarcoma tumors considering the immune cells and tumor cell interactions. We have
extended a recent ODE model for the immune and cancer cell interactions in osteosarcoma
tumors [12] by developing a bio-mechanical multiphase model. Using this PDE model,
which includes spatial information, namely, cellular/molecular distributions, influxes, size,
and shape of the domain, we have simulated different scenarios to investigate the effect of
the location of immune cells and their influx on the location and concentration of cancer
cells as well as the tumor’s growth.

We have used the solution of the mechanical part, which also considers the biological
variables, to trigger the change in the domain. We assess the accuracy of the domain change
from the number of cells that are a part of the solid tumor. The results shown in Table 3
suggest that the domain changes fall into a reasonable range. The model also captures the
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killing effect of cytotoxic T-cells well. Cancer cells become more concentrated in the middle
of the tumor and depleted in the boundary when there is a constant source of cytotoxic
cells on the boundary of the tumor (Figure 9), and vice versa if the Tc’s are more located in
the middle of the tumor, Figure 8).

The model results emphasize the importance of the influx and the location of macrophages
on the cancer cells’ concentration. As we simulated the influx of immune cells, we noticed a
higher level of cancer cells with the influx of macrophages than any other immune cells.
Importantly, suppose there is a constant source of macrophages on the boundary of the
tumors. In that case, cancer cells are collocated with them on the boundary Figure 10d,
implying that the concentration of macrophages is spatially positively related to the con-
centration of cancer cells. This relation cannot be observed through an ODE modeling of
the tumor. These results agree with the observations of a high infiltration of macrophages
in localized osteosarcoma tissues using immunohistochemical staining techniques [48].

The greatest challenge in this study was finding the parameter values of the Biot
equations for osteosarcoma tumors. Ideally, those parameter values should be measured
exclusively for osteosarcoma. However, if we find a value for general sarcomas, we will
see it as a good approximation. As such examples, we found the bulk modulus K, shear
modulus G, and hydraulic conductivity κ in [19]. We found the values of the rest of
the parameters from [20]; these values were calculated using an artificial neural network
for general tumors. Fortunately, using those parameters, the results we obtained are
biologically sound. However, the results of the model should be experimentally and
bio-medically validated.

5. Conclusions

To sum up, we have proposed a model that describes osteosarcoma tumor progression
and explored the effect of immune cells infiltration in the cancer cells concentration. As
we are providing this model as an open-source Python code, this model can be utilized
by researchers and can be improved by considering more factors, such as angiogenesis
and chemotactic and haptotactic effects, or be adjusted for other cancer types. It may
also be used in developing a model to elaborate the mechanical tumor growth, which
could be made possible with recently published MRI image sources and image processing
results [49,50].
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Appendix A. The ODE Model and Its Parameters

Here is the system of ODEs presented in [12] that models the biochemical interaction
of key players of the osteosarcoma tumors given in Figure 1. In this paper, we have denoted
the right hand-sides of this system by fi’s. In the following equations, the proliferation and
activation rates are denoted by λ’s, and the degradation and death rates are denoted by δ’s.
In addition, the constant production rates of the cells are denoted by A’s. For the detail of
the derivations of this system of ODEs, please see [12].

d[MN ]

dt
=AMN −

(
λMIγ [Iγ] + λMµ1 [µ1]

)
[MN ]− δMN [MN ], (A1)

d[M]

dt
=
(

λMIγ [Iγ] + λMµ1 [µ1]
)
[MN ]− δM[M], (A2)

d[TN ]

dt
=ATN −

(
λTh M[M] + λThD[D]

)
[TN ]

− λTrµ1 [µ1][TN ]

−
(
λTcTh [Th] + λTc M[M] + λTcD[D]

)
[TN ]− δTN [TN ], (A3)

d[Th]

dt
=
(
λTh M[M] + λThD[D]

)
[TN ]−

(
δThTr [Tr] + δThµ1 [µ1] + δTh

)
[Th], (A4)

d[Tr]

dt
=
(
λTrµ1 [µ1]

)
[TN ]− δTr [Tr], (A5)

d[Tc]

dt
=
(
λTcTh [Th] + λTc M[M] + λTcD[D]

)
[TN ]

−
(
δTcTr [Tr] + δTcµ1 [µ1] + δTc

)
[Tc], (A6)

d[DN ]

dt
=ADN − (λDC[C] + λDH [H])[DN ]− δDN [DN ], (A7)

d[D]

dt
=(λDC[C] + λDH [H])[DN ]− (δDC[C] + δD)[D], (A8)

d[C]
dt

=
(
λC + λCµ1 [µ1] + λCµ2 [µ2]

)
[C]
(

1− [C]
C0

)
−
(

δCTc [Tc] + δCIγ [Iγ] + δC

)
[C], (A9)

d[N]

dt
=αNC

(
δCTc [Tc] + δCIγ [Iγ] + δC

)
[C]− δN [N], (A10)

d[Iγ]

dt
=λIγTh [Th] + λIγTc [Tc]− δIγ [Iγ], (A11)

d[µ1]

dt
=λµ1Th [Th] + λµ1 M[M] + λµ1C[C]− δµ1 [µ1], (A12)

d[µ2]

dt
=λµ2Th [Th] + λµ2 M[M] + λµ2C[C]− δµ2 [µ2], (A13)

d[H]

dt
=λHM[M] + λHD[D] + λHN [N]− δH [H]. (A14)

Table A1. Non-dimensional initial conditions for each cluster.

Cluster MN/M∞
N M/M∞ TN/T∞

N Th/T∞
h Tr/T∞

r Tc/T∞
c DN/D∞

N

1 2.367 1.005 0.019 0.794 0.764 0.828 1.122
2 0.954 0.753 1.299 1.451 2.313 0.062 0.071
3 0.866 1.104 0.572 0.340 0.484 0 1.643

D/D∞ C/C∞ N/N∞ Iγ/I∞
γ µ1/µ∞

1 µ2/µ∞
2 H/H∞

1 0 0.020 0.160 2.394 1.104 1.806 1.059
2 0.693 0.005 0.018 0.859 1.307 3.259 0.988
3 0 0.014 0.0008 0.276 1.030 1.296 1.284
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Table A2. Non-dimensional parameter values for each cluster, the sources can be found in the ODE
paper [12].

Parameter Cluster 1 Cluster 2 Cluster 3

λMIγ
4.3649 ×10−3 8.4234 × 10−4 2.8083 × 10−3

λMµ1 1.0635 × 10−2 1.4158 × 10−2 1.2192 × 10−2

λTh M 3.3434 × 10−2 1.9270 × 10−2 2.2194 × 10−2

λTh D 1.0963 × 101 7.3778 9.8325
λTrµ1 6.3 × 10−2 6.3 × 10−2 6.3 × 10−2

λTcTh
6.1171 2.3846 2.8415

λTc M 1.7478 1.2263 1.4683
λTc D 1.1463 × 101 9.3900 1.3011 × 101

λDC 4.0114 × 10−1 4.8942 × 10−1 5.9472 × 10−1

λDH 4.1518 × 10−1 4.2621 × 10−1 4.1729 × 10−1

λC 1.662 × 10−2 1.662 × 10−2 1.662 × 10−2

λCµ1 3.7101 × 10−4 3.5910 × 10−4 4.0692 × 10−4

λCµ2 7.1405 × 10−4 6.3207 × 10−4 5.7910 × 10−4

λIγTh
6.3095 1.1946 × 101 4.1848

λIγTc 2.6961 × 101 2.1324 × 101 2.9085 × 101

λµ1Th 1.8813 × 102 1.1491 × 102 1.0315 × 102

λµ1 M 1.0751 × 102 1.1818 × 102 1.0661 × 102

λµ1C 1.9184 × 102 2.5440 × 102 2.7772 × 102

λµ2Th
1.2313 6.8806 × 10−1 6.0936 × 10−1

λµ2 M 1.4073 1.4153 1.2595
λµ2C 2.5113 3.0467 3.2811
λHM 4.4046 5.8355 1.8254
λHD 3.6107 5.5856 2.0218
λHN 5.0685 × 101 4.7279 × 101 5.4853 × 101

δMN 6.93 × 10−1 6.93 × 10−1 6.93 × 10−1

δM 1.5 × 10−2 1.5 × 10−2 1.5 × 10−2

δTN 4.2 × 10−4 4.2 × 10−4 4.2 × 10−4

δThTr 6.6404 3.1732 5.0991
δThµ1

4.1253 3.9929 4.5246
δTh 2.31 × 10−1 2.31 × 10−1 2.31 × 10−1

δTr 6.3 × 10−2 6.3 × 10−2 6.3 × 10−2

δTcTr 1.1671 × 101 5.5771 8.9620
δTcµ1

7.2505 7.0179 7.9524
δTc 4.06 × 10−1 4.06 × 10−1 4.06 × 10−1

δDN 1.664 1.664 1.664
δDC 5.3932 × 10−1 6.3864 × 10−1 7.3501 × 10−1

δD 2.77 × 10−1 2.77 × 10−1 2.77 × 10−1

δCTc 1.2269 × 10−2 9.6574 × 10−3 8.4017 × 10−3

δCIγ
4.5923 × 10−3 6.4192 × 10−3 8.4660 × 10−3

δC 3.0078 × 10−4 1.0390 × 10−3 2.4530 × 10−4

δN 4.5935 × 10−1 4.8360 × 10−1 1.1137 × 10−1

δIγ
3.327 × 101 3.327 × 101 3.327 × 101

δµ1 4.8748 × 102 4.8748 × 102 4.8748 × 102

δµ2 5.15 5.15 5.15
δH 5.87 × 101 5.87 × 101 5.87 × 101

AMN 7.4055 × 10−1 7.0151 × 10−1 7.1382 × 10−1

ATN 1.0581 × 102 1.7917 3.1561
ADN 3.3325 2.3958 2.4867

αMN M 3.1701 5.6721 × 10−1 1.3878
αTN Th 1.4396 1.8848 × 10−1 8.8053 × 10−2

αTN Tr 7.4588 × 10−1 8.2864 × 10−2 1.0267 × 10−1

αTN Tc 4.6531 3.0144 × 10−2 1.3172 × 10−1

αDN D 2.0440 7.9922 × 10−1 8.1299 × 10−1
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Appendix B. Details about Discretization of the PDEs

We consider a partition Th of Ωt into triangular elements and let {Pj}
Nh
j=1 be the set

of all the interior nodes of the triangulation (where Nh is the number of interior nodes).
Let Pr denote the standard space of polynomials of total degree less than or equal to r. We
introduce the space of finite elements

Xr
h = {g ∈ C0(Ω) : g|τ ∈ Pr, ∀τ ∈ Th}, (A15)

that is the space of globally continuous functions that are polynomials of degree r on the
single triangles of the triangulation Th. We also define

Qh = {g ∈ X1
h : g|∂Ω = 0}. (A16)

The spaces Xr
h and Qh are suitable for the approximation of H1(Ω) and H1

0(Ω), re-
spectively [51]. The space Vh is selected to be (X1

h)
3. Denote the time step size by k, that

is, k = T/N for some positive integer N, and tn = nk for n = 0, 1, . . . , N. Let un = u(tn)
and pn = p(tn) and let Un and Pn be their approximations, respectively. The fully discrete
approximation for the mechanical problem is: find Un ∈ Vh and Pn ∈ Qh for n = 1, 2, . . . , N
and Lagrange multipliers λi for i = 1, 2, 3 such that

a
(
Un, vh

)
+
(
∇Pn, vh

)
+
(
K∇V∗n, vh

)
−

3

∑
i=1

λi
(
vh, zi

)
−

3

∑
i=1

ωi
(
uh, zi

)
= 0, (A17)

k−1(c0(Pn − Pn−1), qh
)
+ k−1(α∇ · (Un −Un−1), qh

)
+
(
κ∇Pn,∇qh

)
= 0, (A18)

for all basis function vh and qh of the spaces Vh and Qh. Then we solve the biological
problem. Enriching the usual piece-wise linear function spaces using the bubble elements
is a simple way of reducing the instability [52], for the diffusion-advection problems in the
advection-dominated case [53], without increasing the size of the problem significantly [54,55].

We define
B(l) = span{bl

τ , τ ∈ Th}, (A19)

where bl
τ are the l-th bubble functions. In this paper, we used the case r = 1 and l = 3, thus

we define the bubble enriched piece-wise linear function spaces as

B = X1
h ⊕B(3). (A20)

Therefore, the finite element space of the biological problem is

Xh = (B)14. (A21)

The fully discrete approximation for the biological problem is: find Xn ∈ (H1(Ω))14

for n = 1, 2, . . . , N, such that

k−1([X]n − [X]n−1, Ξh

)
+
(

D∇[X]n,∇Ξh
)
+
(
b[X]nκ∆p, Ξh

)
= (f, Ξh

)
, (A22)

for all basis functions Ξh of the space Xh. For the specific form of cubic bubble functions or
a detailed introduction of bubble elements, the readers can see Chapter 9 of [56].

Appendix C. Reports of Different Experiments

The following two types of profiles frequently show up when we plot the solution of
the equations. If the variable has a higher value in the middle and a lower value over the
boundary, because of different settings, as illustrated in Figure A1a, we call the profile of
type I, or profile I. If, on the contrary, the variable has a higher value over the boundary
and a lower value in the middle, as illustrated in Figure A1b, we call the profile of type II
or profile II. Figure A1c,d show the three different locations on the domain we investigated
and the dynamics of a variable at the three locations.
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Figure A1. Common types of profiles in this paper. In part (a), the center has the highest density, the
density reduces in the positive radial direction, and near the boundary takes its lowest value. This is
because of the initial conditions of an influx through the boundary. Part (b) shows the opposite case.
In part (c), three points are selected with different distance from the center. In part (d), the dynamics
are plotted to show how much the density in the center is different from the boundary.

Table A3. A report of different experiments using no-flux boundary condition.

Initial Condition Difference Level of IC
(max/min)

C at t = 200, (Relative
Difference† in C)

V , (Relative Difference † in Relevant Xi),
and Others

Ref. Case, (case Section 3.1)
Uniform 1 C = 0.16 V = 5.48V0

More Th around the boundary 13 (< 1%) Th profile evened out within t = 2.5

More Tc around the boundary 11 (< 1%) Tc profile evened out within t = 2.5

More Tc in the middle 11 (< 1%) Tc profile evened out within t = 2.5

More M and Tc in the middle,
(case Section 3.2) 11, both C ∈ [0.17, 0.19], profile I

(Figure A1a)

V = 6.25V0, M maintained profile I,
max(Tc)/min(Tc) = 2 at t = 2.5, profile
changed from I to II, then evened out

More M in the middle 11 Profile I V = 6.26V0, M maintained profile I

More Mn on the boundary 30 (< 1%) V = 5.68V0, Mn profile evened out at
about t = 10

† The relative difference is (max−min)/min.

Table A4. A report of different experiments using uniform initial condition.

Boundary Condition (αi = 1,
αi[X̂i] = 1 by Default) αi , αi[X̂i]

C at t = 200, (Relative
Difference in C)

V , (Relative Difference in Relevant Xi),
and Others

Robin for all 5 cell types † - - (<0.1%), for all Xi

Robin for all αi [X̂i ] = 10 maintained, (15%) V = 5.53V0, M maintained profile I

Robin for Th α4[X̂4] = 10 (0.1%) -

Robin for Tc α6[X̂6] = 1000 C = 0.16 V = 5.46V0, Tc is 1% more on the boundary

Robin for M - - (<1%)

Robin for M α2[X̂2] = 0.5 - (<1%)

Robin for M α2[X̂2] = 1000 Profile II (Figure A1b), (>10%) V = 7.89V0, M is 200% more on the boundary

Robin for Tc - - (<0.1%)

Robin for all αi = 10 C = 0.1543, (<1%) V = 5.45V0, (≤0.1%)

Robin for all, (case Section 3.3) αi = 100, αi [X̂i ] = 1 C ∈ [0.142, 0.147], Profile I V = 5.09V0, ([5%, 15%], for all i)

Robin for Tc α6 = 100 - (<1%)

Robin for Th α4 = 100 - (<1%)

Robin for M α2 = 100 0.151, (<1%) V = 5.09V0, M ∈ [0.71, 0.82], profile I

† The five cell types are M, Th, Tr , Tc, and Dn. Here i = 2, 4, 5, 6, 7.
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Table A5. A report of different experiments using uniform initial condition and no-flux boundary
condition.

Source Location, Max Magnitude C at t = 200, (Relative
Difference in C)

V , (Relative Difference in
Relevant Xi), and Others

Gaussian for M, (case Section 3.4) In the middle, 0.1 Profile I, (20%) V = 6.70V0, (300%)

Gaussian for C In the middle, 0.1 - Nonlinear solver collapsed at
t = 7.5

Gaussian for C In the middle, 0.01 - Nonlinear solver collapsed at
t = 27.5

Gaussian for Tc, (case Section 3.5) In the middle, 10 C ∈ [1.1, 1.4], profile II V = 4.87V0, (20%), profile I

Gaussian for Mn In the middle, −4 - Nonlinear solver collapsed at
t = 70

Step function for Tc On the boundary, 1 Profile I, (< 5%) V = 5.29V0, Tc ∈ [1.3, 1.4], more
on the boundary

Step function for
Tc, (case Section 3.6) On the boundary, 4 Profile I, (10%) V = 4.75V0, Tc ∈ [1.3, 1.7], more

on the boundary

Step function for Th On the boundary, 1 C = 1.573, (< 1%) V = 5.57V0, Th is more on the
boundary, (8%)

Step function for M On the boundary, 1 C ∈ [0.88, 1.1], profile II V = 34.4V0, M ∈ [5.5, 25], more
on the boundary

Step function for M,
(case Section 3.7) On the boundary, 0.1 C ∈ [0.23, 0.27], profile II V = 8.88V0, M ∈ [1.3, 3.3], more

on the boundary
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