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Simple Summary: Cancer is considered as a large group of diseases involving abnormal cell growth,
which results in an alarming rise in the mortality rate at the worldwide level. Presently, the main
point of interest in pharmaceutical research is the development of the novel and efficient anticancer
drugs based on natural sources. In this regard, plants, and some microbial species, due to their
composition, ecology, phytochemical, and ethnopharmacological properties, play a significant role.
Accordingly, a series of plant-derived bioactive compounds are in the clinical development phase
against cancer. The present review highlights the significance of several medicinal plants, plant
extracts, and their bioactive compounds for their potential anticancer activities. The presented results
can be useful for researchers in developing novel anticancer drugs, public health specialists, and for
the public in general.

Abstract: Cancer is one of the major deadly diseases globally. The alarming rise in the mortality
rate due to this disease attracks attention towards discovering potent anticancer agents to overcome
its mortality rate. The discovery of novel and effective anticancer agents from natural sources has

Cancers 2022, 14, 6203. https://doi.org/10.3390/cancers14246203 https://www.mdpi.com/journal/cancers

https://doi.org/10.3390/cancers14246203
https://doi.org/10.3390/cancers14246203
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/cancers
https://www.mdpi.com
https://orcid.org/0000-0001-5762-1877
https://orcid.org/0000-0002-1533-4519
https://orcid.org/0000-0002-6057-882X
https://orcid.org/0000-0002-4701-4229
https://orcid.org/0000-0002-2752-4854
https://orcid.org/0000-0003-4999-9022
https://orcid.org/0000-0002-1591-2198
https://orcid.org/0000-0001-8242-3952
https://orcid.org/0000-0001-7118-6488
https://orcid.org/0000-0002-9325-7889
https://orcid.org/0000-0001-6578-4019
https://doi.org/10.3390/cancers14246203
https://www.mdpi.com/journal/cancers
https://www.mdpi.com/article/10.3390/cancers14246203?type=check_update&version=2


Cancers 2022, 14, 6203 2 of 23

been the main point of interest in pharmaceutical research because of attractive natural therapeutic
agents with an immense chemical diversity in species of animals, plants, and microorganisms. More
than 60% of contemporary anticancer drugs, in one form or another, have originated from natural
sources. Plants and microbial species are chosen based on their composition, ecology, phytochemical,
and ethnopharmacological properties. Plants and their derivatives have played a significant role
in producing effective anticancer agents. Some plant derivatives include vincristine, vinblastine,
irinotecan, topotecan, etoposide, podophyllotoxin, and paclitaxel. Based on their particular activity, a
number of other plant-derived bioactive compounds are in the clinical development phase against
cancer, such as gimatecan, elomotecan, etc. Additionally, the conjugation of natural compounds
with anti-cancerous drugs, or some polymeric carriers particularly targeted to epitopes on the site
of interest to tumors, can generate effective targeted treatment therapies. Cognizance from such
pharmaceutical research studies would yield alternative drug development strategies through natural
sources which could be economical, more reliable, and safe to use.

Keywords: natural products; anticancer drugs; medicinal plants; medicinal mushrooms

1. Introduction

Cancer is the anomalous growth of cells in the body; it is the leading cause of death
and is also known as the biggest public health burden [1]. Cancer cells can also attack and
damage the body’s normal cells [2]. Millions of people have died due to four common
types of cancers every year, including breast, lung, prostate, and rectum/colon cancer
with an unknown etiology. The present tenet indicates a conspicuous difference between
cancer chemotherapy and chemoprevention. Cancer chemotherapy is the control of the
developed disease, while cancer chemoprevention is the phenomenon of a carcinogenesis
intervention by blocking the agents of the induction of the neoplastic process or averting
the processing of transformed cells to the malignant phenotype using suppressing agents.
Cancer chemoprevention may also implicate the reversal of the progression of cancer cells [3].

The investigation of anticancer agents through natural sources dates back to about
1550 BC. However, the scientific exploration of this research is very recent and originated
in the 1950s with the generation of majorly found plant-derived anticancer agents, in-
cluding vinca alkaloid analogs, camptothecin derivatives, podophyllotoxin derivatives,
and taxol semi-synthetic analogs which are clinically helpful anticancer therapeutic drugs
(Figure 1) [4,5]. Over 180,000 microbial-derived anticancer agents, 16,000 marine-derived
organisms, and 114,000 plant-derived compounds were screened by the US National Cancer
Institute (NCI) for their anti-cancerous activity from the 1960s to the 1980s [6]. Plant-based
drug development also provided a platform for synthesizing efficient and safe anti-tumor
drugs through the complete cognizance of a synergistic relation between numerous compo-
nents of anti-tumor herbs [7,8]. According to the WHOs estimation, approximately 80% of
African and Asian countries rely on traditional medicines for fundamental health care. A
neoteric study shows that approximately more than 60% of patients use herbs or vitamins
as cancer therapy [9,10]. Herbal remedies are among the most favored form of traditional
medicine and are tremendously profit-making at the international commercial level. By the
2050s, the worldwide herbal medicine market is expected to hit USD 5 trillion [11].
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taxol required 38,000 yew trees for the treatment of 12,000 cancer patients [19]. The plant 
collection for finding anticancer agents ended in 1982, but in 1986, the generation of new 
screening strategies led to the amelioration of plants and the collection of other organisms 
mainly focused on the sub-tropical and tropical zones of the world. Hartwell listed more 
than 3000 plants in his review against cancer treatment [20]. Various anti-cancerous drugs 
are available to treat cancer, but they also exhibit toxic effects that limit their use [18,21]. 
Because of the severe side effects of radiotherapy and chemotherapy and the high mortal-
ity rate, recent research revolves around the need to design appropriate chemotherapy for 
cancer treatment without side effects [21,22]. Biodiversity has been determined to be a 
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Natural products provide a sustainable source with a considerable efficacy to treat
and overcome several disorders and fatal diseases, including cancer. In the last time period,
the role of the bioactive compound and natural products, as a source of anticancer drugs,
has been marked within a collaborative, integrated, and multidisciplinary approach. Plants
have long been known for having medicinal effects since aeon [12–16]. More than 50% of
modern clinical drugs are of a natural source origin and have the capability to treat cancer
cells [17]. A neoteric study shows that approximately more than 60% of patients use herbs
or vitamins as cancer therapy. The ability of natural sources as anticancer agents were
identified in the 1950s by the US National Cancer Institute and contributed to finding new
naturally existing anti-tumor agents [18]. Plant-based drug development needs a specific
production strategy with optimized environmental conditions and nutrient availability. In
1998, Sohn et al. estimated that an extraction from 10,000 kg of the bark of yew trees is
required to produce 1 kg of taxol. The production of 25 kg of taxol required 38,000 yew trees
for the treatment of 12,000 cancer patients [19]. The plant collection for finding anticancer
agents ended in 1982, but in 1986, the generation of new screening strategies led to the
amelioration of plants and the collection of other organisms mainly focused on the sub-
tropical and tropical zones of the world. Hartwell listed more than 3000 plants in his review
against cancer treatment [20]. Various anti-cancerous drugs are available to treat cancer, but
they also exhibit toxic effects that limit their use [18,21]. Because of the severe side effects
of radiotherapy and chemotherapy and the high mortality rate, recent research revolves
around the need to design appropriate chemotherapy for cancer treatment without side
effects [21,22]. Biodiversity has been determined to be a significant source of remarkable
anticancer agents until now [23–28].

A significant investigation is devoted to finding more effective treatments with min-
imum undesirable toxic effects. However, many anti-tumor agents exhibit a restricted
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therapeutic window due to a lack of specificity of against cancer cells [29,30]. The ultimate
objective of a cancer treatment is the generation of safe and effective drugs that can particu-
larly kill malignant cancer cells or make them benign cancer cells without killing normal
cells [31]. This review aims to highlight the significance of several medicinal plants, plant
extracts, and their bioactive compounds with potential anticancer activities to facilitate
the researchers to develop novel anticancer drugs providing some considerable benefits,
such as highly selective and significant anticancer activity, less to no toxicity, low side
effects, being economic and eco-friendly, as well as providing a cancer preventing role via
an increasing immunity [32–34].

2. Methodology

A descriptive review was conducted in order to evaluate the anticancer potential
of several natural plants and their bioactive compounds. The articles documented on
anticancer, chemopreventive, and cytotoxic effects with experimental investigations (such
as in vitro, in vivo, and clinical trials) were critically evaluated. The bibliographic mate-
rial was collected using the Google Scholar, ScienceDirect, Web of Science, and PubMed
databases. Several search terms such as “natural plants”, “medicinal plants”, “bioactive
compounds”, “phytoconstituents”, “phytochemicals”, “plant extracts”, “anticancer agents”,
“plant-derived therapeutics”, “cytoxicity analysis”, “antiproliferative”, and “apoptotic ef-
fects” were used to collect literature in a variety of combination forms. The generated
articles were screened in order to fulfill the desired selection criteria by evaluating their
titles and further abstract summaries. The irrelevant articles, like those with any other
language except English, or articles with insignificant outcomes, aiming to evaluate natural
plant products or their bioactive compounds as effective anticancer agents treating differ-
ent types of cancers, were excluded from the selected data. Moreover, all of the selected
publications were exclusively read to gather effective literature based on their potential
anticancer effects indicated by experimental investigations.

3. Plant-Derived Bioactive Compounds as Anti-Cancerous Agents

Over the last decade, several researchers have investigated the ethnopharmacologi-
cal and ethnomedicinal properties of numerous plant-derived bioactive compounds and,
recently, their antimicrobial and antibiofilm activities [35]. Several in vitro and in vivo
experimental investigations revealed the therapeutic significance of numerous phytochemi-
cals (Table 1). Some photos of the most studied plants with a significant anticancer potential
with their bioactive compounds are presented in Figure 1. The most common plant-derived
anti-cancerous agents include vinca alkaloids and their derivatives, camptothecin and its
derivatives, podophyllotoxin and its semi-synthetic analogs, and terpenes.

Table 1. Plant-derived bioactive compounds as anti-cancerous agents along with their modes
of action.

Plant Source Bioactive Compound/
Phytochemical

Cancer Cells
Type Study Type Mode of Action Ref

Aconitum
sinomontanum Lappaconitine Liver In vitro

Downregulation of Bcl-2 and
upregulation of P53
and Bax expression

[36]

Alliaria petilata Benzyl isothiocyanate Colon In vitro MAPK and PKC
pathways inhibition [37]

Allium cepa Quercetin Thyroid In vitro Pro—NAG-1/GDF15
pathways upregulation [38]

Artemisia annua Artemisinin Breast In vitro
G2/M (cell cycle)
arrest, autophagy,

antiproliferative, apoptosis
[39]
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Table 1. Cont.

Plant Source Bioactive Compound/
Phytochemical

Cancer Cells
Type Study Type Mode of Action Ref

Camellia sinensis Catechins Prostate In vitro

Increased expression of
cytochrome c and decreased

expression of B-cell
lymphoma-2 induced apoptosis

[40]

Cannabis sativa Cannabinoids Liver In vivo Anti-apoptotic [41]

Capsicum annuum Capsaicin Breast In vitro,
in vivo

NF-kB inactivation mediated by
the FBI-1 downregulation [42]

Capsicum frutescens Capsaicin Pancreatic In vitro,
in vivo

β-catenin/TCF-1 signaling
inhibition-mediated apoptosis [43]

Carica papaya Benzyl isothiocyanate Pancreatic In vitro,
in vivo

FOXO/PI3K/AKT
pathways-mediated

tumor apoptosis
[44]

Chamaemelum
nobile Phenolic compounds Breast In vitro Mitochondrial pathway

activation-induced apoptosis [45]

Citrus limon Hesperidin
Breast In vitro

NF-kB and Akt
downregulation-mediated

PD-L1 expression inhibition
[46]

Prostate In vitro ROS-induced apoptosis [47]

Crocus sativus Safranal Prostate In vitro,
in vivo

Downregulation of NF-kB and
AKT signaling pathways [48]

Cucumis sativus

Cucurbitacin B Neuroblastoma In vitro MAPKs- and JAK2/STAT3-
mediated apoptosis [49]

Cucurbitacin B
(in combination
with gefitinib)

Colorectal In vitro JAK/STAT and EGFR-
induced apoptosis [50]

Denrobium
chrysotoxum Erianin Breast In vitro PI3K/Akt pathway activation [51]

Eclipta alba Luteolin Breast In vitro,
in vivo

Intrinsic apoptotic
pathway activation [52]

Galanthus nivalis Gallic acid

Colon In vitro,
in vivo

EGFR and SRC
phosphorylation inhibition [53]

Liver In vitro Wnt/β-catenin
pathway suppression [54]

Glycyrrhiza glabra Licochalcone A Lung In vitro JNK suppression, P38
and ERK activation [55]

Gossypium hirsutum Gossypol

Skin In vitro Mitochondrial apoptosis [56]

Cervical In vitro,
in vivo

FAK pathway inhibition and
TGF-β1-mediated EMT reversal [57]

Colon In vitro

Downregulation of FAS,
CLAUDIN1, GAPDH,
ELK1, ZFAND5, IL2,
and IL8 expression

[58]
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Table 1. Cont.

Plant Source Bioactive Compound/
Phytochemical

Cancer Cells
Type Study Type Mode of Action Ref

Lagerstroemia
speciosa Corosolic acid

Bladder In vitro,
in vivo

SQSTM1/P62, UBB, and NBR
upregulation [59]

Liver
Ex vivo,
in vitro,
in vivo

YAP/CDK19/O-
GlcNAcylation

inactivation
[60]

Colon In vitro,
in vivo

HER2 and HER3
heterodimerization inhibition [61]

Mortonia greggii Pristimerin Lung In vitro MMP2 and integrin β1
expression downregulation [62]

Myrica nagi Myricetin Lung In vitro FAK-ERK pathway inhibition [63]

Nelumbo nucifera Hyperoside, rutin Colon In vitro Mitochondrial pathway
activation-induced apoptosis [64]

Panax ginseng Ginsenosides Breast In vitro,
in vivo

VEGF-R2 pathway inhibition
correlated with

anti-angiogenesis
[65]

ROS generation, mitochondrial
dysfunction, apoptosis [66]

Papaver somniferum Noscapine Colon In vitro AKT/PI3K/mTOR
pathway inhibition [67]

Perovskia
abrotanoides Tanshinones Hella cell lines In vitro Antiproliferative, apoptosis [68]

Piper longum Piperlongumine

Prostate In vitro DNA damage-mediated
proliferation inhibition [69]

Lung In vitro,
in vivo

mTOR/AKT/PI3K pathway
inhibition-induced apoptosis [70]

Piper nigrum Piperine Colon In vitro Wnt/β-catenin
pathway suppression [71]

Polygonum
cuspidatum Pterostilbene Colon In vitro,

in vivo
DNA repairing by Top1/

Tdp1 pathway [72]

Pongamiopsis
pervilleana Epipervilline Ovarian In vitro Antiproliferative [73]

Pueraria radix Puerarin Prostate In vitro Keap1/Nrf2/Are
pathway inhibition [74]

Quercus alba Quercetin Prostate In vitro ROS modulation, AKT/NF-kB
pathway activation [75]

Reseda luteola Luteolin Lung In vitro FAK-Src signaling inhibition [76]

Rheum palmatum Emodin Lung In vitro HAS2-HACD44/RHAMM
signaling pathway suppression [77]

Ruta graveolens Psoralens Breast, colon,
and prostate In vitro Inhibits proliferation

of cancer cells [78]

Salvia involucrate Hispidulin Lung In vitro,
in vivo

ER stress activation-
induced apoptosis [79]
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Table 1. Cont.

Plant Source Bioactive Compound/
Phytochemical

Cancer Cells
Type Study Type Mode of Action Ref

Solanum
lycopersicum

Lycopene

Cervical In vitro Bcl-2 downregulation and
Bax upregulation [80]

Lung In vitro,
in vivo

Increase in RARβ
protein expression [81]

Brain In vitro Caspases activation [82]

Lycopene (in combination
with quinacrine) Breast In vitro Wnt-TCF signaling inhibition [83]

Sophora flavescens Matrine Liver In vitro,
in vivo

HOXD3 and circ-0027345
downregulation and

miR-345-5p upregulation
[84]

Spinacia oleracea Kaempferol
Pancreatic In vitro ROS-induced Akt/mTOR

signaling inactivation [85]

Breast In vitro Upregulation of caspase-3 and
-9 and H2AX expression [86]

Trianthema
portulacastrum Ecdysterone Breast In vivo

β-catenin/Wnt signaling
inhibition inducing
pro-apoptotic and

antiproliferative effects

[87]

Vitis vinifera Resveratrol

Breast In vitro Cell cycle inhibition, apoptosis [88]

Osteosarcoma In vitro,
in vivo

STAT3 pathway and cell
cycle inhibition [89]

Colorectal In vitro NF-kB pathway
inhibition, apoptosis [90]

Zingiber officinale Gingerol

Lung In vitro,
in vivo

A549 cells death by iron
accumulation, USP14
expression inhibition

[91]

Breast In vitro
ROS generation, activation

of p53 expression
mediated apoptosis,

[92]

3.1. Vinca Alkaloids and Their Derivatives

The use of plants as anticancer agents was established with two alkaloids’ isolation,
vincristine, and vinblastine, using Catharanthus roseus and Madagascar periwinkle [93]. These
drugs have been clinically used in oncology for about 50 years. They perform their function
by blocking the polymerization phenomenon of tubulin molecules, averting the mitotic
spindle formation, and resulting in apoptosis or metaphase arrest [94]. Several anticancer
drugs, such as vincristine, vinblastine, vinorelbine, vinflunine, veratridine, and berbamine,
are plant-derived natural alkaloids (Figure 2).

A number of semi-synthetic analogs of these two alkaloid drugs have been produced.
Vindestine was produced by the replacement of the C acetyl group with an amino group in
vinblastine [95], primarily applied for the treatment of acute lymphocytic leukemia (ALL)
and rarely prescribed for chronic myelocytic leukemia (CML), breast cancer, non-small
cell lungs cancer (NSCLC), colorectal cancer, and renal cancer treatment. Vinorelbine
(also known as navelbine) is another semi-synthetic analog of vinblastine synthesized
by shortening one carbon from the indole ring linking the bridge to piperidine nitrogen,
resulting in a water elimination from the piperidine ring, and was approved in 1989
in France for the treatment of NSCLC under the brand name Navelbine. Vinflunine, a
dihydrofluoro semi-synthetic analog of vinorelbine, is used as the second line of treat-
ment in metastatic urothelial cancer. It was approved in 2009 by the European medical
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agency [96,97]. Alike other semi-synthetic analogs of vinca alkaloids, vinflunine also at-
taches to tubulin molecules resulting in the inhibition of microtubule polymerization and
the formation of tubulins para crystals [98–101].
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Cao et al. investigated the anticancer effects of 13 isoquinoline alkaloids extracted
from Hylomecon japonica on MCF-7 breast cancer cells. Among these 13 alkaloids, 6,10-
dimethoxydihydrochelerythrine, 6S/R-acroleinyl-dihydrochelerythrine, 9-methoxy-10-
hydroxy-norchelerythrine, 10-methoxy boconoline, 6-methoxydihydrosanguinarine, dihy-
drosanguinaline, and 6-acetaldehyde-dihydrochelerythrine exhibited a significant inhibitory
potential with an IC50 of <20 µM on MCF-7 cells [102]. Freeling et al. determined the tumor
suppression potential of the plant-based alkaloid veratridine (VTD). VTD activates the
expression of UBXN2A (an anti-tumor protein) by deactivating a dominant protein, mor-
talin, involved in the development of cancer [103]. Liu et al. evaluated the antiproliferative
and anti-migratory effect of the alkaloid berbamine. Berbamine suppressed the growth of
negative breast cancer cells by regulating the PI3K/Akt/mTOR and PI3K/Akt/MDM2/p53
pathways [104]. Esnaashari et al. investigated the synergistic effect of the alkaloid doxoru-
bicin (DOX) with noscapine-loaded polymeric nanoparticles (NOS-NPs) for breast cancer
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treatment. The anticancer potential of NOS-NPs combined with DOX and alone was
evaluated against 4T1 breast cancer cells (in vitro) and mice (in vivo). The NOS-NPs, in com-
bination with DOX, significantly showed a 68.50% inhibition against the growth of breast
cancer. The DOX and NOS-NPs alone exhibited a 32 to 55.10% inhibition, respectively [105].

3.2. Camptothecin and Its Derivatives

Camptotheca acuminata plant species are a source of the anticancer agent camptothecin
(CPT), a quinoline alkaloid that acts by inhibiting the activity of topoisomerase-I, causing
DNA damage and, ultimately, cell death [106]. Because of its severe toxicity and low aque-
ous solubility, it was terminated from clinical trials. Several CPT derivatives are developed
and approved for clinical use to combat these limitations. Some of the CPT derivatives
are irinotecan, belotecan, and topotecan, which actively inhibit DNA topoisomerase–I, an
enzyme involved in DNA replication and transcription (Figure 3a,b,d) [107]. 9-aminoc-
amptothecin (9-AC) is another CPT semi-synthetic derivative that exhibited a sound activity
effect pre-clinical analysis but has not shown clinically effective anticancer activity hitherto.
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In 1993, 9-AC entered in phase-I trials and revealed the dose-dependent phenomenon
of myelosuppression as a major toxic effect of the respective drug. Subsequently, in phase-II
trials, the drug was found to be active against malignant and ovarian lymphoma and
inactive against colon or lung cancer. Consequently, in 1999, it was terminated from any
further development [108]. However, some phase-I or II trials have been reviewed to
predict its efficacy, safety, and tolerability separately or in combination with some other
analogs [109]. Several drugs such as diflomotecan (for advanced solid tumors treatment at
phase I) (Figure 2c) [110], gimatecan (for advanced solid tumors treatment at phase I) [111],
(for recurrent ovarian, peritoneal, or fallopian tumor treatment at phase II) [112], elomotecan
(for advanced solid tumors treatment at phase I) [113], and EZN-2208 (for advanced
malignancies treatment) [114] have been reported as clinical trial-based studies.
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3.3. Podophyllotoxin and Its Semi-Synthetic Analogs

Podophyllum peltatum plant is an important source of the anticancer compound Podophyl-
lotoxin and has two key analogs, Teniposide and Etoposide (Figure 4) [115], which are
useful in the treatment of different types of cancer acts by inhibiting the function of the
topoisomerase II enzyme [5]. The above two analogs combat some problems and issues,
such as a metabolic inactivation, poor water solubility, and acquired drug resistance. The
improved efficacy and potency led to the development of some semi-synthetic derivatives,
including azatoxin, NK-611, Top-53, tafluposide, GL-331, and etoposide phosphate, either
as clinical drugs or new trial candidates for cancer treatment [116].
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3.4. Taxane Diterpenoids

Paclitaxel discovery from the bark extract of the Yew tree further provided evidence
for a successful drug discovery through natural products. Taxol was the first compound
discovered for a microtubule synthesis promotion. It has been known to be used in
treating several types of cancers, particularly breast, ovarian, and NSCLC [117]. A wide
range of its derivatives has been produced (Figure 5). Docetaxel was the first to be clin-
ically used with significant clinical activity against different tumors [118,119]. Both of
the authorized taxane drugs, paclitaxel and docetaxel, still have limitations of use, and
the researchers are trying to overcome their side effects by synthesizing the modified
derivatives. Alterations in their structures has led to the discovery of new agents with a
diminished toxicity, enhanced solubility, and refined cytotoxicity. The restricted ability
of docetaxel and paclitaxel to cross the blood–brain barrier is concluded to be generated
by the P-glycoprotein efflux pump tremendously expressed in the BBB [120–122]. In 2010,
another FDA-approved taxane derivative, Cabazitaxel, was established in combination
with prednisone for treating hormone-refractory prostate and prostate cancers. Cabazi-
taxel suppresses the proliferation of cancer cells by stabilizing tubulin and inhibiting the
depolymerization of microtubules [123]. Nanoparticle formulations are also being applied
to obtain better results. Abraxane is the albumin-bound nanoparticle-based formulation
of paclitaxel free of any solvent, which acts as a mitotic inhibitor, and shows that it can
have dramatically improved effects. New taxanes are also being developed to improve
the therapeutic effect and pharmacology and replace docetaxel and paclitaxel which are
currently used for the treatment of NSCLC [124].
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4. Some Other Plant-Derived Anticancer Agents

Omacetaxine mepesuccinate is an alkaloid anticancer agent extracted from Cephalotaxus
harringtonia and approved by the FDA; it is a translation process inhibitor. Omacetaxine
inhibits the translation of proteins by inhibiting the elongation of the protein synthesis pro-
cess by interfering the A-site and averting the correct amino acid positioning to aminoacyl
tRNA [125]. Ingenol mebutate is found in the plant sap of Euphorbia peplus, and in January
2012, it was approved by the US FDA and EMA in gel form for the acid keratosis treatment.
This compound is an ester of angelic acid and diterpene [126]. Betulinic acid is a secondary
metabolite of Betula species from the Betulaceae family, occurring in natural form as penta-
cyclic triterpenoid. It was isolated from the Zizyphus plant species, like Mauritiana oenoplia
and Mauritiana rugose [127,128], exhibiting numerous biological activities such as anti-
oxidant, antibacterial, anti-inflammatory, anti-retroviral, and anti-HIV properties [129,130].
Dai et al. conducted the in vivo and in vitro studies to determine the anticancer potential
of Taxus chinensis var. mairei (TC) against lung cancer. The aqueous extract of TC showed a
significant anticancer effect by degrading CD47 with less toxicity [131]. Wu et al. investi-
gated the antitumor efficacy of a polysaccharide (CPTC-2) isolated from Taxus chinensis var.
mairei against gastric cell lines (SGC-7901). The outcomes obtained by the flow cytometry
and MTS assay revealed significant antitumor activity in a dose-dependent way [132].

Flavopiridol is a synthetic compound having an identical structural similarity with
rohitukine extracted from an Indian indigenous plant, Dysoxylum binectariferum [133]. It is
known for targeting the cyclin-dependent kinase activity, including the cyclin T complex
or CDK9, suppressing the regulation of Mc1-1 and anti-apoptotic proteins, and inducing
changes in the permeability of mitochondria [134–136]. It is also known as the first potential
inhibitor of cyclin-dependent kinases to gain clinical trials [137]. Curcuma longa plant, also
known as turmeric, is derived from the polyphenol Curcumin and has a wide range of
therapeutic properties, including anti-inflammatory, analgesic, antiseptic, and antioxidant
activity [138]. Turmeric plants contain some compounds called curcuminoids contain-
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ing curcumin, bisdemethoxycurcumin, and demethoxicurcumin. Of all curcuminoids,
curcumin has a significant therapeutic effect [139]. It has also been found to have anti-
cancer activity by affecting the biological pathways connected with oncogene expression,
mutagenesis, metastasis, apoptosis, and the regulation of the cell cycle [139].

5. Mushrooms as a Source of Anticancer Agents

Mushrooms carrying medicinal properties have an established history as a traditional
medicine. Mushroom-derived therapeutic substances can function in human bodies and
are progressively being grown [140]. Numerous traditionally utilized mushrooms from
the genera of Trametes, Ganoderma, Auricularia, Tremella, and Flammulina are known
to have remarkable medicinal properties [141]. Many medicinal properties of mushrooms
have dragged researchers’ attention to explore the finding of new mushrooms and their im-
portant metabolites, bearing profound anticancer and antioxidant properties [142]. In 1975,
Lucas and his fellows first described the anticancer activity of higher Basidiomycetes [141].
The considerable physiological properties and pharmacological efficacy of medicinal mush-
rooms are of a homeostasis maintenance, the enhancement of the immune response (bioreg-
ulation), the biorhythm regulation, the prevention and cure of different diseases, and the
amelioration of human health from life-threatening diseases such as heart diseases, cancer,
and cerebral stroke, etc. Mushrooms are also known to have antibacterial, anti-mycotic,
antiviral, anti-tumor, anti-inflammatory, antithrombotic, antidiabetic, hypotensive, and
hypolipidemic activities [143]. Rutckeviski et al. investigated the synergistic effect of
Agaricus bisporus extract β-(1→6)-D-glucan in combination with doxorubicin against breast
cancer cells (MDA-MB-231). The outcomes exhibited a synergistic effect of doxorubicin and
A. bisporus, which decreased the 31% viability of the tumor cells. Moreover, a β-(1→6)-D-
glucan treatment combined with doxorubicin enhanced the sensitivity of MDA-MB-231 to
doxorubicin [144].

Yoon et al. investigated the anti-tumor effect of the derivatives of adenosine isolated
from Cordyceps militaris against ovarian cancer cells. The outcomes revealed autophagic
death, mediated by adenosine derivatives in ovarian cancer cells by the ENT1-AMPK-
mTOR pathway [145]. Cen et al. evaluated the anticancer potential of Ganoderma lucidum
against ovarian cancer. The obtained results exhibited the reactive-induced species-induced
activation of the ERK pathway [146]. Thimmaraju et al. studied the anti-tumor effect of
polysaccharide (HUP-2) isolated from Hypsizygus ulmarius. HUP-2 was isolated using
the hot water extraction method. HUP-2 revealed considerable cytotoxicity and inhibi-
tion against PC3 prostate cells [147]. Fekry et al. determined the anticancer potential of
Pleurotus ostreatus (selenium enriched mushroom) in colon cancer. The outcomes showed
significant anticancer activity by enhancing the production of IL-6 and IL-10, reducing
the production of TNF-α and the targeting of the Raf-1 pathway [148]. Meng et al. stud-
ied the antitumor effect of water-soluble polysaccharide obtained from Boletus edulis (BE)
mushroom against breast cancer cells (Ca761, MDA-MB-231) using an MTT assay. The
obtained outcomes revealed that BE can significantly induce mitochondrial apoptosis and
proliferation inhibition [149]. Another study revealed the potential anticancer effect of the
silver nanoparticles (Ag NPs) prepared by Boletus edulis and Coriolus versicolor mushrooms
against colorectal, breast, and hepatocellular carcinoma cells (HT-29, MCF-7, and HUH-7
cells, respectively). The outcomes showed significant anticancer activity by inhibiting
proliferation and ROS-generated apoptosis [150].

Some examples of significant medicinal mushrooms with anti-tumor properties are
given in Table 2.
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Table 2. Some mushroom species, along with their anti-tumor activities.

Mushroom Specie Extract/Bioactive
Compound Cancer Type Study Type Outcomes Ref

Boletus edulis
Polysaccharide Breast In vitro (Ca761,

MDA-MB231 cells)

Proliferation inhibition
and mitochondrial

apoptosis.
[149]

Antitumor protein Non-small cell
lung cancer

In vivo and in vitro
(A549 cells)

Cell cycle arrest at G1
phase and apoptosis. [151,152]

Boletus edulis,
Coriolus versicolor Silver nanoparticles

Colorectal, breast
and

hepatocellular
carcinoma

In vitro (HT-29,
MCF-7, HUH-7 cells)

Cell viability
inhibition by

proliferation inhibition
and ROS-generated

apoptosis.

[150]

Cantharellus cibarius,
Coprinus comatus,

Lactarius deliciosus,
Lycoperdon perlatum

Ethanol and water
extracts Glioblastoma In vitro (LN-18,

U87MG cells)

Proliferation
inhibition, cell cycle

arrest at G1 and G2/M
phase induced

apoptosis,
metallo-proteinases

inactivation.

[153]

Innotus obliquus Hot water extract Breast In vivo (mice)
Anticancer activity by

innate immunity
activation

[154]

Ganoderma lucidum Spore oil Breast
In vitro

(MDA-MB231 cells),
in vivo (mice)

Mitochondrial
apoptosis [155]

Pleurotus highking Purified fraction III Breast In vitro (HCC-1937,
MDA-MB-231 cells)

Akt signaling
suppression induced

proliferation and
migration inhibition

[156]

Lignosus tigris Cold water extract Breast In vitro (MCF-7
cells), in vivo (mice)

Proliferation
inhibition, signaling
pathways induced

apoptosis, and tumor
growth inhibition.

[157]

Sarcodon imbricatus Water extract Breast In vitro, in vivo
(MCF-7, 4T1 cells)

Tumor growth
inhibition by

inhibiting migration
and invasion

of tumor cells and
immunomodulatory

activity.

[158]

Taiwanofungus
camphoratus Mycelia broth Adenocarci-

noma
In vitro

(A549 cells)

Caspase-3 and
ROS-induced

apoptosis.
[159]

Ganoderma
neojaponicum

Butanol, chloroform,
hexane, and water

extracts
Colon In silico (HT29 and

CT 116 cells), in vitro

Proliferation inhibition
by apoptosis

induction.
[160]

Hexagonia glabra Water, ethyl acetate,
and ethanol extract Cervical cancer

In vitro (CaSki,
HeLa, and SiHa

cells)

Apoptosis induced by
cell cycle arrest at

G2/M and increased
expression of

caspase-3 and -9.

[161]



Cancers 2022, 14, 6203 14 of 23

Table 2. Cont.

Mushroom Specie Extract/Bioactive
Compound Cancer Type Study Type Outcomes Ref

Calocyba indica Ethanol extract Pancreatic In vitro (MIAPaCa2
and PANC-1 cells)

Modulation of p53 and
caspase-3 and

-9-induced apoptosis
and growth inhibition.

[162]

Fomitopsis pinicola Ethanol extract Prostate cancer In vivo (Mouse
model-PCa cells)

Reduction in tumor
growth. [163]

Ganoderma lucidum

Ethanol extract Hepatocarci-
noma

In vitro (SK-Hep1
and QGY7703),
in vivo (mice)

Ras/Raf/MEK/ERK
pathways

inhibition-mediated
anticancer activity.

[164]

Water extract Glioblastoma In vitro (GBM8901
and U87MG cells)

Proliferation
suppression, cell cycle

arrest at S-phase,
mitochondrial

apoptosis.

[165]

Ganoderma tsugae Ethanol extract Endometrial
In vitro (KLE, AN3
CA, and HEC-1-A

cells)

Proliferation
inhibition, G1/S phase

cell arrest, Akt
signaling pathway

inhibition,
mitochondrial

apoptosis.

[166]

Heterobasidion
annosum Methanol extract Colon In vivo (mice)

Proliferation
suppression by Akt
signaling pathway.

[167]

Termitomyces
clypeatus Water soluble extract Astrocytoma

In vitro (HepG2,
U373MG, Y-79,

MDA-MB-468, U937,
HL-60, OAW-42,

A549 cells), in vivo
(Swiss albino mice)

Anti-tumor effect [168]

Antrodia cinnamonea Crude ethanol
extract Bladder

In vitro
(tsgh-8301,

RT4, T24 cells)

Cell death was
mediated by

anti-migratory activity
and down-regulation

of cyclin B1 and CDC2

[169]

Several researchers have reported the anti-tumor potentials of different mushroom
species and reduced the adverse effects like anemia, nausea, insomnia, drug resistance,
and bone marrow suppression after radiation and chemotherapy [170]. Additionally, some
potential mushroom species have been evaluated in clinical trials (Table 3) [171].

A medicinally reported mushroom, Agaricus blazei, has been revealed to possess
significant anti-tumor activity by an enlarged number of T-regulatory and plasmacytoid
dendritic cells and an enhanced level of human leukocyte, immunoglobulin, and killer-
immunoglobulin receptor genes [172]. Misgiati et al. isolated ergosterol using n-hexane
extracts prepared with Agaricus blazei Murill mushroom. The anticancer activity of the
ergosterol using an MTT assay was identified against MCF-7 cells. The outcomes showed
significant anticancer activity with an IC50 of 43.10 µg/mL by inhibiting the cell cycle
and inducing apoptosis [173]. Sun et al. extracted an RNA-protein complex (FA-2-b-B)
using Agaricus blazei Murill to evaluate the anticancer potential against chronic myeloid
leukemia. The outcomes exhibited that the FA-2-b-B protein complex has a significant
proapoptotic and antiproliferative effect, suggesting that the intake of Agaricus blazei Murill
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may provide an effective alternative approach for the management and treatment of chronic
myeloid leukemia [174].

Table 3. List of some significant mushroom species evaluated in clinical trials [171].

Mushroom Specie Bioactive Compound Cancer Type Phase of
Study Status of Study Identifier

Number

Agaricus bisporus Polysaccharides, lectin Prostate 1b Completed NCT00779168

Agaricus bisporus Polysaccharides, lectin Breast cancer and
cancer survivors 1 Completed NCT00709020

Agaricus blazei Murill Agaricus
polysaccharides Multiple myeloma 2 Completed NCT00970021

Lentinula edodes Genistein combined
polysaccharide Prostate - Completed NCT00269555

Lentinula edode Arabinoxylan extract
combined with L. edode

Hepatocellular
carcinoma - Completed NCT01018381

Grifola frondosa Polysaccharides Breast carcinoma, lung
neoplasms 1 Completed NCT02603016

Omphalotus illudens Semi-synthetic
derivative of illudin-S Thyroid 2 Completed NCT00124527

Omphalotus illudens Semi-synthetic
derivative of illudin-S

Recurrent epithelial
ovarian cancer 2 Completed NCT00019552

Trametes versicolor PSK, Krestin, PSP Breast 1 Completed NCT00680667

Jeitler et al. reported a considerable decrease in anorexia over time after 6 cycles of
Agaricus sylvaticus combined with chemotherapy; simultaneously, some side effects such
as anorexia, vomiting, diarrhea, nausea, and constipation were observed in the placebo
group [175]. Coriolus versicolor was used for the treatment of hepatocellular carcinoma
patients that are mostly inoperable. No difference was observed with the Coriolus versicolor
treatment compared to the placebo group, possessing an improved quality of life com-
pared to the placebo on the treatment. This study suggested using a supplementation for
palliative care [176].

The Agaricus bisporus (white button mushroom) powder was used for the treatment
of prostate cancer. A continuous rise in the levels of a prostate-specific antigen (PSA) was
observed in patients with prostate cancer; an escalation in the PSA level may direct the
recurrence of the disease. The results showed a therapy-induced drop in myeloid-derived
suppressor cells, and patients with partial and complete responses exhibited increased
baseline interleukin-15 levels compared to the non-respondents [177]. Torkelson et al.
conducted a phase-I trial using Trametes versicolor against immune-compromised patients
of breast cancer. They reported an improved immune status with the enhanced activity
of natural killer cells, lymphocyte counts, and a dose-dependent increase in CD8+ T-cells
and CD19+ B-cells. It can be suggested that a Trametes versicolor treatment can be used to
improve the immunity levels in the immune-compromised patients of breast cancer [178].

6. Conclusions

The extracts or bioactive compounds from plants and fungi exhibit several mecha-
nisms with anti-tumor effects. The mushroom and plant-derived bioactive compounds
may regulate or activate the immune system, by disturbing the immune cell’s maturation,
differentiation, and proliferation mechanisms, thus inhibiting the growth of cancer cells.
Plant-derived compounds may not directly be used as drugs, but they encouraged the
researchers to design and develop novel anticancer agents. A thorough understanding
of the mechanisms of action of plant and mushroom-derived bioactive compounds with
anticancer properties is essentially required for cancer treatment, providing cancer patients
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with an improved quality of life. However, the clinical studies of numerous plant and
mushroom-derived bioactive compounds reveal significant anticancer potentials with im-
munomodulation and the reduced side effects of conventional treatments. Consequently,
more clinical studies must be conducted, particularly by applying a prime methodology,
standard preparations, large sample sizes, and long-lasting follow-ups. Future studies
should also focus on establishing the preventive or defensive aspects of plants and mush-
rooms for reducing the development of cancers, by including them in one’s daily life for a
healthy diet.
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