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Abstract: Acute myocardial infarction (AMI) is a severe disease with elevated morbidity and mor-
tality rate worldwide. This is attributed to great losses of cardiomyocytes, which can trigger the
alteration of gene expression patterns. Although several attempts have been made to assess the
AMI biomarkers, to date their role in rescuing myocardial injury remains unclear. Therefore, the
current study investigated three independent microarray-based gene expression datasets from AMI
patients (n = 85) and their age–sex-matched healthy controls (n = 70), to identify novel gene signa-
tures that might be involved in cardioprotection. The differentially expressed genes (DEGs) were
analyzed using ‘GEO2R’, and weighted gene correlation network analysis (WGCNA) was performed
to identify biomarkers/modules. We found 91 DEGs, of which the number of upregulated and
downregulated genes were 22 and 5, respectively. Specifically, we found that the deregulated genes
such as ADOR-A3, BMP6, VPS8, and GPx3, may be associated with AMI. WGCNA revealed four
highly preserved modules among all datasets. The ‘Enrichr’ unveiled the presence of miR-660 and
STAT1, which is known to affect AMI severity. Conclusively, these genes and miRNA might play a
crucial role the rescue of cardiomyocytes from severe damage, which could be helpful in developing
appropriate therapeutic strategies for the management of AMI.

Keywords: acute myocardial infarction; differential expressed genes; weighted gene correlation
network analysis; NOTCH1 signaling; cardiovascular disease

1. Introduction

Despite the advancement in prevention and therapy, cardiovascular diseases (CVD)
remain a major cause of human deaths globally. Approximately 17.9 million people die
each year due to CVDs, which is estimated to be 31% of total deaths worldwide [1]. It has
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been further reported that 4 out of 5 CVD-associated deaths occur due to heart attacks in
the population under the age of 70 years, and myocardial infarction (MI) is one of the major
etiology. The elevating global incidence of acute myocardial infarction (AMI) includes
multifactorial, such as environment, hereditary, and lifestyle. The pathology of AMI in-
cludes atherosclerotic rupture causing a monocyte and macrophage inflammatory cascade,
thrombus development, and platelet aggregation. Consequently, transport of oxygen via
the coronary artery is suppressed, leading to inhibited myocardial oxygenation [2]. Further,
the mitochondrial inability to synthesize ATP activates the ischemic cascade, resulting in
endocardial apoptosis (cell death) or MI. The AMI patients not only suffer from severe
complications such as cardiac rupture, arrhythmia, and ventricular aneurysms, but also
bear a mental and financial burden on the family [3]. Early diagnosis, by identifying the risk
factors, preventing adverse cardiac events, and ensuring their timely treatment, is always a
primary focus for clinicians in the management of AMI. There are several risk factors, such
as age, sex, lifestyle, hypertension, dyslipidemia, diabetes, hypercholesterolemia, smoking,
obesity, and genetic parameters, which might contribute to the majority of myocardial
infractions, but further research is required to reveal additional risk factors [4,5]. Although
coronary angiography has been considered as the “gold standard” for the detection of
AMI, this method is invasive, expensive, and could be risky to patients [5,6]. Despite such
advancement, the exact molecular mechanisms involved in pathophysiological processes
for AMI development and progression have not been completely elucidated.

Currently, the reduced oxygen supply in the heart, pharmaceutical drugs, intravenous
thrombolysis, and percutaneous coronary interventions are being utilized as important
approaches to combat AMI [7]. However, these therapeutic strategies cause many com-
plications during the treatment process, such as enhanced episode of bleeding due to
antithrombotic drugs [8]. Comparatively, percutaneous coronary intervention (PCI) is more
efficient therapy for acute ST-segment elevation myocardial infarction [9]. Overall, earlier
detection of AMI is very important for patients to receive timely treatment.

A microarray study in AMI demonstrated that many genes, associated with different
functions such as lipid/glucose metabolism, platelet function and atherosclerotic plaque
stability, were altered. Upregulated genes such as SOCS3 and FAM20 were also observed in
the first few days of AMI [10]. Furthermore, RNA profiling in AMI patients has shown that
genes involved in chemotaxis, IL (interleukin)-6, and NF-κB (nuclear factor-κB) signaling
were upregulated [11].

There are several reports on the bioinformatics analyses of single microarray data,
demonstrating important genes related to the diagnosis or prognosis of AMI [12]. However,
an integrated analysis of two or more microarray assay findings (i.e., microarray datasets),
allows the analysis of differentially expressed genes (DEGs) among a large number of
samples with similar conditions that leads to more robust and reliable results. Here,
we used 155 samples based on microarray gene expression data to identify DEGs and
their involvement in a signaling pathway associated with the pathogenesis of AMI and
cardioprotection.

2. Materials and Methods
2.1. Microarray Datasets

Genome-wide gene expression datasets (n = 3), generated by a microarray study,
were downloaded from the National Centre of Biotechnology Information (NCBI) Gene
Expression Omnibus (GEO) database (https://www.ncbi.nlm.nih.gov/). Datasets having
AMI patients (who had not received any treatments) and control samples were selected
for this study. These three datasets included GSE66360, GSE29532 and GSE62646, which
had 85 AMI patients and 70 age–sex-matched healthy controls. The healthy controls were
also matched with confounders such as smoking, hypertension, and LDL (low-density
lipoproteins). The number of patients/controls, sample type, and the platform of microarray
experiments for each of the datasets utilized are represented in Table 1.

https://www.ncbi.nlm.nih.gov/
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Table 1. Characteristics of datasets included in this study.

GEO Dataset
ID

GEO Platform
Accession Number

Subjects
Types of Sample Microarray Platform

Patients Controls

GSE66360 GPL570 49 50 Whole blood Affymetrix Human Genome
U133 Plus 2.0 Array

GSE29532 GPL5175 8 6 Whole blood cells Affymetrix Human Exon 1.0
ST Array

GSE62646 GPL6244 28 14 Peripheral Blood
Mononuclear Cells

Affymetrix Human Gene 1.0
ST Array

2.2. Screening of Differentially Expressed Genes (DEGs)

The GEO2R web tool was used to extract gene expression and control samples from
patients. It uses GEOquery and limma (Linear Models for Microarray Analysis) R pack-
ages from the Bioconductor project. The GEOquery R package parses GEO data into R
data structures by other Bioconductor/R packages. The GEO2R extracts pre-calculated
expression values of the genes from the series matrix files deposited in the raw data of
the corresponding studies. To calculate gene expression values where a single gene has
multiple expression values, the average gene expression value was taken into consideration.
The gene symbols of the probes of each dataset were mapped to the corresponding GEO
Platform Accession Number information.

To calculate the differential expression value between patients and controls, the mean
differences in gene expression were considered. Samples from all datasets were combined
to get an overall expression. The significance of the differential expression was computed
using an unpaired Student’s t-test. The genes with fold change > 1.6 with p value < 0.05
were considered as significantly altered genes.

2.3. Weighted Gene Co-Expression Network Analysis (WGCNA) and Module Identification

The weighted gene co-expression network among the DEGs was constructed using
WGCNA R package [13]. The pickSoftThreshold function of the package was used for
selecting parameters to identify scale free topology in the simulated DEG data. The
unsupervised hierarchical clustering was used to detect the modules that is composed
of densely interconnected genes. The modules are represented by the branches of the
hierarchical clustering dendrogram, constructed using the branch cutting method. The
gene information from each module was extracted and visualized using the network
of eigengenes.

2.4. Pathway Enrichment Analysis of Turquoise Module

A KEGG (Kyoto Encyclopaedia of Genes and Genomes) based pathway enrichment
analysis of turquoise genes module was performed using the STRING database. The false
discovery rate (FDR) < 0.05 was considered to indicate a statistically significant difference
between pathways. Furthermore, the ReactomeFIViz (version 2018), a cytoscape plugin
(version 3.7.1), was used to find the network patterns of transcription factors extracted
from the STRING database. It was used to visualize hit pathways using manually laid-out
diagrams directly in Cytoscape, and investigate the functional relationships among genes.

2.5. Enrichment of TFs and microRNAs in Turquoise Module

The Enrichr webtool [14] was exploited to extract miRNA targeting the module genes.
Significantly (p < 0.05) enriched miRNAs were extracted. Additionally, the information
on protein–protein interactions (PPI) of transcription factors (TFs) was fetched from the
Enrichr webtool.
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3. Results

Differential expression analyses of 85 patients and 70 controls were performed on
the microarray datasets (Table 1). The number of genes 12,810, 1170, and 21,754 were
extracted from the expression datasets GSE29532, GSE62646, and GSE66360, respectively.
We found 11,037 common genes between GSE29532 and GSE66360 datasets, whereas
714 genes between GSE62646 and GSE66360. In addition, 425 genes were common between
GSE62646 and GSE29532 datasets. Finally, 335 annotated genes were common among all
three datasets (Figure 1A). Out of 335 annotated genes, 27 genes were significantly altered
(Fold change > 1.6; p-value < 0.05), revealing 22 upregulated and 05 downregulated genes
(Figure 1B; Supplementary Table S1).
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Some of the DEGs identified in the present analysis have been plotted in Figure 2 and 
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with the regulation of heart physiology in clinical studies, as well as in various animal 
models. 

Figure 1. The expression of genes among three different data sets. (A) Venn diagram of gene
expression in the three datasets: GSE29532 (blue), GSE62646 (red) and GSE66360 (green). (B) Analysis
of DEGs in datasets GSE62646, GSE29532, and GSE66360. The negative log10-transformed p-values of
the significant level were plotted against the log ratios (log2FC). The red, blue, and grey colors indicate
the upregulated, downregulated, and insignificant levels of gene expression. DEGs: Differentially
expressed genes; NS: Not significant.

Some of the DEGs identified in the present analysis have been plotted in Figure 2 and
presented in Table 2. The deregulated expression levels of these genes, such as ADOAR3,
BMP6, GPX3, VPS8, BRAF, and others (Supplementary Table S1) have been associated with
the regulation of heart physiology in clinical studies, as well as in various animal models.

Table 2. Genes identified from the microarray dataset may have an association with AMI.

S.No. Name of Gene Expression Level References

1. ADORA3 (Adenosine A3 receptor ADOR) Upregulated [15,16]
2. AQP1 (aquaporin 1) Upregulated [17]
3. BMP6 (Bone Morphogenetic Protein 5) Upregulated [18]

4. VPS8 (Vacuolar Protein Sorting-Associated
Protein 8 Homolog) Upregulated [19–21]

5. (GPx3) Glutathione Peroxidase 3 Upregulated [22,23]

6. BRAF (B-Raf Proto-Oncogene, a
serine/threonine kinase) Upregulated [24]
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(A) ADORA3, (B) BMP6 (C) GPX3 (D) VPS8, and (E) BRAF genes. The expression value (on the
y-axis) was calculated in the terms of Log2 scale.

3.1. Identification of Densely Interconnected Genes

An average degree of connectivity and independence of co-expressed modules is
highly impacted by the power value. Hence, to find the lowest power, a set of soft-
threshold power values from 1 to 100 were used for Scale Free Topology Model Fit and
Mean connectivity algorithms (Figure 3A,B). The network topology analysis showed the
lowest power of 91, for which the scale-free topology index reaches between 0.71 (red
line) and 0.60 (green line). Therefore, the threshold power value of 91 was picked up near
to the curve of the plot (Figure 3). With the optimal softPower parameter (β = 91), the
gene pair correlation coefficient was converted into the adjacent coefficient to calculate
the dissimilarity co-expression matrix. In brief, Pearson’s correlation coefficients were
calculated for genes in a pairwise manner, yielding a similarity matrix (Sij). The matrix was
transformed into an adjacency matrix (aij) using a power function by formula aij = Power
(Sij, β) ≡ |Sij| β. Subsequently, average linkage hierarchical clustering was performed
to identify modules of densely interconnected genes. Other assumptions were included:
(i) the average connectivity of the distance between two classes; and (ii) ≥30 genes in
each module, where a tree branch constituted one module and each leaf of the branch
represented a gene. Based on these assumptions, we finally obtained 04 gene modules,
namely blue, turquoise, brown, and grey (Figure 3C,D) having 67, 130, 64, and 70 genes,
respectively (Supplementary Table S2). Very few genes in the blue model, such as ADORA3,
AQP1, BMP5, F11R, were related to cardioprotective functions, while other genes did not
show any significant association with AMI. Similarly, few genes, including DRAM2, FDFT1,
AS3MT, VDAC3 in brown and grey modules, were found to be associated with AMI. For
further analysis, we have selected the turquoise color gene model that was found to be
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carrying the highest 130 genes among all modules showing the maximum number of
common genes.
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Figure 3. WGCNA network and module detection. Selection of the soft-thresholding powers.
(A) the scale-free fit index versus soft-thresholding power. (B) The second panel displayed the
mean connectivity versus soft-thresholding power. Power 91 was chosen, for which the fit index
curve flattens out upon reaching a high value (>0.7). (C) WGCNA-derived cluster dendrogram
and module assignment. Genes were clustered based on a dissimilarity measure (1-TOM). The
branches correspond to modules of highly interconnected groups of genes. Colors in the horizontal
bar represent the modules. Four modules with 335 annotated transcripts were detected with WGCNA.
(D) Meta-module identification and module-module relationship. The module network dendrogram
was constructed by clustering module eigengene distances. The horizontal line (blue and red line)
represents the threshold (0.2) used for defining the meta-modules. Thus, 4 distinct gene modules
were identified.

3.2. Key Pathway Identification Using Functional Analysis for Turquoise Module

The key pathways associated with enriched genes (n = 130) in the turquoise module
were identified using the STRING database. To construct the protein–protein interaction
(PPI) network, STRING was used to link proteins each other (not provided as input). A PPI
network of 140 nodes (genes) interacting with 116 edges showed significantly (enrichment
p-value = 0.003) higher interactions than expected (n = 89). Using the Reactome pathway
database, we extracted five significant (FDR < 0.05) pathways that were associated with the
AMI disease pathophysiology. The Notch signaling pathway (hsa04330) was found to be
highly associated (FDR = 2.02 × 10−5) with the DEGs. However, the highest numbers of
DEGs were identified in the metabolic pathways (hsa01100) (Supplementary Table S3).

Further, seven genes were found to be associated with the Notch signaling pathway
(hsa04330). Of these genes, the Notch-1, -3, and -4 genes synergistically activate the
other four genes, MAML-1,-2,-3, and RBPJ (Figure 4A). Five and six DEGs were found
to be involved with purine (hsa00230) and pyrimidine (hsa00240) metabolism pathways,
respectively (Supplementary Table S3). All DEGs other than PDE6D were the same in
both the purine and pyrimidine pathways (Figure 4B,C). In the purine metabolism, out of
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5 genes, 4 genes were strongly linked with each other. On the other hand, 5 genes were
found to be highly connected in the purine metabolism, using 2 linker genes (NFIC and
HRAS) that assist in connecting the 5th gene (PDE6D) to the network not present in the
pyrimidine metabolism pathway network. In total, 14 DEGs were strongly connected to
each other in the metabolic pathway (hsa01100) with the help of linker proteins. Apart
from this, 16 linker genes were also involved in constructing the protein–protein network
(Figure 4D).
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(—), predicted. Clusters were labelled with the transporter classes and/or activities represented by
the majority of proteins within that cluster.

3.3. Network of Genes and miRNAs of Turquoise Module

Because the expressions of genes are regulated by transcription factors (TFs) and
miRNAs, we subsequently analyzed the gene sets of the turquoise module. We found
15 significant miRNAs (p < 0.05; Figure 5) and STAT1 (signal transducer and activator
of transcription 1) as the most important TF (Figure 5, Supplementary Table S4). These
miRNAs and TFs have specific target genes, identified in the turquoise module. The
identified miRNAs included hsa-miR-103b, hsa-miR-1273c, hsa-miR-4718, hsa-miR-660,
hsa-miR-1468, and hsa-miR-487b, which regulate the expression of their target genes, such
as BMP6, GPX3, and VPS8. (Supplementary Table S5).
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4. Discussion

In the acute clinical setting, the detection of AMI depends on identifying necrotic car-
diomyocytes, using cardiac troponin (cTn) isoforms I and T or creatine kinase MB-fraction
assays along with ECG. However, annually, many patients with chest pain do not reveal
these signs during admission in hospital, and only a few of them develop AMI or sudden
cardiac death [25]. Hence, these conventional methods, including electrocardiogram (ECG),
coronary angiography, and enzymatic indicators such as creatine kinase (CK) and creatine
kinase-MB (CK-MB) isoenzyme, are associated with patient outcome in AMI [26]. How-
ever, more comprehensive assessment of the pathology underlying AMI makers is lacking,
therefore this study aimed to find more specific non-traditional, as well as potential genetic
biomarkers, that could identify individuals at high risk of AMI disease development and
can be treated before the onset of AMI disease. In addition, these biomarker genes can be a
potential therapeutic target for designing new drugs for AMI management. Furthermore,
this strategy could be cost-effective, however, further experimental study is required to
confirm the cost in comparison to other diagnostic methods for AMI.

Various microarray studies have been reported in AMI using bioinformatics ap-
proaches. In the microarray analysis of whole blood samples, Devaux et al. found three
biomarkers that might be important in early diagnosis of AMI [27], these being vascular
endothelial growth factor B (VEGFB), thrombospondin-1 (THBS1), and placental growth fac-
tor (PGF). Furthermore, while investigating three microarray datasets using WGCNA, GO
and KEGG pathway enrichment analysis, a new biomarker associated with inflammations
and immune response has been identified that may be involved in AMI development [28].
Later, through an integrated bioinformatics approach, Guo et al. reported 10 genes as
biomarkers, including interleukin-8 (CXCL8), TNF, N-formyl peptide receptor 2 (FPR2),
growth-regulated α protein (CXCL1), transcription factor AP-1 (JUN), interleukin-1 β

(IL1B), platelet basic protein (PPBP), matrix metalloproteinase-9 (MMP9), toll-like receptor
2 (TLR2), and high affinity immunoglobulin epsilon receptor subunit γ (FCER1G), all of
which are key genes in the pathogenesis of AMI [29]. Recently, several genes, including
AQP9, IL1B, and IL1RN, have also been reported to have a potential role in AMI patho-
genesis; conversely, FSTL3-miR3303p, IL1B/IL1RN, and ACSL4-miR5905p-IL1B as RNA
regulatory pathways might impact AMI progression [30].

We identified 335 common annotated DEGs in the 155 samples included in all three
datasets, which comprise 22 upregulated and 05 downregulated genes (p < 0.05) (Sup-
plementary Table S1). Many of these genes have already been reported in AMI patho-
genesis, which indicates the reliability of the integrated bioinformatics analysis results.
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Among upregulated genes, Bone Morphogenetic Protein 6 (BMP6), a VPS8 subunit of
the CORVET complex (VPS8), Glutathione Peroxidase 3 (GPX3), B-Raf Proto-Oncogene, a
serine/threonine kinase (BRAF), and an adenosine A3 receptor (ADORA3), may have an
association with AMI pathogenesis.

Previous studies have suggested that adenosine (Ado), an endogenous nucleoside, is
critical in protecting AMI [31]. The nucleoside Ado acts via four known receptor subtypes:
A1, A2A, A2B, and A3. Of that receptor, ADOR-A3 preserves ATP (short-term) and nor-
malizes intracellular Ca2+, thereby protecting cardiomyocytes from contractile dysfunction
and energy depletion [16]. In the present study, ADOR-A3 was found elevated in the AMI
patients group compared with the controls (Table S1), which demonstrated that the function
of heart muscles is to protect themselves from ischemic damage. Normal heart functioning
requires a regulated iron supply, which is tightly coupled to oxidative phosphorylation
and redox signaling [32]. Notably, the iron overload has been directly correlated with
cardiomyocytes apoptosis and, therefore, is a potential risk for AMI [33] with its poor
prognosis [34]. Interestingly, it has been demonstrated that systemic iron homeostasis may
be maintained through levels of BMP6 via Smad1/5/8 phosphorylation in the liver [35].
Since liver parameters might be pertinent factors to prognosticate the severity of stenosis,
the level of BMP6 seems to contribute to AMI pathophysiology [36]. This is also supported
by high levels of BMP6 in patients with advanced heart failure [37]. However, the involved
molecular mechanism underlying BMP6 levels in AMI pathophysiology warrants further
experimental study.

Besides metal ion balances, the protein homeostasis and signal transduction are main-
tained by the intracellular endolysosomal system. The VPS8 gene (along with VPS3) has
been reported to regulate integrin in recycling endosomes [19], which, in a dysfunctional
state, may cause several cardiac ailments and atherosclerosis [21]. In the patents filed for
investigating the risk of AMI, the VSP8 gene was included in the testing panel, which hints
at its role in disease pathogenesis (patent application number WO2015183601A1). However,
the role of VPS8 needs further investigation in AMI development and progression.

Glutathione Peroxidase 3 (GPx3) is a selenoprotein antioxidant enzyme synthesized
in the kidneys and transported to the systemic circulation [22]. The upregulated levels
of GPX-3 in the cardiac tissue of diabetic mice have been demonstrated to protect car-
diomyocytes against hyperglycemia-induced oxidative stress [38]. However, a reduced
level of GPX3 has been associated with aging and a further elevated risk of CVDs in the
elderly population [39]. The increasing incidence of CVDs has already been documented
in diabetic patients, in which lower GPx3 activity might act as an independent predictor
for carotid atherosclerosis [40]. The elevated levels of GPX3 in our study (Supplementary
Table S1) might demonstrate its protective role in cardiac injury. Thus, this study unveils
several common genes from three datasets which may act as cardioprotective biomarkers.

The development of AMI is a systemic biological process that traverses different func-
tional networks. Weighted gene co-expression network analysis (WGCNA) is a relatively
new tool to integrate and analyze several data sets and data types, such as gene expression
in various cancers, and other metabolic disorders. Therefore, we have utilized WGCNA to
identify the key modules and hub genes in three pooled gene expression datasets of AMI
using the R package, and have identified four modules by reducing the complexity of the
expression profiles. The highest numbers of genes were found in the turquoise module
(Table S2). KEGG pathway enrichment and network analysis of these genes revealed their
over-representation in the AMI-associated pathways. Specifically, pathway analysis of
this module revealed that Notch signaling pathways, metabolic pathways, and purine
and pyrimidine metabolism were the core gene sets (Supplementary Table S3). Notch
signaling is a crucial mechanism underlying the normal heart morphogenetic development
from embryo to adult stage [41]. In the adult heart, Notch signaling between mature
cardiomyocytes is absent under normal physiological conditions, but can be reinstated as a
protective response to its injury. The injury of cardiomyocytes induces the re-expression of
fetal genes, leading to increased Notch1 signaling [42]. The reactivation of Notch signaling
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is a cardioprotective step that helps to control the extent of ischemic damage, and promotes
neo-angiogenesis and revascularization of the affected cardiac tissue, thereby improving
overall cardiac function [43]. In the present study, the main pathway of the turquoise mod-
ule highlights Notch signaling (Supplementary Table S3, Figure 5A), in which the Notch1
gene exerts protective impact on ischemic myocardium; this is achieved via inhibiting
infarct size, cardiomyocyte apoptosis, and contractile impairment in cardiac muscles via
activation of PI3K/AKT pro-survival signaling [44]. Moreover, Notch signaling induces
the cell cycle re-entry of immature cardiomyocytes [45]. Thus, Notch signaling in WGCNA
results demonstrates another protective strategy towards normalization. Other studies have
also shown different pathways and molecules in pro-survival, as well as cardio-protective
roles during ischemia [46]. Furthermore, several impaired metabolic pathways have been
elucidated in AMI. Altered citric acid cycle, the metabolism of glycophospholipids, α-
linoleic acid, and sphingolipids are among the main dysregulated metabolic pathways in
AMI [47].

We found various enriched miRNAs associated with our gene set of the turquoise
module; these participate in AMI pathophysiology (Figure 5B) by binding to their target
genes and regulating their expression. Several miRNAs have been shown to modulate
various crucial pathways in cardiomyocytes and, therefore, they are potential targets for
therapeutic development and predictive biomarkers. For instance, high expression levels
of miR-660 elevate the generation of activated platelets, which indicates their crucial role
in thrombotic events mimicking the recurrent AMI conditions [48]. The miR-660 has also
been suggested to be involved in pathophysiological mechanisms that trigger recurrent
MI, heart failure, and was included in panel of predictive biomarkers of AMI [49,50]. The
miR-487b [51,52] and miR-1273c [53,54] have also been documented to possess prognostic
value in AMI.

Moreover, there has been a widespread consensus that co-expressing genes may
be co-regulated by common transcription factors (TFs); hence, we performed a gene set
enrichment analysis by using the Enrichr tool [53] for the turquoise gene module. We found
that STAT1 (signal transducer and activator of transcription 1) was the most significantly
enriched TF (Supplementary Table S4). STAT1 participates in cardiomyocyte apoptosis by
activating caspase-1 in response to IFN-γ during ischemia and reperfusion episodes [54].
Consequently, the deficiency of STAT1 could impart rescuing effects on AMI in terms of
smaller infarcts, and increased levels of autophagy [55,56]. Recently, STAT1 has also been
reported to have higher connectivity degrees (>20) at PPI network analysis in AMI [56]. In
line with our studies, this study also identified STAT1 as a central TF that targets several
crucial genes, demonstrating its potential in AMI pathology (Figure 5A).

5. Conclusions

In the combined microarray analysis of three datasets, a large number of biological
samples from all the microarray chips capture the same information as the standard one-
sample–one-chip approach. This process saves time, cost, manpower, and improves the
signals. The pooled microarray analysis in the current study identified several crucial DEGs
sets and miRNAs, which may be potential biomarkers in the detection and prevention
of AMI. However, these results needs to be validated by experimental studies, as well
the predictive values of these biomarkers in terms of their specificity, sensitivity and
cost effectiveness. Importantly, we found that the Notch signaling pathway, associated
with cardioprotection, could be helpful in rescuing cardiomyocytes from injury in AMI.
STAT1 and miRNA (miR-660) were found to modulate the AMI pathophysiology, and thus
highlight potential new targets for therapeutic development.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/genes13122321/s1, Table S1: List of Differentially Expressed
Genes (DEGs); Table S2: List of identified genes in different modules; Table S3: Enriched pathways in
turquoise module; Table S4: List of identified TFs targeting genes of turquoise module; Table S5: List
of significant miRNAs found targetting genes of turquoise module by Enrichr.

https://www.mdpi.com/article/10.3390/genes13122321/s1
https://www.mdpi.com/article/10.3390/genes13122321/s1


Genes 2022, 13, 2321 11 of 13

Author Contributions: Data curation, V.S.; Formal analysis, R.D. and D.G.; Investigation, H.N.S.;
Methodology, S.K., C.-M.S., L.-W.T., V.S. and H.N.S.; Project administration, V.S.; Supervision, H.N.S.;
Validation, S.K.; Writing—original draft, S.K., V.S. and C.-M.S.; Writing—review and editing, C.-M.S.,
L.-W.T., R.D., D.G., T.C., N.S., S.K., A.V.S. and H.N.S. All authors have read and agreed to the
published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: This article does not contain any studies involving human
or animal participants.

Informed Consent Statement: This article does not contain any studies involving human or animal
participants. Therefore, this is not required.

Data Availability Statement: Not applicable.

Acknowledgments: All authors acknowledge the Sharda University-UP, AIIMS-New Delhi and MTA
Infotech-Varanasi for providing all resources required for this study.

Conflicts of Interest: The authors declare that there is no conflict of interest.

References
1. Cardiovascular Diseases. Available online: https://www.who.int/westernpacific/health-topics/cardiovascular-diseases

(accessed on 6 March 2022).
2. Mechanic, O.J.; Gavin, M.; Grossman, S.A. Acute Myocardial Infarction. In StatPearls; StatPearls Publishing: Treasure Island, FL,

USA, 2022.
3. Bajaj, A.; Sethi, A.; Rathor, P.; Suppogu, N.; Sethi, A. Acute Complications of Myocardial Infarction in the Current Era: Diagnosis

and Management. J. Investig. Med. 2015, 63, 844–855. [CrossRef] [PubMed]
4. Zhu, J.; Su, X.; Li, G.; Chen, J.; Tang, B.; Yang, Y. The Incidence of Acute Myocardial Infarction in Relation to Overweight and

Obesity: A Meta-Analysis. Arch. Med. Sci. 2014, 10, 855–862. [CrossRef] [PubMed]
5. Tavakol, M.; Ashraf, S.; Brener, S.J. Risks and Complications of Coronary Angiography: A Comprehensive Review. Glob. J. Health

Sci. 2012, 4, 65–93. [CrossRef] [PubMed]
6. Gorenoi, V.; Schönermark, M.P.; Hagen, A. CT Coronary Angiography vs. Invasive Coronary Angiography in CHD. GMS Health

Technol. Assess. 2012, 8, Doc02. [CrossRef] [PubMed]
7. Lu, C.-Y.; Lu, P.-C.; Chen, P.-C. Utilization Trends in Traditional Chinese Medicine for Acute Myocardial Infarction. J. Ethnophar-

macol. 2019, 241, 112010. [CrossRef]
8. Oldgren, J.; Wernroth, L.; Stenestrand, U. RIKS-HIA registry, Sweden. Fibrinolytic Therapy and Bleeding Complications: Risk

Predictors from RIKS-HIA. Heart 2010, 96, 1451–1457. [CrossRef]
9. Aversano, T.; Aversano, L.T.; Passamani, E.; Knatterud, G.L.; Terrin, M.L.; Williams, D.O.; Forman, S.A. Atlantic Cardiovascular

Patient Outcomes Research Team (C-PORT). Thrombolytic Therapy vs. Primary Percutaneous Coronary Intervention for
Myocardial Infarction in Patients Presenting to Hospitals without On-Site Cardiac Surgery: A Randomized Controlled Trial.
JAMA 2002, 287, 1943–1951. [CrossRef]

10. Kiliszek, M.; Burzynska, B.; Michalak, M.; Gora, M.; Winkler, A.; Maciejak, A.; Leszczynska, A.; Gajda, E.; Kochanowski, J.;
Opolski, G. Altered Gene Expression Pattern in Peripheral Blood Mononuclear Cells in Patients with Acute Myocardial Infarction.
PLoS ONE 2012, 7, e50054. [CrossRef]

11. Vanhaverbeke, M.; Vausort, M.; Veltman, D.; Zhang, L.; Wu, M.; Laenen, G.; Gillijns, H.; Moreau, Y.; Bartunek, J.;
Van De Werf, F.; et al. Peripheral Blood RNA Levels of QSOX1 and PLBD1 Are New Independent Predictors of Left Ven-
tricular Dysfunction After Acute Myocardial Infarction. Circ. Genom. Precis. Med. 2019, 12, e002656. [CrossRef]

12. Niu, X.; Zhang, J.; Zhang, L.; Hou, Y.; Pu, S.; Chu, A.; Bai, M.; Zhang, Z. Weighted Gene Co-Expression Network Analysis
Identifies Critical Genes in the Development of Heart Failure After Acute Myocardial Infarction. Front. Genet. 2019, 10, 1214.
[CrossRef]

13. Langfelder, P.; Horvath, S. WGCNA: An R Package for Weighted Correlation Network Analysis. BMC Bioinform. 2008, 9, 559.
[CrossRef]

14. Chen, E.Y.; Tan, C.M.; Kou, Y.; Duan, Q.; Wang, Z.; Meirelles, G.V.; Clark, N.R.; Ma’ayan, A. Enrichr: Interactive and Collaborative
HTML5 Gene List Enrichment Analysis Tool. BMC Bioinform. 2013, 14, 128. [CrossRef]

15. McIntosh, V.J.; Lasley, R.D. Adenosine Receptor-Mediated Cardioprotection: Are All 4 Subtypes Required or Redundant? J.
Cardiovasc. Pharmacol. Ther. 2012, 17, 21–33. [CrossRef]

16. Liu, G.S.; Richards, S.C.; Olsson, R.A.; Mullane, K.; Walsh, R.S.; Downey, J.M. Evidence That the Adenosine A3 Receptor May
Mediate the Protection Afforded by Preconditioning in the Isolated Rabbit Heart. Cardiovasc. Res. 1994, 28, 1057–1061. [CrossRef]

17. Li, L.; Weng, Z.; Yao, C.; Song, Y.; Ma, T. Aquaporin-1 Deficiency Protects against Myocardial Infarction by Reducing both Edema
and Apoptosis in Mice. Sci. Rep. 2015, 5, 13807. [CrossRef]

https://www.who.int/westernpacific/health-topics/cardiovascular-diseases
http://doi.org/10.1097/JIM.0000000000000232
http://www.ncbi.nlm.nih.gov/pubmed/26295381
http://doi.org/10.5114/aoms.2014.46206
http://www.ncbi.nlm.nih.gov/pubmed/25395935
http://doi.org/10.5539/gjhs.v4n1p65
http://www.ncbi.nlm.nih.gov/pubmed/22980117
http://doi.org/10.3205/hta000100
http://www.ncbi.nlm.nih.gov/pubmed/22536300
http://doi.org/10.1016/j.jep.2019.112010
http://doi.org/10.1136/hrt.2009.188243
http://doi.org/10.1001/jama.287.15.1943
http://doi.org/10.1371/journal.pone.0050054
http://doi.org/10.1161/CIRCGEN.119.002656
http://doi.org/10.3389/fgene.2019.01214
http://doi.org/10.1186/1471-2105-9-559
http://doi.org/10.1186/1471-2105-14-128
http://doi.org/10.1177/1074248410396877
http://doi.org/10.1093/cvr/28.7.1057
http://doi.org/10.1038/srep13807


Genes 2022, 13, 2321 12 of 13

18. Jiao, M.; Li, J.; Zhang, Q.; Xu, X.; Li, R.; Dong, P.; Meng, C.; Li, Y.; Wang, L.; Qi, W.; et al. Identification of Four Potential
Biomarkers Associated with Coronary Artery Disease in Non-Diabetic Patients by Gene Co-Expression Network Analysis. Front.
Genet. 2020, 11, 542. [CrossRef]

19. Perini, E.D.; Schaefer, R.; Stöter, M.; Kalaidzidis, Y.; Zerial, M. Mammalian CORVET Is Required for Fusion and Conversion of
Distinct Early Endosome Subpopulations. Traffic 2014, 15, 1366–1389. [CrossRef]

20. Jonker, C.T.H.; Galmes, R.; Veenendaal, T.; Ten Brink, C.; van der Welle, R.E.N.; Liv, N.; de Rooij, J.; Peden, A.A.; van der Sluijs, P.;
Margadant, C.; et al. Vps3 and Vps8 Control Integrin Trafficking from Early to Recycling Endosomes and Regulate Integrin-
Dependent Functions. Nat. Commun. 2018, 9, 792. [CrossRef]

21. Boya, P. Lysosomal Function and Dysfunction: Mechanism and Disease. Antioxid. Redox Signal. 2012, 17, 766–774. [CrossRef]
22. Avissar, N.; Ornt, D.B.; Yagil, Y.; Horowitz, S.; Watkins, R.H.; Kerl, E.A.; Takahashi, K.; Palmer, I.S.; Cohen, H.J. Human Kidney

Proximal Tubules Are the Main Source of Plasma Glutathione Peroxidase. Am. J. Physiol. 1994, 266, C367–C375. [CrossRef]
23. Jin, R.C.; Mahoney, C.E.; Coleman Anderson, L.; Ottaviano, F.; Croce, K.; Leopold, J.A.; Zhang, Y.-Y.; Tang, S.-S.; Handy, D.E.;

Loscalzo, J. Glutathione Peroxidase-3 Deficiency Promotes Platelet-Dependent Thrombosis in Vivo. Circulation 2011, 123,
1963–1973. [CrossRef] [PubMed]

24. Clerk, A.; Meijles, D.N.; Hardyman, M.A.; Fuller, S.J.; Chothani, S.P.; Cull, J.J.; Cooper, S.T.E.; Alharbi, H.O.; Vanezis, K.;
Felkin, L.E.; et al. Cardiomyocyte BRAF and Type 1 RAF Inhibitors Promote Cardiomyocyte and Cardiac Hypertrophy in Mice in
Vivo. Biochem. J. 2022, 479, 401–424. [CrossRef] [PubMed]

25. Muse, E.D.; Kramer, E.R.; Wang, H.; Barrett, P.; Parviz, F.; Novotny, M.A.; Lasken, R.S.; Jatkoe, T.A.; Oliveira, G.; Peng, H.; et al. A
Whole Blood Molecular Signature for Acute Myocardial Infarction. Sci. Rep. 2017, 7, 12268. [CrossRef]

26. Saenger, A.K.; Jaffe, A.S. Requiem for a Heavyweight: The Demise of Creatine Kinase-MB. Circulation 2008, 118, 2200–2206.
[CrossRef]

27. Devaux, Y.; Azuaje, F.; Vausort, M.; Yvorra, C.; Wagner, D.R. Integrated Protein Network and Microarray Analysis to Identify
Potential Biomarkers after Myocardial Infarction. Funct. Integr. Genom. 2010, 10, 329–337. [CrossRef]

28. Liu, Z.; Ma, C.; Gu, J.; Yu, M. Potential Biomarkers of Acute Myocardial Infarction Based on Weighted Gene Co-Expression
Network Analysis. BioMedical Eng. OnLine 2019, 18, 9. [CrossRef]

29. Guo, S.; Wu, J.; Zhou, W.; Liu, X.; Liu, Y.; Zhang, J.; Jia, S.; Li, J.; Wang, H. Identification and Analysis of Key Genes Associated
with Acute Myocardial Infarction by Integrated Bioinformatics Methods. Medicine 2021, 100, e25553. [CrossRef]

30. Shao, G. Integrated RNA Gene Expression Analysis Identified Potential Immune-Related Biomarkers and RNA Regulatory
Pathways of Acute Myocardial Infarction. PLoS ONE 2022, 17, e0264362. [CrossRef]

31. Peart, J.N.; Headrick, J.P. Adenosinergic Cardioprotection: Multiple Receptors, Multiple Pathways. Pharmacol. Ther. 2007, 114,
208–221. [CrossRef]

32. Burgoyne, J.R.; Mongue-Din, H.; Eaton, P.; Shah, A.M. Redox Signaling in Cardiac Physiology and Pathology. Circ. Res. 2012, 111,
1091–1106. [CrossRef]

33. Salonen, J.T.; Ylä-Herttuala, S.; Yamamoto, R.; Butler, S.; Korpela, H.; Salonen, R.; Nyyssönen, K.; Palinski, W.; Witztum, J.L.
Autoantibody against Oxidised LDL and Progression of Carotid Atherosclerosis. Lancet 1992, 339, 883–887. [CrossRef]

34. Duarte, T.; Gonçalves, S.; Sá, C.; Rodrigues, R.; Marinheiro, R.; Fonseca, M.; Seixo, F.; Caria, R. Prognostic Impact of Iron
Metabolism Changes in Patients with Acute Coronary Syndrome. Arq. Bras. Cardiol. 2018, 111, 144–150. [CrossRef]

35. Kautz, L.; Meynard, D.; Monnier, A.; Darnaud, V.; Bouvet, R.; Wang, R.-H.; Deng, C.; Vaulont, S.; Mosser, J.; Coppin, H.; et al. Iron
Regulates Phosphorylation of Smad1/5/8 and Gene Expression of Bmp6, Smad7, Id1, and Atoh8 in the Mouse Liver. Blood 2008,
112, 1503–1509. [CrossRef]

36. Baars, T.; Neumann, U.; Jinawy, M.; Hendricks, S.; Sowa, J.-P.; Kälsch, J.; Riemenschneider, M.; Gerken, G.; Erbel, R.;
Heider, D.; et al. In Acute Myocardial Infarction Liver Parameters Are Associated with Stenosis Diameter. Medicine 2016,
95, e2807. [CrossRef]
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