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Abstract: We investigated the feasibility of a new deep-learning (DL)-based lung analysis method for
the evaluation of interstitial lung disease (ILD) by comparing it with evaluation using the traditional
computer-aided diagnosis (CAD) system and patients’ clinical outcomes. We prospectively included
104 patients (84 with and 20 without ILD). An expert radiologist defined regions of interest in the
typical areas of normal, ground-glass opacity, consolidation, consolidation with fibrosis (traction
bronchiectasis), honeycombing, reticulation, traction bronchiectasis, and emphysema, and compared
them with the CAD and DL-based analysis results. Next, we measured the extent of ILD lesions with
the CAD and DL-based analysis and compared them. Finally, we compared the lesion extent on com-
puted tomography (CT) images, as measured with the DL-based analysis, with pulmonary function
tests results and patients’ overall survival. Pearson’s correlation analysis revealed a significant corre-
lation between DL-based analysis and CAD results. Forced vital capacity was significantly correlated
with DL-based analysis (r = 0.789, p < 0.001 for normal lung volume and r = −0.316, p = 0.001 for
consolidation with fibrosis volume). Consolidation with fibrosis measured using DL-based analysis
was independently associated with poor survival. The lesion extent measured using DL-based
analysis showed a negative correlation with the pulmonary function test results and prognosis.

Keywords: computed tomography; deep-learning; interstitial lung disease; quantitative analyses

1. Introduction

Interstitial lung diseases (ILDs) are varied and heterogenous diseases [1]. Recently, pro-
gressive pulmonary fibrosis (PPF) has been defined in patients with radiological evidence
of pulmonary fibrosis and shows at least two of the following three criteria occurring within
the past year: (1) worsening respiratory symptoms, (2) physiological evidence of disease
progression (absolute decline in forced vital capacity (FVC) and diffusing capacity of the
lung for carbon monoxide (DLCO), and (3) radiological evidence of disease progression [2].
In this context, qualitative and quantitative analysis of computed tomography (CT) plays a
growing role in identifying PPF to introduce antifibrotic drugs [3,4].

Computer-based quantification of CT images based on computer-aided diagnosis
(CAD) can provide an objective and reproducible measure of the lesion extent of ILD.
However, the traditional CAD system cannot differentiate consolidation with fibrosis
(traction bronchiectasis) from that without fibrosis. Quantification with fully manual tracing
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and CAD with manual corrections are the existing solutions to this problem. Specifically, a
manual tracing method by an experienced chest radiologist may be the best approach for
ILD classification and volumetry. However, these existing techniques are time-consuming,
and they are impractical for clinical settings [5].

Recently, artificial intelligence-based methods have been applied for CT evaluation
of ILD segmentation and diagnosis [6–9]. These systems are useful methods because
they can minimize the need for manual tracing or corrections. Still, these systems cannot
differentiate between two distinct entities, i.e., consolidation with and without fibrosis
(traction bronchiectasis). Accurate classification and quantification are important for the
prognostication of ILD [10,11]. Thus, we have developed a fully automatic deep-learning
(DL)-based lung analysis model that can differentiate consolidation with fibrosis, such as
pleuroparenchymal fibroelastosis (PPFE)-like lesions, from consolidation without fibrosis.
As the PPFE-like lesions are associated with ILD severity [12–16], it is crucial to distinguish
and separately quantify consolidation with and without fibrosis. To our knowledge, no
other DL software or CAD systems have this ability [10,17–19]. We hypothesized that our
DL-based analysis model would provide automatic and more detailed classification and
quantification of ILD.

The present study aimed to quantitatively and qualitatively evaluate the effects of
DL-based analysis on ILD characterization by comparing it to the traditional quantitative
measures, i.e., visual evaluation by a radiologist and evaluation using a CAD system.
Furthermore, we investigated the association between the quantitative results of the DL-
based analysis and the disease severity and prognosis in ILD patients.

2. Materials and Methods

This study consisted of two steps, i.e., (1) the development of the DL-based analysis
model (pre-clinical study) and (2) a clinical study of DL-based analysis.

The study design is shown in Figure 1.
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2.1. Patient Population

The review board of our institution approved the study protocol. Written informed
consent was prospectively obtained from all the patients who underwent CT examinations
to evaluate ILD or other pulmonary diseases between June 2016 and August 2018 (Figure 1).

For the step-1 preclinical study, we used CT images of 110 patients with ILD who were
not included in the subsequent clinical study (Supplementary Materials) (Figure 1).

For the step-2 clinical study, we enrolled 104 patients whose characteristics are shown
in Table 1.

Table 1. Patient characteristics in clinical study.

Demographics and Clinical Characteristics Number (%), or Mean (SD)

Total Number of Patients 104

Age (years) 69 (9.5)

Sex (M/F) 73/31 (70.2/29.8%)

Clinical diagnosis

ILD

IPF 40 (38.5%)

CTD-ILD 18 (17.3%)

Unclassifiable idiopathic interstitial pneumonia 16 (15.4%)

Nonspecific interstitial pneumonia 3 (2.9%)

Chronic hypersensitivity pneumonia 4 (3.8%)

Organizing pneumonia 1 (1.0%)

Idiopathic pleuroparenchymal fibroelastosis 2 (1.9%)

Non-ILD

COPD 12 (11.5%)

Pulmonary nodules 4 (3.8%)

Pleural plaques 2 (1.9%)

No lesion 2 (1.9%)

Follow-up period (days) 1035 (490.2)
IPF, idiopathic pulmonary fibrosis; CTD, connective tissue disease; ILD, interstitial lung disease; COPD, chronic
obstructive pulmonary disease; SD, standard deviation.

Eighty-four ILD patients (55 men, 29 women; mean age, 69.2 ± 9.0 years) included
40 idiopathic pulmonary fibrosis (IPF) patients and 44 non-IPF ILD patients. ILD was
diagnosed by multidisciplinary discussion according to the criteria established by the
latest international consensus guidelines [2,20,21]. Twenty non-ILD patients (18 men and
2 women; mean age, 66.2 ± 10.9 years) were included, i.e., 12 with chronic obstructive
pulmonary disease, 4 with small lung nodules (<3 cm in diameter), 2 with pleural plaques,
and 2 without lung lesions.

2.2. CT Examination Protocol

Thin-section non-contrast CT images were obtained during inspiration with the patient
in a supine position using 320- or 64-row multi-detector CT scanners (Aquilion ONE GEN-
ESIS or Aquilion 64, Canon Medical Systems, Otawara, Japan). The scanning parameters
were 0.5-mm collimation, 0.5-sec gantry rotation speed, tube voltage of 120-kVp, and tube
current of 250–300 mA (automatic exposure control). CT images were reconstructed with
a slice thickness of 0.5 mm using an iterative reconstruction algorithm (AIDR3D; Canon
Medical Systems).

2.3. ILD Classification with CAD and the DL-Based Algorithm

The ILD classification and lesion extent on CT images were estimated using the CAD
system and DL-based analysis method.
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• CAD system (Gaussian histogram normalized correlation segmentation [GHNC]
estimation)

The GHNC system (Mebius Corporation, Yokohama, Japan) is a traditional CAD
software that divides the lung into six categories based on the CT attenuation values and
values on the differential images [22–25]. We measured the extent of the following regions:
normal (NCAD), emphysema (ECAD), ground-glass opacity (GCAD), consolidation (CCAD),
reticulation (RCAD), and honeycombing including traction bronchiectasis (HCAD). The total
fibrotic lesions (FibCAD) were calculated as the sum of RCAD and HCAD.

• DL-based analysis (QZIP-ILD)

The DL-based ILD analysis system (Quantification by Ziosoft Informatics Platform for
interstitial lung disease, QZIP-ILD, Ziosoft, Inc. Tokyo, Japan) is a research software, and
its development details (convolutional neural network) are described in the Supplementary
Materials. QZIP-ILD can classify the lung into eight features (Figure 2). We measured
the extent of these features: normal (NDL), emphysema (EDL), ground-glass opacity (GDL),
consolidation (CDL), consolidation with fibrosis (traction bronchiectasis) (CFDL), reticulation
(RDL), honeycomb (HDL), and traction bronchiectasis (TDL). We calculated the total fibrotic
lesions (FibDL) as the sum of CFDL, RDL, HDL, and TDL, corresponding to FibCAD.
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Consolidation CCAD CDL 

Figure 2. Images of a 72-year-old man with idiopathic pulmonary fibrosis (IPF). (a) Computed
tomography image; (b) computer-aided diagnosis (CAD) method image; (c) deep-learning (DL)-based
analysis image. Note: For the CAD image, purple = NCAD; light green = GCAD; pink = CCAD;
light blue = RCAD; yellow = HCAD; and dark blue = ECAD. For the DL-based analysis image,
violet = NDL; light green = GDL; yellow = CFDL; light blue = RDL; dark green = TDL; purple = HDL;
and brown = EDL.

DL-based analysis was developed to classify the lung regions into eight categories,
including two more categories (consolidation with fibrosis and traction bronchiectasis)
than the CAD system. The classification of the lung lesions based on the two methods is
summarized in Table 2.

Table 2. Classification of the lung lesions according to the CAD and DL-based methods.

Classification

Lesion characteristics CAD (GHNC) DL (QZIP)

Normal NCAD NDL

Emphysema ECAD EDL

Ground glass opacity GCAD GDL

Consolidation CCAD CDL



Diagnostics 2022, 12, 3038 5 of 14

Table 2. Cont.

Classification

Consolidation with fibrosis
(traction bronchiectasis) - CFDL

Reticulation RCAD RDL

Honeycombing HCAD HDL

Traction bronchiectasis - TDL

Total fibrotic lesion FibCAD
= RCAD + HCAD

FibDL
= CFDL + RDL + HDL + TDL

CAD: computer-aided diagnosis, DL: deep learning.

2.4. Comparison of Lung Region Volume Measured by CAD and DL-Based Method

The original number of categories of the CAD system (six categories) and DL-based
analysis (eight categories) differed from each other. Therefore, we compared the volumes
(mm3) of five different lung CT imaging feature categories (N [normal lung], E [emphy-
sema], G [GGO], C [consolidation], and Fib [total fibrotic lesion]) measured using the CAD
system and DL-based analysis. The agreement on the measured volume of each CT imaging
feature category between the CAD and DL-based analysis was evaluated.

2.5. Accuracy for ILD Classification by CAD and DL-Based Method

One expert radiologist defined a total of 549 regions of interest (ROIs) on the CT images
of the 104 patients (3 to 7 ROIs per patient), including the region of normal, emphysema,
GGO, consolidation, consolidation with fibrosis, reticulation, honeycomb, and traction
bronchiectasis. We chose a 3-mm diameter ROI because the size was sufficiently large to
avoid missing characteristic imaging features and not so large that it would be affected
by other structures surrounding the ROI. We measured the proportion of pixel numbers
for each ROI and calculated the accuracy. We also evaluated the relationship between the
segmentation results of the DL-based analysis and CAD methods, which were displayed
as a chord diagram using the Power BI analysis tool (Microsoft Corporation, Redmond,
Washington, WA, USA).

2.6. Relationship of DL Lung Analysis, Pulmonary Functional Tests, and Patients’ Prognosis

We compared the lung volumes of the NDL, GDL, CDL, CFDL, RDL, HDL, TDL, EDL,
and FibDL (CFDL+RDL + HDL + TDL) categories and that of the whole lung volume, as
measured with DL-based analysis, with the pulmonary function test results (i.e., FVC,
diffusing capacity of the lung for the carbon monoxide (DLCO), forced expiratory volume
in 1 s (FEV1), and total lung capacity (TLC)).

We compared the DL-based analysis parameters and characteristics (age and sex) of
the 104 patients with survival time.

2.7. Statistical Analysis

SPSS Statistics version 28 (IBM, Armonk, NY, USA) was used for the data analysis.
All numerical data are reported as mean ± standard deviation. Bland-Altman plots were
used to evaluate the agreement of lesion volumes between the CAD system and DL-based
analysis. We also used Pearson’s correlation coefficients to compare the lesion volumes
as measured with the CAD and DL-based methods. Survival time was analyzed from
the date CT scanning was performed to the date of death or censoring. Univariate and
multivariate Cox regression analyses were used to determine variables related to survival.
A p-value < 0.05 was considered statistically significant.
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3. Results
3.1. ILD Classification, Volumetry, and Accuracy by CAD and DL-Based Method

All CT data were successfully segmented using both the CAD system and DL-based
analysis. Representative images are shown in Figure 2.

A manual operation was not required with the DL-based analysis because the system
was designed to detect lung contours and classify and measure lesions automatically; the
CAD system required a manual operation to detect the lung contours in all patients. The
mean time required to prepare for and complete the manual operation of the CAD lung
analysis (tracing lung contours) was 17.3 ± 3.9 min per case. In some patients, consolidation
with or without traction bronchiectasis in the peripheral zone was missed owing to manual
correction errors (Figure 3).
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Figure 3. Images of a 72-year-old man with idiopathic pulmonary fibrosis. (a) Computed tomography
image; (b) computer-aided diagnosis (CAD) method image; (c) deep-learning (DL)-based image. On
the CAD method image (b), the pleuroparenchymal fibroelastosis (PPFE)-like lesion in the peripheral
area (white arrow) was neglected because it was considered extrapulmonary. On the DL-based
analysis image (c), the PPFE-like lesion (white arrow) is accurately classified as consolidation (CFDL).
The color code follows that described in the legend of Figure 2.

Additionally, in the CAD system, the peripheral vessels and heart contours were
misclassified as GGO (GCAD) and honeycombing (HCAD). Some perivascular areas were
misjudged as GGO (Figure 4).
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Figure 4. Images of a 57-year-old man with normal lungs. (a) Computed tomography (CT) image;
(b) computer-aided diagnosis (CAD) method image; (c) deep-learning (DL)-based image. The
conventional CT image (a) shows a normal lung. On the CAD method image (b), the pulmonary
surface (white arrow) and perivascular area (black arrowhead) were misclassified as ground-glass
opacity (GCAD) and honeycombing (HCAD), respectively. The DL-based analysis image (c) accurately
classifies the normal lung area. The color code follows that described in the legend of Figure 2.
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Table 3 shows a comparison of volume between the CAD system and DL-based anal-
ysis. Bland-Altman analysis and Pearson correlation testing revealed a good correlation
between whole lung, normal lung, GGO, consolidation, total fibrotic lesion, and emphy-
sema measures. Figure 5 shows the Bland-Altman plots and the linear correlation results
between whole lung, normal lung, and fibrotic lesion volumes obtained with the CAD
system and DL-based analysis. Furthermore, the DL-based analysis revealed significantly
higher whole lung (118.3 ± 61.1 mm3, p < 0.001), normal lung (447.8 ± 438.6 mm3, p < 0.001),
and consolidation (40.0 ± 42.6 mm3, p < 0.001) volumes. Conversely, the calculated volume
of total fibrotic lesions was significantly lower (−151.5 ± 129.5 mm3, p < 0.001) with the
DL-based analysis than with the CAD method.

Table 3. Descriptive Outcomes and Method-Comparison Analysis for the Quantification of CT Images
using the CAD system versus DL-based analysis.

Lesion Pattern Volume (mm3)
Paired-

Samples
t-Test

Pearson
Correlation
(r, p-Value)

Bland-Altman
Analysis

(Bias [95%CI])

CAD System
(Mean [SD])

DL-Based
Analysis

(Mean [SD])

Whole lung 4059.8 (1180.1) 4178.2 (1180.0) p < 0.001 r = 0.999, p < 0.001 −118.3
(−130.2 to −106.4)

Normal lung NCAD: 2883.8
(1158.3)

NDL: 3331.5
(1398.1) p < 0.001 r = 0.950, p < 0.001 −447.8

(−533.0 to −362.5)

GGO GCAD: 278.6
(131.7) GDL: 197.0 (203.7) p < 0.001 r = 0.719, p < 0.001 81.6 (53.9 to 109.3)

Consolidation CCAD: 14.7 (35.5) CDL: 54.7 (61.7) p < 0.001 r = 0.742, p < 0.001 −40.0 (−48.3 to −31.7)

Total fibrotic lesion

HCAD: 337.5 (205.7)
CFDL: 39.8 (64.1)

p < 0.001 r = 0.936, p < 0.001 151.5 (126.3 to 176.7)
HDL: 71.4 (161.4)

RCAD: 131.0 (128.0)
RDL: 152.1 (156.9)

TDL: 53.9 (58.1)

Emphysema ECAD: 414.3 (647.0) EDL: 55.8 (130.0) p < 0.001 r = 0.795, p < 0.001 136.4 (59.7 to 213.1)
CAD: computer-aided diagnosis, CI: confidence interval, CT: computed tomography, DL: deep learning, GGO:
ground-glass opacity, SD: standard deviation.

One expert radiologist defined 549 ROIs on 104 CT scans, including normal, emphy-
sema, consolidation, fibrosis, GGO, honeycomb, reticulation, and traction bronchiectasis,
and compared the output results using DL-based analysis and the CAD system. The ac-
curacy for each lesion and for the normal lung area according to the DL-based analysis
and CAD system was 0.922–1.000 and 0.529–0.995, respectively (Table 4). The relationship
between the segmentation results derived from DL-based analysis and the CAD system
is displayed on a chord diagram (Figure 6), indicating that most pixels interpreted to
reflect normal and emphysema tissue with the DL-based method were also interpreted to
reflect normal and emphysema tissue with the CAD method. Conversely, what the CAD
system interpreted as consolidation, the DL-based method divided into consolidation with
and without fibrosis. Similarly, what the CAD system interpreted as honeycombing, the
DL-based method divided into honeycombing, traction bronchiectasis, and consolidation
with fibrosis.
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Figure 5. Bland-Altman plots and linear correlation of whole lung volume (a,b), normal lung volume
(c,d), and fibrotic lesion volume (e,f), as determined with the CAD and DL-based methods. The black
horizontal line represents the mean difference between CAD method and DL-based analysis. The
dotted horizontal lines represent ±1.96 standard deviation. The difference indicates the volume as
measured with the CAD method minus the volume as measured with the DL-based method.
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Table 4. DL-based analysis and CAD system output accuracy of each feature category.

Number of ROIs DL-Based Analysis Accuracy
(95% Confidence Interval)

CAD Accuracy
(95% Confidence Interval)

Normal 108
1.00 0.995

(1.00–0.989) (1.00–0.989)

Emphysema 66
0.995 0.887

(1.00–0.988) (0.941–0.831)

Ground-glass opacities 85
0.922 0.529

(0.986–0.959) (0.600–0.446)

Consolidation 63
0.995 0.803

(1.00–0.980) (0.762–0.563)

Consolidation with fibrosis 48
0.973 -

(0.993–0.958)

Honeycomb 39
0.976 0.792

(0.996–0.957) (0.857–0.727)

Reticulation 82
0.984 0.706

(0.995–0.975) (0.771–0.639)

Traction bronchiectasis 58
0.943 -

(0.963–0.915)
CAD: computer-aided diagnosis, DL: deep learning, ROI: region of interest.
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Figure 6. Chord diagram comparing the CAD and DL-based method outputs. The color of the chord
is set to match the DL-based analysis. Most pixels that the CAD system interpreted as consolidation,
the DL-based method divided into consolidation with and without fibrosis (asterisk). Most pixels
that the CAD system interpreted as honeycombing (dagger), the DL-based method divided into
honeycombing, traction bronchiectasis, reticulation, and consolidation with fibrosis.

3.2. Correlation with Pulmonary Function and Prognosis

Table 5 shows the correlations between the DL-based analysis results and pulmonary
function test results. The median time between the CT and pulmonary function test dates
was 7.5 days. The normal lung and whole lung volumes on DL-based analysis results were
significantly correlated with all lung function test results (TLC, FVC, FEV1, and DLCO).
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Furthermore, CFDL volume was inversely correlated with TLC (r = −0.224, p = 0.039), FVC
(r = −0.316, p = 0.001), and DLCO (r = −0.399, p < 0.001).

Table 5. Correlations between the DL-based analysis results and pulmonary function test results.

Pulmonary
Function Test N Categories in the DL-Based Analysis

Whole
Lung NDL GDL CDL CFDL HDL RDL TDL EDL FibDL

TLC 85
r = 0.924 r = 0.836 r = −0.234 r = −0.321 r = −0.224 r = −0.145 r = −0.369 r = −0.246 r = 0.301 r = −0.323
p < 0.001 p < 0.001 p = 0.031 p = 0.003 p = 0.039 p = 0.186 p = 0.001 p = 0.023 p = 0.005 p 0.003

FVC 100
r = 0.832 r = 0.789 r = −0.306 r = −0.291 r = −0.316 r = −0.073 r = −0.338 r = −0.233 r = 0.134 r = −0.288
p < 0.001 p < 0.001 p = 0.002 p = 0.003 p = 0.001 p = 0.470 p = 0.001 p = 0.002 p = 0.185 p 0.004

FEV1 100
r = 0.682 r = 0.701 r = −0.158 r = −0.148 r = −0.191 r = −0.089 r = −0.199 r = −0.114 r = −0.102 r = −0.188
p < 0.001 p < 0.001 p = 0.117 p = 0.142 p = 0.057 p = 0.379 p = 0.048 p = 0.257 p 0.314 p 0.061

DLCO 85
r = 0.617 r = 0.794 r = −0.204 r = −0.206 r = −0.399 r = −0.440 r = −0.491 r = −0.463 r = −0.130 r = −0.597
p < 0.001 p < 0.001 p = 0.061 p = 0.059 p < 0.001 p < 0.001 p < 0.001 p < 0.001 p 0.235 p < 0.001

DLCO = diffusing capacity of the lung for carbon monoxide; FEV1 = forced expiratory volume in one second;
FVC = forced vital capacity; ILD = interstitial lung disease; FibDL= FDL + HDL + RDL + TDL; TLC = total lung
capacity; r = Pearson’s correlation coefficient.

Of the 104 patients, 16 died during the study period. The median follow-up time
was 3.3 years. Univariate and multivariate Cox regression analyses were performed to
identify the prognostic factors. Table S3 shows the univariate Cox regression analysis
of all DL-based analysis and CAD system lesion parameters concerning survival. Table
S4 shows the univariate and multivariate cox regression model with age, sex, and CFDL.
Univariate analysis showed that age (hazard ratio [HR] = 1.096, 95% confidence interval
[CI] =1.023–1.173, p = 0.009) and CFDL (HR = 1.507, 95% CI = 1.310–1.733, p < 0.001) were
statistically significant, while sex (HR = 1.857, 95% CI = 0.529–6.524, p = 0.334) was not
statistically significant. Multivariable analysis, including age and CFDL, revealed that age
(HR = 1.091, 95% CI = 1.007–1.183, p = 0.034) and CFDL (HR = 1.477, 95% CI = 1.277–1.708,
p < 0.001) were independently associated with shorter survival.

4. Discussion

In the present study, DL-based analysis appropriately classified typical ILD lesions, in
agreement with the classification provided by the expert chest radiologist. The DL-based
analysis allows for automatic measurement, rendering it free from operator-dependent
errors and variability, which is clinically helpful. Furthermore, DL-based analysis can quan-
tify consolidation by distinguishing between the presence and absence of bronchiectasis.
The lesions segmented into consolidation by CAD system were segmented into two patterns
by DL-based analysis: consolidation without bronchiectasis (CDL) and consolidation with
bronchiectasis (CFDL). The lesion extent measured with DL-based analysis correlated well
with FVC, and multivariate Cox regression analysis showed that CFDL was independently
associated with a worse prognosis. We consider consolidation with bronchiectasis, i.e.,
CFDL, a critical index correlating with patients’ prognosis in ILD.

The previous study regarding DL-based technique for the ILD identification also
reported excellent classification of ILD [10]. Our study showed similar results, but our
DL-based analysis developed for this study is distinguished by its ability to quantify
consolidation with traction bronchiectasis, and this is a unique capability that has not been
reported in any other system. Furthermore, we revealed the quantitative results were well
correlated with the clinical disease severity and prognosis. We believe our DL-based model
which can identify and quantify the ILD imaging features, particularly the consolidation
with fibrosis, may be useful for ILD-patient management. We believe that the ability of
the DL-based method to differentiate “consolidation with fibrosis,” which is consolidation
with traction bronchiectasis, comprises a unique strength, not shared with other software
or CAD systems [10,17–19]. Consolidation without bronchiectasis is a representative
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finding of cryptogenic organizing pneumonia, a type of interstitial pneumonia with a
good prognosis [20]. On the other hand, consolidation with traction bronchiectasis in PPF
has a poor prognosis, according to previous studies [12–15]. It has also been reported
that consolidation with traction bronchiectasis in the middle lobe is associated with poor
prognosis in patients with an anti-aminoacyl tRNA synthetase antibody-associated ILD [26].
Our study results showed that consolidation with traction bronchiectasis was associated
with prognosis. We believe that differentiating consolidation by the presence or absence
of bronchiectasis may be helpful in patient management, e.g., for the prediction of the
response to treatment.

The ability to automatically quantify these lesions is another advantage of the DL-
based analysis. The CAD system requires the manual correction of lung contours, especially
in the case of consolidation with and without fibrosis. These manual corrections might
lead to estimation errors. We believe that this may be one of the reasons for the smaller
consolidation extent observed with the CAD system than with the DL-based analysis.
Furthermore, it has been reported that the CAD system misinterprets some peripheral
structures as fibrotic lesions [24]; this may be one of the reasons for the greater volumes of
total fibrotic lesions obtained with the CAD system than with the DL-based analysis. DL-
based analysis is also advantageous for the more precise classification and measurement of
ILD lesions over the CAD system.

We believe that DL-based analysis is useful for more than evaluation of ILD. For
example, DL-based analysis can be useful in assessing the severity of infectious pneumonia,
such as coronavirus disease 2019 (COVID-19) [27,28]. We also think our DL-based analysis
is a potentially useful tool for the health care screening of lung cancer. It is known that
both severe and mild ILD (e.g., interstitial lung abnormalities) is associated with mortality
and lung cancer incidence [29]. Quantitative evaluations of the screening CT might detect
a lung tumor as increased volume of consolidation or GGO. Future studies should be
conducted to verify the value of DL analysis model for the serial low-dose lung-screening
CT [30,31].

The present study had several limitations. First, the results were obtained from a small
number of patients recruited from a single center, and our study lacked a power analysis.
This was not a case-control study, but a feasibility study of new analytic technique, i.e., a
DL-based analysis model for the quantitative and qualitative evaluation of ILD. In addition,
the number of cases available for this study was limited because it was a single-center
prospective study and because a large number of cases had to be used as training data for
the DL analysis development. In addition, we did not evaluate CT images from scanners
of different vendors or those with various reconstruction methods. Furthermore, the DL-
based analysis developed for this study is not currently capable of detecting pulmonary
nodules. As the detection of lung cancer in patients with ILD is important for each patient’s
prognosis, the system may need to be used in combination with other artificial intelligence-
based methods for detecting pulmonary nodules. Despite these limitations, we believe
that our study results demonstrate that the DL-based analysis is clinically appropriate for
the evaluation of ILD. The usefulness of the DL-based analysis presented here should be
verified in greater detail in future studies.

In conclusion and recommendation, QZIP-ILD, our newly developed DL-based analy-
sis model, can accurately and automatically detect, characterize, and quantify the extent of
ILD. The DL-based analysis can distinguish between consolidation with and without fibro-
sis, which could not be achieved by previously reported systems. The quantitative results
of DL-based analysis correlated with pulmonary function tests, and consolidation with
fibrosis was associated with patient prognosis. We regard ILD evaluation with the newly
developed DL-based analysis model as clinically applicable, leading to the appropriate
management of ILD patients.
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The Training Process of DL-Based Analysis Model (Pre-Clinical Study)

The following steps were taken to develop the DL-based analysis model (QZIP-ILD,
Ziosoft) (Figure 1). The first step in constructing the model was to create a dataset. The
dataset consisted of 110 patients with ILD who were not included in the clinical study.
Several cross-sections were selected, one or more from each of the three cross-sections
(axial, coronal, and sagittal) of each patient, and within those cross-sections, eight features
of ILD (normal, emphysema, consolidation, consolidation with fibrosis, GGO, honeycomb,
reticulation, and traction bronchiectasis) were labeled on these cross-sections. The average
number of cross-sections per patient was approximately 24, and the average area labeled
per patient was 236,341 mm2. Labeling was performed by a radiologist with 30 years of
experience in chest imaging.

Next, we used this dataset for training. The training model was based on a three-
dimensional (3D) convolutional neural network for semantic segmentation and had a
structure similar to that of a 3D U-Net, as shown in Figure S1. The network consisted
of a contracting path in the first half and an expansive path in the second half, as in
U-Net. Both networks were based on a convolution block consisting of a 3 × 3 × 3
convolution, an activation layer, and batch normalization. The contracting path was
constructed using a convolution block and pooling. The expansive path was built with a
cascade of concatenations of the up-sampled feature and the output of the contracting path
and passing it through the convolution block. The CT data were resampled at 0.65 mm, the
input was cropped blocks of 96 × 96 × 96 voxels, and the output was composed of eight
labels corresponding to each position. The 96 × 96 × 96 blocks were randomly sampled
to ensure that a block included some of the labeled regions. The model was optimized
using Adam (learning rate: 0.001, betas: (0.9, 0.999)) with the cross-entropy function as the
loss function.

For training, the dataset was divided into three groups such that the eight labels were
evenly distributed. The total areas of the labels in each group are listed in Table S1. Using
these three groups, we performed a three-fold cross-validation as shown in the solid line
in Figure S2. The performance of the individual model is presented in Table S2. The final
model was an ensemble of the outputs of the three models (dotted line in Figure S2).

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/diagnostics12123038/s1, Table S1: Total area (mm2) of the labels
in three group; Table S2. Performance of 3-fold cross-validation; Table S3. Univariate Cox regression
analysis of survival; Table S4. Univariate and Multivariate Cox regression model analysis of survival;
Figure S1. The network architecture for lesion classification; Figure S2. Training process of deep-
learning and prediction process by the trained deep-learning models.
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