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Abstract: Aggregate measurement and analysis are critical for civil engineering. Multiple entropy
thresholding (MET) is inefficient, and the accuracy of related optimization strategies is unsatisfactory,
which results in the segmented aggregate images lacking many surface roughness and aggregate
edge features. Thus, this research proposes an autonomous segmentation model (i.e., PERSSA-
MET) that optimizes MET based on the chaotic combination strategy sparrow search algorithm
(SSA). First, aiming at the characteristics of the many extreme values of an aggregate image, a novel
expansion parameter and range-control elite mutation strategies were studied and combined with
piecewise mapping, named PERSSA, to improve the SSA’s accuracy. This was compared with seven
optimization algorithms using benchmark function experiments and a Wilcoxon rank-sum test,
and the PERSSA’s superiority was proved with the tests. Then, PERSSA was utilized to swiftly
determine MET thresholds, and the METs were the Renyi entropy, symmetric cross entropy, and
Kapur entropy. In the segmentation experiments of the aggregate images, it was proven that PERSSA-
MET effectively segmented more details. Compared with SSA-MET, it achieved 28.90%, 12.55%, and
6.00% improvements in the peak signal-to-noise ratio (PSNR), the structural similarity (SSIM), and
the feature similarity (FSIM). Finally, a new parameter, overall merit weight proportion (OMWP), is
suggested to calculate this segmentation method’s superiority over all other algorithms. The results
show that PERSSA-Renyi entropy outperforms well, and it can effectively keep the aggregate surface
texture features and attain a balance between accuracy and speed.

Keywords: aggregate image; multiple entropy thresholding; sparrow search algorithm; chaotic map

1. Introduction

Aggregate particles are widely applied in civil engineering such as road traffic, railway,
and housing construction. Natural aggregates, such as rough gravels and smooth pebbles,
are both irregular in shape. The geometric characteristics of aggregates, such as the size,
shape, and roughness, are related to the aggregate quality evaluation [1,2], and it is crucial
to detect them accurately and effectively. Image processing techniques are useful for aiding
aggregate detection. Since the aggregate particles are mostly obtained from a muck pile,
they are often touching and overlap each other, and their surfaces are very rough. Hence,
the aggregate images are usually very noisy, and the image processing for aggregates is
harder than for other particles or grains.

The multi-class segmentation algorithm is a popular image processing algorithm, and
it can automatically divide the multi-class homogeneous regions based on the features
such as discontinuity, similarity in color or gray scale, and texture [3]. For aggregate image
segmentation, thresholding, region growing, clustering, and semantic segmentation are the
most commonly utilized algorithms. Among them, the watershed [4], region growing [5],
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and clustering algorithms [6] are typically effective for segmenting aggregate images with
clear edges, but the gray-scale value transition from the aggregate surfaces to the edges
is gentle. When the aggregate particles overlap or touch each other, these algorithms
suffer from a severe under-segmentation problem, resulting in large particle sizes and
gray-scale fusion, which loses surface roughness features. In recent years, semantic seg-
mentation [7] has achieved impressive success in aggregate particle size detection, but the
parallel segmentation for images with surface textures is still challenging. Thresholding is
a straightforward algorithm, and the histogram peaks or valleys in an image are the basic
features. The peaks are the most informative features in this gray-scale value range in the
image, and the valleys are the least informative features. The number of peaks and troughs
in a general image is not fixed, and the valleys can be used as the optimal segmentation
thresholds [8]. Thresholding segmentation is simple and robust. It divides pixels into a
limited number of classes based on intensity values and a set of thresholds, and it is suitable
for a variety of noisy aggregate images.

Dual thresholds [9] can be employed to separate rough or smooth edges and surface
textures in aggregate images. Furthermore, compared to global thresholding, multiple
thresholding (MT) can easily separate the touching aggregates while maintaining the
particle edges, surface roughness, and other details [10]. MT is unaffected by pixels in the
neighborhood with similar gray scales. Since the gray scales of aggregate images mostly
change gently, MT has better segmentation accuracy and robustness. The algorithm’s
success is dependent on determining the proper thresholds. Adaptive MT, such as Otsu [11]
and multiple entropy thresholding (MET) [12,13], can automatically determine thresholds.
MET measures the amount of image information using entropy as the standard and solves
multiple thresholds that can cause the amount of information to reach the extreme value to
divide the histogram, resulting in image segmentation. Common entropy includes Renyi
entropy [14], symmetric cross entropy [15], Kapur entropy [16], Tsallis entropy, exponential
entropy, etc. Kapur entropy is also called maximum entropy. Renyi entropy and Tsallis
entropy are extensions of Shannon entropy. They are widely utilized in object recognition
and image segmentation. However, they all have the same issue that the operation time
grows exponentially as the number of thresholds increases.

An optimization algorithm can assist the above MET to swiftly determine the thresh-
olds and lower the time significantly [17–19]. The existing optimization algorithms in-
clude particle swarm optimization (PSO) [20], cuckoo search (CS) [21], the bat Algo-
rithm (BAT) [22], gray wolf optimization (GWO) [23], the whale optimization algorithm
(WOA) [24], the mayfly algorithm (MA) [25], the sparrow search algorithm (SSA) [26],
etc. Their accuracy, speed, and stability are all affected by the population distribution and
search paths [19]. For example, the search path of WOA is a spiral, causing the whales to
move quickly and WOA to be fast. To prevent the sparrows from repeatedly searching
the same position, the population locations of SSA are saved in a matrix. SSA divides
the population into producers, scroungers, and vigilantes. These three types of sparrows
simultaneously search for the optimal solution, which is quite efficient, and each sparrow
has two update mechanisms, making SSA quite robust.

However, these optimization algorithms have two drawbacks, which are an incomplete
global search and being trapped in local areas, resulting in a reduction in the algorithms’
accuracy. Laskar et al. [27] overcame the local stagnation by combining WOA and PSO
and achieved a breakthrough in the accuracy, but the computational complexity was
massively increased. Kumar et al. [28] adopted a chaotic map to make the global search
more comprehensive. Later, Chen et al. [29] offered Levy flight to jump out of the local
area on its basis. Although the accuracy was improved, it consumed a lot of time. At
present, the algorithm with the best balance of accuracy, speed, and stability is SSA [26],
which has proven to be a good parameter selector [30–32] in the application of network
configuration [33], route planning [34], and micro-grid clustering [35]. Thus, this paper
optimizes MET based on SSA and corrects the two flaws that were mentioned.
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In this study, three strategies are proposed for enhancing the accuracy and stability
of SSA. First, piecewise mapping was employed to make the sparrow distribution more
uniform. Second, an expansion parameter was studied to increase the search range, which
improves the accuracy without adding to the iteration time. Third, a range-control elite
mutation strategy was put forward to ensure that the stationary sparrow leaps out of the
local area, with a chance to find better values before SSA. The new algorithm is called the
PERSSA. PERSSA was utilized to optimize three METs applied to aggregate images. They
were Renyi entropy, symmetric cross entropy, and Kapur entropy. This model is called
PERSSA-MET.

In short, the main contributions of this paper are listed as follows:
1. The PERSSA-MET is proposed for the segmentation of aggregate images, which can

effectively preserve the surface roughness and edge features of aggregates and achieve the
best balance between accuracy and speed.

2. Aiming at the characteristic that the aggregate image histogram changes smoothly
but has many extreme points, a novel expansion parameter and range-control elite mutation
strategies were studied, which can effectively jump out of the local optimum. Combining
them with piecewise mapping improved the optimization accuracy and stability of SSA.
This algorithm is called PERSSA.

3. A comparative experiment was carried out on three popular METs, which were
Renyi entropy, symmetric cross entropy, and Kapur entropy, and the results show that
PERSSA-Renyi Entropy is better for aggregate image segmentation.

4. To comprehensively evaluate all methods, an overall merit weight proportion
(OMWP) was created to quantify the dominance of the algorithm in all algorithms, which
combined precision, stability, and speed.

The remainder of this paper is structured as follows: Section 2 explains the basics
of MET and SSA. Section 3 describes PERSSA-MET in detail, including PERSSA and its
process for optimizing MET. Section 4 verifies the performance and effectiveness of PERSSA
and PERSSA-MET through benchmark function tests and segmentation experiments on
various aggregate images. Finally, Section 5 concludes the study and looks forward to
future work.

2. Related Works

In this section, the threshold determination methods of three METs are first introduced,
and SSA and its current development are described.

2.1. MET

Multiple entropy thresholding (MET) utilizes a histogram to classify pixels into cate-
gories based on gray scale and assigns the nearest gray scale to each category. Common
METs are Renyi entropy [14], symmetric cross entropy [15], and Kapur entropy [16]. Each
MET determines the information differently.

When the number of thresholds is K, the histogram is divided into K + 1 regions.
The information of these regions is H1, H2, · · · , HK+1, and the total information is E =
H1 + H2 + · · ·+ HK+1.

The information amounts for Renyi entropy, symmetric cross entropy, and Kapur
entropy in the k-th region can be expressed as Equations (1)–(3):

HK−Renyi(l) =
1

1− α
ln(∑lK

i=lK−1
(

Pi
ωK(l)

)
α

) (1)

HK−Symmetric Cross(l) = ∑lK
i=lK−1

hi(i·ln
(

i
uK(l)

)
+ uK(l)·ln

(
uK(l)

i

)
) (2)

HK−Kapur(l) = −∑lK
i=lK−1

Pi
ωK(l)

ln
(

Pi
ωK(l)

)
(3)
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where [lK−1, lK] is the gray-scale range of the K-th region, 0 ≤ lK−1 ≤ lK ≤ L, L is the
gray scale of the image, hi is the frequency with grey-scale is i, uK is the mean value of the
gray-scale of the region, Pi is the probability that the gray scale is i, Pi ∈ [0, 1], ωK is the sum
of the probabilities within the region, ωK = ∑lK

i=lK−1
Pi, α ∈ [0, 1) is a tunable parameter,

and we take α = 0.5.
To calculate the lbest(1, 2, · · · , K) that makes E reach its extremum values, which

are the final segmentation thresholds, the functions corresponding to the three METs are
presented in Equations (4)–(6):

lbest−Renyi(1, 2, . . . , k) = argmax{E} (4)

lbest−Symmetric Cross(1, 2, . . . , k) = argmin(E
}

(5)

lbest−Kapur(1, 2, . . . , k) = argmax{E} (6)

These three METs have varied segmentation effects on the objects or histograms
of distinct features [3,36], and Table 1 illustrates their differences in aggregate image
segmentation. Since there are too many particles for an intuitive review, only a part of the
aggregate image, its histogram, and its segmentation results at K = 2 are shown.

Table 1. The segmentation results of aggregate images by three METs. The blue box is the area
where the segmentation results are significantly different, and the red arrow is the extreme value in
the histogram.

Original Image Histogram Renyi Entropy Symmetric Cross
Entropy Kapur Entropy
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Renyi entropy and Kapur entropy detected more bright details for black aggregates,
whereas the symmetric cross entropy recognized more shadow details, but its emphasis
on detecting white aggregates was the inverse. The main reason for this difference is the
changes in the histogram caused by the color, texture, and target ratio of the aggregate image.

The histogram of the aggregate image normally fluctuates smoothly at the peaks and
valleys, but there are several extreme points, which are the aggregate characteristics. They
are close, but if the thresholds differ only by one gray-scale value, the segmentation results
may be quite dissimilar. Therefore, the accuracy and stability of the segmented images are
directly influenced by the performance of the optimization algorithm.

2.2. SSA

The sparrow search algorithm (SSA) [26] is an optimization algorithm that mimics
sparrow foraging and anti-predation behavior. The sparrow position xi,j affects its fitness
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value f
(

xi,j
)
, where i ∈ [1, n] is the i-th in n sparrows and j ∈ [1, d] is the j-th in the

d-dimensional search space.
During foraging, the sparrows are separated into producers and scroungers. The

producers have better fitness values, and they provide the foraging area and direction. The
producers update their positions according to Equation (7):

xt+1
i,j =

xt
i,j·exp

(
− i

α·Tmax

)
R2 < ST

xt
i,j + Q·L R2 ≥ ST

(7)

where t is the current number of iterations, Tmax is the maximum number of iterations,
α ∈ (0, 1] is a random number, R2 ∈ (0, 1] is the alarm value, ST ∈ [0.5, 1] is the safe
value, Q is a random number that obeys a normal distribution, and L is the all-ones matrix
of order 1× d.

The scroungers follow the producers to obtain food, but some extremely hungry
scroungers will convert their foraging paths. The scroungers update their positions accord-
ing to Equation (8):

xt+1
i,j =


xt+1

best +
∣∣∣xt

i,j − xt+1
best

∣∣∣·A+·L i ≤ n/2

Q·exp
(

xt
worst−xt

i,j
i2

)
i > n/2

(8)

where xbest is the optimal position, xworst is the worst position, A is the matrix of order
1× d, its element value is ±1, and A+ = AT(AAT)−1.

During anti-predation, the vigilantes are randomly generated. The sparrows on the
edge quickly move to the safe location, and the remaining sparrows approach each other.
The vigilantes update their positions according to Equation (9):

xt+1
i,j =


xt

best + β·
∣∣∣xt

i,j − xt
best

∣∣∣ fi > fbest

xt
i,j + K·

∣∣∣xt
i,j−xt

worst

∣∣∣
( fi− fωorst)+ε

fi = fbest

(9)

where β is the step size control parameter, which obeys the standard normal distribution;
K ∈ [−1, 1] controls the sparrows’ movement direction; ε is the smallest constant; fbest is
the best fitness value; and fωorst is the worst fitness value.

Figure 1 shows the optimization principle of SSA. The optimization accuracy and
speed of SSA are directly related to the sparrows’ position distribution, search path, and
local optimal solution. Some scholars have proposed evolutionary strategies for these
three points. Lv et al. [37] introduced the bird swarm algorithm in the SSA’s producers,
and the precision increased, but the speed decreased. Chen et al. [29] combined a chaotic
map, dynamic weight, and Levy flight with SSA (CDLSSA) to achieve better optimization
accuracy and stability, but the segmentation time was lengthened. To ensure speed, Liu
et al. [34] proposed to utilize a chaotic map and the adaptive inertia weight optimization
SSA (CASSA), but the accuracy improvement was minor. Currently, there is no strategy
that can achieve the best balance of segmentation accuracy and convergence speed for
the SSA.
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Figure 1. SSA optimization schematic.

3. Proposed Method

In this section, the proposed PERSSA is first introduced, and the specific steps of
PERSSA to optimize MET for segmented aggregate images are described.

3.1. PERSSA

PERSSA combines piecewise mapping with the expansion parameter and range-
control elite mutation proposed in this paper for the first time, which can effectively jump
out of the local optimum and improve the accuracy and stability of the SSA without
reducing the convergence speed.

3.1.1. Piecewise Mapping

In the SSA, the sparrows’ initial positions are random, and clustered sparrows are
terrible for a global search. Therefore, it is recommended to introduce a chaotic map in the
population initialization process to increase the randomness and uniformity of the initial
position. Varol et al. [38] compared ten chaotic maps, such as the circle, logistic, piecewise,
singer, and tent mapping. Piecewise mapping is the most accurate and stable among them,
and it can quickly disturb the population without increasing the optimization time. It can
be used to perturb the sparrows’ initial positions. Piecewise mapping can be described by
Equation (10):

x(k + 1) =


x(k)

P 0 ≤ x < P
x(k)−P
0.5−P P ≤ x < 0.5

1−P−x(k)
0.5−P 0.5 ≤ x < 1− P
1−x(k)

P 1− P ≤ x < 1

(10)

where P ∈ (0, 1) is the control parameter and P 6= 0.5. Its value affects the randomness
and uniformity of the sequence. Figure 2 is the chaotic sequence of P = 0.4, 0.6, 0.8 when
x(1) = 0.1.
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It can be seen that the Piecewise mapping has the strong randomness. The closer the
P is to 1, the more non-uniform the sequence. The chaotic sequence is most uniform when
P = 0.4.

The steps for piecewise mapping to perturb the sparrows’ initial positions are as fol-
lows:

(1) Generate values: xi,j(0), (i = 1, 2, · · · , n; j = (1, 2, · · · , d)) randomly in [0, 1].
(2) Set the P value and generate the chaotic sequence through Equation (10). We take

P = 0.4.
(3) Convert the xi,j range from [0, 1] to [lb, ub]. x′i,j = lb + xi,j·(ub− lb), where ub and

lb are the upper bound and lower bound of the search space, respectively. Take x′i,j as the
sparrows’ initial positions.

3.1.2. Expansion Parameter

The producers are affected by the function y = e−x. As the number of iterations
increases, the search scope narrows rapidly. This reduces the global search capability, and
it is easy to fall into a local region, reducing the optimization precision. Thus, an expansion
parameter, σ, is proposed to widen the search range. At an early stage of the iteration
t < Tmax/2, σ is larger and spreads the sparrows as far as possible. At a late stage of the
iteration t ≥ Tmax/2, the sparrows are concentrated. Therefore, σ is smaller. The expansion
parameter can be expressed by Equation (11):

σ =

{
σmax − 1+cos(tπ/Tmax)

2 t < Tmax/2
σmin +

1−cos(tπ/Tmax)
2 t ≥ Tmax/2

(11)

where σmax is the parameter at the beginning of the iteration and σmin is the parameter at
the end of the iteration. After experiments, the expansion effect is the best when σmax is
close to 1 and σmin is close to −1. We take σmax = 0.99 and σmin = −0.99.

By adding Equation (11) into the producers’ location update, Equation (7) becomes
Equation (12).

xt+1
i,j =

xt
i,j·exp

(
− i

σ·α·Tmax

)
R2 < ST

xt
i,j + Q·L R2 ≥ ST

(12)

3.1.3. Range-Control Elite Mutation

The sparrows fall into many locally optimal solutions in the search. If the individual
cannot escape in time, the population is excessively consumed, resulting in better solutions
being missed. The existing strategies, such as Cauchy–Gaussian mutation, Levy flight, and
random walk, do not ensure that the sparrow leaves the neighborhood, and some of them
take more time.

Hence, the range-control elite mutation strategy is studied, which can be implemented
quickly while improving the precision of the solution. Each iteration selects an elite sparrow
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(xbest) with the highest fitness value ( fbest) to jump out of the local region and regulates
the distance it moves. The sparrows are still scattered when xbest is far from xworst with
the lowest fitness value so that xbest is randomly mutated within (lb, ub). Conversely,
the sparrows are assembled when xbest and xworst are closer together, controlling xbest
to mutate outside the rectangular area of xbest − xworst and inside the region of (lb, ub).
This is performed to ensure that the elite sparrow (xbest) continues to optimize globally
while avoiding the local optimum. The elite sparrow updates its position according to
Equation (13).

x′best =

{
(ub− lb)·randn + lb |xbest − xworst| > ub−lb

2

2xbest − xworst + ((ub− lb)·randn + lb)·randn |xbest − xworst| ≤ ub−lb
2

(13)

This strategy can greatly increase the probability of the sparrow jumping out of
the local optimal solution, and it does not consume iteration time compared with the
traditional strategies.

3.2. PERSSA-MET

PERSSA can effectively address the issues of low MET exhaustive method efficiency
and the low accuracy and stability of related improvement strategies. In the image seg-
mentation, PERSSA employs MET as the objective function and the image histogram as
the search space. PERSSA distributes sparrows globally and converges quickly to allow
the function to achieve an extreme value, and the matching sparrow positions are the
segmentation thresholds. This model is called PERSSA-MET. The related processes for
segmenting aggregate images with PERSSA-MET are illustrated in Figure 3.
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The red words in Figure 3 represent the innovation points of the research. The detailed
PERSSA process is shown in the dashed box, which is divided into three stages: (1) param-
eter initialization, including the parameters of PERSSA, parameters extended from MET,
and the population’s initial position, x(0), after the chaotic mapping; (2) position update:
the sparrows are divided based on the fitness values, and three equations are applied to
update the positions of the three kinds sparrows; and (3) iterative and mutation: the greedy
algorithm keeps the better solutions at each update, and each iteration selects the global
optimal sparrow to perform the range-control elite mutation. Until the last iteration, the
population converges, the final output f (xbest, d) is employed to assess the benefits and the
drawbacks of the optimization algorithm, and xbest, d is used as the threshold to segment
the aggregate image.

In Figure 3, PD is the proportion of producers and SD is the proportion of vigilantes.

4. Experiments and Analyses

In this section, on the one hand, PERSSA and the other seven existing similar opti-
mization algorithms were evaluated through benchmark function tests. On the other hand,
experiments on aggregate image segmentation assess were conducted on the performance
of PERSSA-MET.

For a fair comparison, all experiments were performed on a PC equipped with an Intel
(R) Core (TM) i5-10400F @2.90 GHz CPU and 16 GB RAM, and they were implemented
using MATLAB-R2018b within Win-10.

4.1. Evaluation of PERSSA

The benchmark function test was utilized to evaluate the performance of the opti-
mization algorithms, and six benchmark functions were selected, as shown in Table 2. The
uni-modal function has only one optimal value, which can test the local convergence ability
of the optimization algorithm, and the multi-modal function has several local optimal
values and one global optimal value, which can assess the global search ability of the
optimization algorithm. The dimension (D) of the benchmark functions was uniformly set
to 30, and the versions are illustrated in Figure 4 when the dimension is 2.

Table 2. Six benchmark functions.

Function Name Definition Range Optimum

Uni-modal benchmark
functions

Sphere F1(x) = ∑D
i=1 x2

i [−100, 100]D 0
MaxMod F2(x) = max{|xi |, 1 ≤ i ≤ D} [−100, 100]D 0

Rosen brock F3(x) = ∑D
i=1

[
100
(
xi+1 − x2

i
)2

+ (xi − 1)2
]

[−30, 30]D 0

Multi-modal benchmark
functions

Schwefel-26 F4(x) = ∑D
i=1−xi · sin

(√
|xi |
)

[−500, 500]D −418.9829D

Ackley
F5(x) = −20 exp

(
−0.2

√
1
D ∑D

i=1 x2
i

)
−

exp
(

1
D ∑D

i=1 cos(2πxi)
)
+ 20 + e

[−32, 32]D 0

Generalized Penalized

F6(x) = π
D {10sin2(πy1) + ∑D−1

i=1 (yi − 1)2(
1 + 10sin2(πyi+1)

)
+ ∑D

i=1 u(xi , 10, 100, 4)}
yi = 1 + (xi + 1)/4

u(xi , a, k, m) =

{
k(xi − a)m xi > a

0 −a ≤ xi ≤ a
k(−xi − a)m xi < −a

[−50, 50]D 0
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F6(x1, x2).

PERSSA was compared with seven algorithms, which were PSO [20], GWO [23],
WOA [24], MA [25], SSA [26], CDLSSA [29], and CASSA [34]. To ensure fairness, some
parameters were set to maximize the performance of each optimization algorithm. They
were a population size of 60 and a maximum iteration number of 600. Furthermore, in PSO,
C1 = C2 = 1.5 and ω = 0.74; in GWO, α decreased linearly from 2 to 0 and r1, r2 ∈ [0, 1];
in WOA, α ∈ [0, 2], b = 1, and l ∈ [−1, 1]; in MA, g = 1, gdamp = 1, α1 = 1, and
α2 = α3 = 1.5; in SSA, CDLSSA, CASSA, and PERSSA, PD = 20%, SD = 10%, and
ST = 0.8; in CDLSSA levybeat = 1.5 and K = 2; and in CASSA S = 1.

The best value (Best), the average value (Avg), the standard deviation (SD), and the
time consumption (T) were selected as the evaluation indicators based on the accuracy
and speed of the optimization algorithm, and the unit of T is seconds. Since the sparrows’
initial positions are random, the average value of 60 optimization experiments was taken
for the Best, Avg, and SD, and T is the total time spent during the experiment. The relevant
statistics are provided in Table 3, in which the bold characters are the best values when
comparing the seven optimization algorithms horizontally.

It can be seen from Table 3 that PERSSA had a better overall performance. On the
uni-modal functions F1~F3, the Best, Avg, and SD of PERSSA were significantly higher than
those of the other algorithms, and its T was only slightly lower than the optimal T. On the
multi-modal functions F4~F6, PERSSA was still superior, and its T was optimal on F6. In
this experiment, WOA, SSA, CASSA, and PERSSA were faster, while CDLSSA and PERSSA
had the highest accuracy and stability. However, the T of CDLSSA was roughly twice that
of PERSSA. Taken together, PERSSA achieved the best balance of speed and precision.



Entropy 2022, 24, 1788 11 of 24

Table 3. Parameter evaluations of the optimization algorithms on benchmark functions.

F 1 P 2 PSO GWO WOA MA SSA CASSA CDLSSA PERSSA

Uni-modal benchmark functions

F1

Best 1.40E-10 4.73E-45 6.32E-127 1.82E-10 4.94E-299 0 0 0
Avg 5.15E-09 7.10E-43 1.25E-109 1.12E-08 9.82E-40 7.39E-59 0 0
SD 1.44E-08 1.40E-42 6.72E-109 3.06E-08 7.60E-48 4.79E-57 0 0
T 7.00E+01 6.32E+01 2.29E+01 9.53E+01 1.98E+01 1.82E+01 4.06E+01 2.06E+01

F2

Best 6.20E-01 5.56E-12 3.58E-04 3.32E+01 2.19E-14 3.84E-27 1.51E-259 0
Avg 1.54E+00 8.40E-10 1.62E+01 5.25E+01 6.93E-10 4.59E-13 2.87E-200 0
SD 7.85E-01 1.74E-10 1.65E+01 8.05E+00 4.11E-09 3.43E-12 0 0
T 6.74E+01 5.98E+01 2.30E+01 8.17E+01 1.99E+01 2.04E+01 4.04E+01 2.04E+01

F3

Best 1.68E+01 2.52E+01 2.62E+01 1.89E+00 2.71E-04 7.87E-05 7.04E-03 1.16E-09
Avg 2.19E+02 2.66E+01 2.72E+01 4.78E+01 5.21E-02 3.84E-02 1.41E-03 4.45E-04
SD 6.64E+02 7.68E-01 7.02E-01 4.07E+01 1.05E-02 8.05E-02 4.42E-03 8.99E-04
T 7.18E+01 6.36E+01 2.53E+01 1.05E+02 2.20E+01 2.19E+01 4.33E+01 2.26E+01

Multi-modal benchmark functions

F4

Best −9.33E+03 −7.71E+03 −1.26E+04 −1.15E+04 −1.24E+03 −1.06E+03 −1.91E+03 −1.26E+04
Avg −8.22E+03 −6.21E+03 −9.01E+03 −1.08E+04 −1.04E+03 −9.18E+03 −1.88E+03 −1.23E+04
SD 4.84E+02 8.06E+02 1.25E+03 3.66E+02 2.02E+03 1.68E+03 1.01E+02 9.48E+01
T 7.26E+01 6.49E+01 2.57E+01 1.17E+02 2.22E+01 2.26E+01 4.35E+01 2.29E+01

F5

Best 2.18E-06 1.51E-14 8.88E-16 4.47E-07 8.57E-14 8.98E-14 8.88E-16 8.88E-16
Avg 5.59E-01 2.53E-14 4.09E-15 5.84E-02 8.47E-16 1.18E-15 8.88E-16 8.88E-16
SD 6.74E-01 4.39E-15 2.75E-15 6.79E-02 4.59E-16 9.90E-16 0 0
T 7.10E+01 6.28E+01 2.39E+01 9.22E+01 2.09E+01 2.07E+01 4.10E+01 2.16E+01

F6

Best 6.28E-11 2.00E-06 5.45E-04 6.00E-08 5.62E-12 3.33E-13 4.65E-10 6.58E-14
Avg 1.32E-01 2.52E-02 2.79E-02 5.36E-02 4.94E-07 4.13E-07 2.84E-06 3.70E-08
SD 2.75E-01 1.48E-02 6.97E-02 9.09E-02 2.06E-06 1.27E-06 1.25E-06 1.52E-06
T 9.95E+01 9.37E+01 5.13E+01 1.54E+02 4.86E+01 4.87E+01 8.85E+01 4.86E+01

1 F is the function. 2 P is the parameter.

Figure 5 displays the convergence curves of the eight algorithms in a random exper-
iment to observe the convergence process of PERSSA. For the 30-dimensional functions,
PERSSA had the highest accuracy with fewer iterations and converged in approximately
200 iterations. The accuracy of CDLSSA and PERSSA were the same on F1, F2, and F5, but
one iteration time of CDLSSA was too long and was inefficient. On F3, F4, and F6, the initial
values of PERSSA were closer to the optimal value, which was attributed to the addition of
piecewise mapping during the population initialization to make the sparrows’ positions
more uniform. It can be observed from F1 and F2 that PERSSA had a wider search scope.
After adding the expansion parameter, the local optimal value was continuously updated
and was close to the global optimal value. On all benchmark functions, the convergence
curves of PERSSA had polylines. This was due to the inclusion of the range-control elite
mutation, which can easily jump out of local areas, even in the F4 and F6 dilemmas. Al-
though CASSA had similar polylines, the escape effect was poor. Overall, when the three
proposed strategies work together, PERSSA not only has high precision and fast speed but
can also be applied to various functions with high robustness.
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The abscissa is the number of iterations, and the ordinate is the value of the objective function.

The Wilcoxon rank-sum test [39] can compare the correlation between two samples. If
P-value ≤ 0.05, there is a significant difference. Since the sample size in Table 3 was small
and the dimension was single, the parameters of 2 and 60 dimensions were added in the
inspection to make the experimental results more accurate. The Wilcoxon rank-sum test
results of PERSSA and the other optimization algorithms are shown in Table 4, where the
bold characters represent significant differences between the two samples.

Table 4. The Wilcoxon rank-sum test between PERSSA and the other algorithms.

Parameter PERSSA-
PSO

PERSSA-
GWO

PERSSA-
WOA

PERSSA-
MA

PERSSA-
SSA

PERSSA-
CASSA

PERSSA-
CDLSSA

Best 7.16E-04 1.71E-02 1.35E-02 1.22E-03 1.87E-01 4.84E-01 6.27E-01
Avg 3.11E-04 5.04E-03 3.21E-03 1.94E-03 1.20E-01 1.41E-01 6.33E-01
SD 1.58E-05 4.62E-03 4.11E-04 3.10E-04 4.72E-02 4.73E-02 9.12E-01
T 1.72E-07 5.50E-03 6.73E-01 3.06E-08 8.13E-01 8.77E-01 3.21E-04

The results show that the conclusions were consistent with the previous ones. PERSSA’s
precision, stability, and robustness differed significantly from those of PSO, GWO, WOA,
and MA. PERSSA’s stability differed significantly from that of SSA and CASSA, and its
speed differed significantly from that of CDLSSA. From SSA to CASSA to CDLSSA, the pre-
cision and robustness increased. PERSSA had the smallest difference in precision compared
to the most accurate algorithm (CDLSSA), and it was faster than WOA, SSA, and CASSA.
To summarize the result: PERSSA effectively improved the precision while attaining the
optimal balance between accuracy and speed.

4.2. Performance of PERSSA-MET

Three METs were combined with PERSSA and SSA to realize PERSSA-MET (i.e.,
PERSSA-Renyi entropy, PERSSA-symmetric cross entropy, and PERSSA-Kapur entropy)
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and SSA-MET (i.e,. SSA-Renyi entropy, SSA-symmetric cross entropy, and SSA-Kapur
entropy). In Section 4.1, PERSSA was iterated 200 times to achieve convergence on the
30-dimensional functions. After several experiments, only 100 iterations could maximize
the savings in the segmentation time while ensuring the accuracy, and the other parameter
settings were the same as those in Section 4.1.

The images utilized in the experiment were all obtained from the Key Laboratory
of Road Construction Technology and Equipment, Ministry of Education, and they were
RGB images with 512 × 512 pixels. A total of 100 aggregate images were tested. Table 5
shows five images with different features, and Table 6 shows their histograms. These
histograms are usually flat at the peaks or valleys. For example, No. 1 and No. 4 show
gentle gray-scale changes in the dark region without obvious valleys; No. 2 and No. 5 show
gentle gray-scale changes in the bright area without evident peaks; and No. 3 has multiple
peaks and troughs, and their distances are very short. For rough aggregate surfaces, the
segmentation results are mostly discrete granular. Even if the segmentation thresholds are
close, many points may be blurred to reduce the original roughness. Thus, the performance
of the optimization algorithm directly affects the segmentation accuracy.

Aggregate images contain abundant information. These aggregate particles have
different sizes, shapes, colors, surface roughness, etc., and these characteristics are applied
to judge the coarse and fine aggregates or gravels and pebbles, to analyze the mineral
types, and to decide the grinding degree, etc. Generally, the categories to be segmented
are determined according to the application scenarios. The number of thresholds (K) is
set, and the image is divided into K + 1 categories, which is also the number of fuzzy
C-means (FCM) clustering centers. In most of the related literature, K = 2 ∼ 6, and this K
can evaluate the accuracy of thresholds while meeting the basic engineering requirements.
Due to the presence of space limitations, this paper only presents the partial segmentation
results of K = {2, 4, 6}, as shown in Table 5. The colored boxes in Table 5 show areas with
large differences in the segmentation of the aggregate surface roughness features. The blue
boxes represent better segmentation results, and the red boxes represent the segmentation
results that were seriously distorted.

Subjectively, FCM performed the best segmentation when K = 2, followed by Renyi
entropy. As K increased to 4, the accuracy of the MET segmentation results was improved,
while FCM became more unstable, and the gray scale of the adjacent pixels merged. When
K = 6, Renyi entropy still performed well for the aggregate images with small particle sizes
and touching or overlapping particles, followed by Kapur entropy. Meanwhile, the overall
gray scale of symmetric cross entropy was higher. Although the edge of FCM was clear,
the gray-scale deviation was too large, and the surface roughness features were lost.

Table 6 shows the histograms of the segmentation results of PERSSA-Renyi entropy,
and those of FCM are shown in Table 5. The closer the distribution of the histogram of
the segmented image to the histogram of the original image, the better. When K = 2,
the segmentation result of FCM was closer to the original image, but when K = 4, 6, the
segmentation results of MET were closer to the original image. For the aggregate image,
when the number of thresholds was large, the similarity between the segmentation result
and the original image was high. At this time, the histogram can be used as one of the
methods to detect the segmentation result.

Table 7 shows the thresholds and fitness values calculated by segmenting the same im-
age when K = 6 for PERSSA-MET and SSA-MET. The thresholds are the lbest(1, 2, · · · , K)
in Section 2.1, which were utilized to segment the images. This parameter cannot evaluate
the pros and cons of the algorithm. It can only indicate that there are differences when
the algorithm divides the image. Each set of thresholds corresponds to a unique fitness
value, which is used to evaluate the algorithm, that is, the E value in Section 2.1. The higher
fitness values of Renyi entropy and Kapur entropy are better, while the lower fitness values
of symmetric cross entropy are better. The better of the two fitness values in Table 7 are
highlighted in bold.
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Table 5. Aggregate images and their partial segmentation results. The blue box is the area with better
segmentation results, and the red box is the area with severe segmentation result distortion.

No. 1 No. 2 No. 3 No. 4 No. 5

Original image
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Table 6. Histograms of the aggregate image segmentation results.

No. 1 No. 2 No. 3 No. 4 No. 5

Original
image

Entropy 2022, 24, x FOR PEER REVIEW 15 of 26 
 

 

Table 6. Histograms of the aggregate image segmentation results. 

 No. 1 No. 2 No. 3 No. 4 No. 5 

Original im-

age 

     

K 2 2 4 4 6 

PERSSA-

Renyi En-

tropy 

     

FCM 

     

Aggregate images contain abundant information. These aggregate particles have dif-

ferent sizes, shapes, colors, surface roughness, etc., and these characteristics are applied 

to judge the coarse and fine aggregates or gravels and pebbles, to analyze the mineral 

types, and to decide the grinding degree, etc. Generally, the categories to be segmented 

are determined according to the application scenarios. The number of thresholds (𝐾) is 

set, and the image is divided into 𝐾 + 1 categories, which is also the number of fuzzy C-

means (FCM) clustering centers. In most of the related literature, 𝐾 = 2~6, and this 𝐾 

can evaluate the accuracy of thresholds while meeting the basic engineering requirements. 

Due to the presence of space limitations, this paper only presents the partial segmentation 

results of 𝐾 = {2, 4, 6}, as shown in Table 5. The colored boxes in Table 5 show areas with 

large differences in the segmentation of the aggregate surface roughness features. The 

blue boxes represent better segmentation results, and the red boxes represent the segmen-

tation results that were seriously distorted. 

Subjectively, FCM performed the best segmentation when 𝐾 = 2, followed by Renyi 

entropy. As 𝐾 increased to 4, the accuracy of the MET segmentation results was im-

proved, while FCM became more unstable, and the gray scale of the adjacent pixels 

merged. When 𝐾 = 6, Renyi entropy still performed well for the aggregate images with 

small particle sizes and touching or overlapping particles, followed by Kapur entropy. 

Meanwhile, the overall gray scale of symmetric cross entropy was higher. Although the 

edge of FCM was clear, the gray-scale deviation was too large, and the surface roughness 

features were lost. 

Table 6 shows the histograms of the segmentation results of PERSSA-Renyi entropy, 
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Table 7. Thresholds and fitness values searched by PERSSA and SSA on MET when K = 6.

Value Image
Renyi Entropy Symmetric Cross Entropy Kapur Entropy

PERSSA SSA PERSSA SSA PERSSA SSA

Thresholds

No. 1 41 78 114 146
173 205

40 82 112 141
170 199

27 53 87 123
157 189

39 68 97 129
148 180

38 70 102 134
169 198

37 59 96 129
197 162

No. 2 44 79 116 154
198 231

50 74 99 125
176 226

26 48 82 114
152 186

30 55 83 113
148 180

41 91 127 162
189 233

41 90 127 161
186 234

No. 3 41 80 109 153
186 229

36 62 100 121
189 229

32 65 94 122
148 181

31 63 100 130
160 184

46 86 122 155
188 230

56 95 117 143
170 231

No. 4 39 76 115 151
188 223

43 78 111 145
183 223

31 58 94 125
156 182

32 58 83 126
154 178

49 86 125 156
190 227

38 73 99 116
156 189

No. 5 36 67 101 136
168 198

39 59 87 124
160 195

29 56 90 119
152 187

30 45 66 89
133 178

37 69 98 127
158 191

39 63 88 118
159 192

Fitness value

No. 1 2.4450E+01 2.4436E+01 2.2693E+05 2.4903E+05 2.4245E+01 2.4184E+01
No. 2 2.4799E+01 2.4493E+01 2.6417E+05 2.6713E+05 2.4424E+01 2.4409E+01
No. 3 2.4708E+01 2.4339E+01 2.6368E+05 2.6778E+05 2.4437E+01 2.4162E+01
No. 4 2.4325E+01 2.4316E+01 1.8345E+05 1.9189E+05 2.3906E+01 2.3718E+01
No. 5 2.4371E+01 2.4274E+01 2.5295E+05 2.9481E+05 2.4156E+01 2.4079E+01

In Table 7, the ratio of PERSSA and SSA to obtain better fitness values was 15:0, which
proved that PERSSA has a superior optimization ability. In the experiment, it was found that
when K = 2, PERSSA and SSA may obtain the same fitness value at different thresholds, but
the segmentation results were slightly different. However, as K increased, the performance
of PERSSA improved, especially at K = 6, and PERSSA-MET outperformed SSA-MET in
both fitness values and segmentation quality.

The optimization algorithm’s performance had a significant impact on the accuracy
and stability of the segmentation results. Figures 6 and 7, respectively, show the segmenta-
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tion results of No. 2 and No. 5 on the aggregate image using seven algorithms when K = 6.
The white box is the typical rough texture information of the aggregate surface. It can be
seen that the PERSSA-MET segmented image has more detailed features, and the color is
closer to the original image, whereas the segmented images of SSA-MET lack many details,
especially the aggregate surfaces. This mistake can result in erroneous roughness grading,
which can waste material resources by mistakenly grinding or sandblasting.
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Figure 6. The segmentation results of No. 2 by PERSSA-MET and SSA-MET when K = 6: (a) PERSSA-
Renyi entropy; (b) SSA-Renyi entropy; (c) PERSSA-symmetric cross entropy; (d) SSA-symmetric
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The quality evaluation of a segmented image needs to consider the category of each
pixel. The naked eye cannot label the ground truth of the aggregate image under each K.
Therefore, the segmented image was compared with the original image.

The peak signal-to-noise ratio (PSNR), structure similarity (SSIM), feature similarity
(FSIM), and time consumption (T) were all used as evaluation indicators. Due to the
randomness of PERSSA and SSA during the position initialization, the average (Avg) and
standard deviation (SD) of 60 experiments were used as the final experimental result. In
Tables 8–10, the bold font represents the evaluation parameter value that is better between
PERSSA-MET and SSA-MET, and the same value is not marked.
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Table 8. PSNR values.

Image K Parameter
Renyi Entropy Symmetric Cross Entropy Kapur Entropy

FCM
PERSSA SSA PERSSA SSA PERSSA SSA

No. 1

2 Avg 1.27E+01 1.27E+01 1.19E+01 1.19E+01 1.13E+01 1.13E+01 1.44E+01
SD 4.36E-02 1.59E-01 7.22E-02 6.75E-02 2.42E+00 3.10E+00 3.75E-03

4 Avg 1.71E+01 1.71E+01 1.50E+01 1.49E+01 1.67E+01 1.66E+01 1.17E+01
SD 9.13E-01 1.05E+00 1.82E-01 1.23E-01 2.21E+00 1.24E+00 2.26E+00

6 Avg 2.12E+01 2.00E+01 1.70E+01 1.56E+01 1.97E+01 1.85E+01 1.08E+01
SD 1.73E+00 1.68E+00 2.10E+00 2.07E+00 2.35E+00 1.94E+00 1.36E+01

No. 2

2 Avg 1.34E+01 1.34E+01 1.16E+01 1.16E+01 1.27E+01 1.27E+01 1.41E+01
SD 9.24E-02 6.21E-02 5.02E-02 5.08E-02 1.57E-01 2.39E+00 2.32E-03

4 Avg 1.80E+01 1.69E+01 1.50E+01 1.50E+01 1.67E+01 1.66E+01 1.38E+01
SD 1.10E+00 1.17E+00 1.26E+00 2.04E-01 1.55E+00 1.56E+00 3.21E+00

6 Avg 2.36E+01 2.12E+01 1.60E+01 1.53E+01 2.18E+01 2.17E+01 9.53E+00
SD 1.95E+00 2.21E+00 2.23E+00 1.63E+00 1.96E+00 2.16E+00 3.62E+01

No. 3

2 Avg 1.35E+01 1.35E+01 1.21E+01 1.20E+01 1.33E+01 1.32E+01 1.34E+01
SD 9.13E-02 1.67E-01 5.18E-02 5.40E-02 2.21E-01 2.27E+00 2.31E-03

4 Avg 1.78E+01 1.72E+01 1.50E+01 1.44E+01 1.73E+01 1.71E+01 1.21E+01
SD 1.30E+00 1.21E+00 2.17E-01 1.96E-01 1.33E+00 1.11E+00 5.23E+00

6 Avg 2.37E+01 2.23E+01 1.62E+01 1.76E+01 2.23E+01 1.99E+01 1.04E+01
SD 1.95E+00 2.22E+00 2.06E+00 1.96E+00 2.24E+00 2.59E+00 4.31E+01

No. 4

2 Avg 1.09E+01 1.09E+01 1.13E+01 1.14E+01 1.06E+01 1.06E+01 1.33E+01
SD 5.25E-02 1.31E-01 5.48E-02 4.20E-02 3.57E-02 3.37E-02 1.36E-03

4 Avg 1.80E+01 1.78E+01 1.50E+01 1.43E+01 1.68E+01 1.66E+01 1.05E+01
SD 8.56E-01 8.88E-01 1.92E-01 2.87E-01 7.46E-01 1.63E+00 6.33E+00

6 Avg 2.45E+01 2.45E+01 1.67E+01 1.59E+01 2.23E+01 1.73E+01 9.48E+00
SD 1.87E+00 1.58E+00 1.43E+00 2.16E+00 1.22E+00 1.60E+00 5.26E+01

No. 5

2 Avg 1.41E+01 1.41E+01 1.30E+01 1.31E+01 1.38E+01 1.37E+01 1.43E+01
SD 4.32E-02 4.33E-02 1.01E-01 1.16E-01 8.31E-02 9.78E-02 1.64E-03

4 Avg 1.83E+01 1.83E+01 1.58E+01 1.58E+01 1.77E+01 1.71E+01 1.37E+01
SD 1.69E+00 1.72E+00 1.21E-01 1.96E-01 3.06E+00 3.21E+00 4.36E+00

6 Avg 2.15E+01 1.95E+01 1.80E+01 1.45E+01 1.92E+01 1.88E+01 9.80E+00
SD 1.89E+00 1.40E+00 1.95E+00 1.86E+00 2.19E+00 2.61E+00 3.18E+01

Bold number 17 5 14 12 23 4 -

Optimal values number 12 6 2 4 1 0 9
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Table 9. SSIM values.

Image K Parameter
Renyi Entropy Symmetric Cross Entropy Kapur Entropy

FCM
PERSSA SSA PERSSA SSA PERSSA SSA

No. 1

2 Avg 3.00E-01 3.00E-01 2.91E-01 2.91E-01 2.83E-01 2.83E-01 3.12E-01
SD 2.03E-03 2.52E-02 4.66E-04 5.11E-04 3.13E-02 3.64E-02 3.10E-04

4 Avg 4.73E-01 4.75E-01 4.69E-01 4.65E-01 4.72E-01 4.71E-01 2.03E-01
SD 1.92E-02 2.64E-02 5.87E-03 8.35E-03 2.58E-02 2.77E-02 6.25E-01

6 Avg 5.93E-01 5.92E-01 5.84E-01 5.67E-01 5.94E-01 5.88E-01 1.25E-01
SD 1.39E-02 1.82E-02 1.54E-02 1.72E-02 2.10E-02 2.25E-02 4.23E+00

No. 2

2 Avg 3.55E-01 3.55E-01 3.13E-01 3.13E-01 3.44E-01 3.44E-01 3.61E-01
SD 1.54E-03 8.58E-04 6.57E-04 6.70E-04 4.82E-03 1.33E-02 2.98E-04

4 Avg 5.65E-01 5.62E-01 5.53E-01 5.52E-01 5.66E-01 5.65E-01 2.52E-01
SD 1.43E-02 9.52E-03 6.92E-03 4.41E-03 1.68E-02 2.08E-02 6.78E-01

6 Avg 6.65E-01 6.20E-01 6.69E-01 6.57E-01 6.62E-01 6.58E-01 1.03E-01
SD 1.42E-02 2.15E-02 2.65E-02 1.85E-02 1.97E-02 1.51E-02 3.28E+00

No. 3

2 Avg 3.18E-01 3.18E-01 3.05E-01 3.04E-01 3.18E-01 3.17E-01 3.17E-01
SD 1.78E-03 3.87E-03 4.31E-04 4.72E-04 7.19E-03 2.10E-02 1.99E-04

4 Avg 5.01E-01 4.98E-01 4.91E-01 4.80E-01 5.02E-01 5.00E-01 2.17E-01
SD 1.82E-02 1.87E-02 4.55E-03 4.66E-03 2.45E-02 1.58E-02 5.23E-01

6 Avg 6.01E-01 5.34E-01 6.02E-01 6.11E-01 6.00E-01 5.51E-01 1.44E-01
SD 2.56E-02 1.70E-02 1.62E-02 2.03E-02 1.66E-02 2.95E-02 4.16E+00

No. 4

2 Avg 3.30E-01 3.30E-01 3.36E-01 3.36E-01 3.21E-01 3.21E-01 3.41E-01
SD 6.91E-03 2.46E-02 1.37E-03 1.38E-03 1.10E-03 1.26E-03 3.32E-04

4 Avg 4.97E-01 5.01E-01 5.14E-01 5.10E-01 5.05E-01 5.08E-01 2.80E-01
SD 2.02E-02 2.14E-02 4.10E-03 6.35E-03 1.97E-02 2.45E-02 8.15E-01

6 Avg 6.06E-01 6.07E-01 6.21E-01 6.16E-01 6.07E-01 5.97E-01 1.77E-01
SD 2.55E-02 1.91E-02 9.83E-03 1.72E-02 2.19E-02 2.17E-02 2.59E+00

No. 5

2 Avg 4.06E-01 4.06E-01 3.98E-01 3.99E-01 4.03E-01 4.02E-01 4.04E-01
SD 1.06E-03 1.02E-03 3.51E-04 3.65E-04 2.42E-03 3.11E-03 1.85E-04

4 Avg 5.97E-01 5.97E-01 5.89E-01 5.88E-01 5.97E-01 5.88E-01 2.93E-01
SD 2.20E-02 3.44E-02 7.33E-03 6.52E-03 1.87E-02 1.74E-02 6.21E-01

6 Avg 7.08E-01 6.94E-01 6.99E-01 6.48E-01 7.01E-01 6.92E-01 1.89E-01
SD 2.14E-02 2.19E-02 1.30E-02 1.93E-02 1.53E-02 3.63E-02 1.32E+00

Bold number 16 8 22 5 21 6 -

Optimal values number 6 4 9 3 5 0 8

Table 10. FSIM values.

Image K Parameter
Renyi Entropy Symmetric Cross Entropy Kapur Entropy

FCM
PERSSA SSA PERSSA SSA PERSSA SSA

No. 1

2 Avg 7.00E-01 7.00E-01 6.95E-01 6.95E-01 6.85E-01 6.86E-01 7.07E-01
SD 1.27E-03 1.35E-03 1.27E-03 1.48E-03 1.12E-02 9.10E-03 5.02E-04

4 Avg 8.53E-01 8.53E-01 8.46E-01 8.43E-01 8.53E-01 8.52E-01 7.02E-01
SD 9.56E-03 1.30E-02 7.15E-03 1.04E-02 1.44E-02 1.46E-02 6.14E-01

6 Avg 9.11E-01 9.06E-01 9.08E-01 8.87E-01 9.13E-01 9.11E-01 6.68E-01
SD 1.04E-02 1.09E-02 1.81E-02 1.95E-02 1.14E-02 1.24E-02 5.12E+00

No. 2

2 Avg 7.68E-01 7.68E-01 7.37E-01 7.37E-01 7.55E-01 7.55E-01 7.68E-01
SD 7.79E-04 1.17E-04 8.22E-04 7.59E-04 2.29E-03 8.40E-03 5.68E-04

4 Avg 8.97E-01 8.88E-01 8.88E-01 8.87E-01 8.94E-01 8.92E-01 7.57E-01
SD 1.05E-02 9.30E-03 1.08E-02 4.74E-03 1.30E-02 1.31E-02 5.48E-01

6 Avg 9.44E-01 9.04E-01 9.29E-01 9.18E-01 9.32E-01 9.28E-01 6.75E-01
SD 8.62E-03 1.45E-02 2.49E-02 1.82E-02 1.26E-02 1.19E-02 3.25E+00

No. 3

2 Avg 7.24E-01 7.23E-01 7.15E-01 7.14E-01 7.24E-01 7.23E-01 7.23E-01
SD 4.27E-04 1.48E-03 1.21E-03 1.30E-03 3.45E-03 1.00E-02 5.36E-04

4 Avg 8.67E-01 8.62E-01 8.59E-01 8.53E-01 8.67E-01 8.63E-01 7.01E-01
SD 1.29E-02 1.29E-02 4.80E-03 4.83E-03 1.49E-02 1.25E-02 7.35E-01

6 Avg 9.20E-01 8.77E-01 9.04E-01 9.07E-01 9.19E-01 8.67E-01 6.88E-01
SD 1.23E-02 1.02E-02 1.76E-02 1.92E-02 1.27E-02 1.67E-02 4.23E+00

No. 4

2 Avg 7.38E-01 7.38E-01 7.46E-01 7.47E-01 7.28E-01 7.26E-01 7.44E-01
SD 5.54E-04 5.20E-03 7.38E-04 7.70E-04 8.66E-03 1.06E-02 4.63E-04

4 Avg 8.77E-01 8.76E-01 8.73E-01 8.72E-01 8.75E-01 8.76E-01 6.90E-01
SD 1.61E-02 1.19E-02 2.96E-03 4.09E-03 1.08E-02 1.27E-02 6.42E-01

6 Avg 9.37E-01 9.32E-01 9.23E-01 9.14E-01 9.34E-01 9.15E-01 6.08E-01
SD 1.16E-02 1.26E-02 9.78E-03 1.63E-02 1.61E-02 1.42E-02 3.56E+00

No. 5

2 Avg 7.85E-01 7.85E-01 7.74E-01 7.76E-01 7.79E-01 7.78E-01 7.93E-01
SD 9.03E-04 8.74E-04 9.98E-04 9.30E-04 1.14E-03 9.20E-04 5.34E-04

4 Avg 9.02E-01 9.03E-01 8.91E-01 8.90E-01 8.99E-01 8.92E-01 7.42E-01
SD 1.53E-02 1.89E-02 9.04E-03 9.13E-03 1.22E-02 1.06E-02 5.13E-01

6 Avg 9.46E-01 9.36E-01 9.39E-01 8.96E-01 9.39E-01 9.34E-01 6.84E-01
SD 1.42E-02 1.12E-02 1.35E-02 1.90E-02 1.31E-02 1.62E-02 2.30E+00

Bold number 17 7 21 7 20 8 -

Optimal values number 13 6 5 2 2 0 5
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PSNR is a metric for measuring image noise, and its unit is dB. The larger the PSNR
value, the more information, the less noise content, and the better the segmentation effect.

PSNR = 20log10

(
255

RMSE

)
(14)

The root-mean-square error (RMSE) is the distance between pixels:

RMSE =

√√√√∑ ∑
(

f (i, j)− f̂ (i, j)
)2

M×M
(15)

where f (i, j) is the original image and f̂ (i, j) is the segmented image.
SSIM was used to compare the overall similarity between the segmented image and

the original image. SSIM ∈ [0, 1], and the higher the SSIM value, the smaller the distortion:

SSIM
(

I, Î
)
=

(
2µ f µ f̂ + C1

)
×
(

2σf , f̂ + C2

)
(

µ f
2 + µ f̂

2 + C1

)
×
(

σf
2 + σ f̂

2 + C2

) (16)

where µ f and µ f̂ are the average gray-scale values of the original image and the segmented
image, respectively; σf and σ f̂ are the standard deviations of the original image and
segmented image, respectively; σf , f̂ is the covariance; and C1 and C2 are the constants

utilized to avoid instability at µ f
2 + µ f̂

2 ≈ 0. We take C1 = C2 = 6.45.
FSIM compares the feature differences between images before and after segmentation.

Phase consistency (PC) extracts stable features in the local structures, and gradient magni-
tude (GM) characterizes the direction. FSIM ∈ [0, 1], and the higher the FSIM value, the
better quality of the segmented images:

FSIM =
∑ SL × PCm

∑ PCm
(17)

where SL is the similarity score, SL(w) = SPCSG, SPC = 2PC1PC2+T1
PC2

1+PC2
2+T1

, SG = 2G1G2+T2
G2

1+G2
2+T2

, G is

the image gradient, T1 and T2 are the constants, and we take T1 = 0.85 and T2 = 160.
In Tables 8–10, the bold font represents the evaluation parameter value that is the

better value between PERSSA and SSA, and the same value is not marked.
In Tables 8–10, the bold font represents the better value between PERSSA-MET and

SSA-MET, and the statistical results of the number of each table are displayed in the
penultimate row of the table. It can be known that PERSSA was better than SSA in
the optimization of the three METs, which means that PERSSA-MET can segment more
aggregate details than SSA-MET.

The blue word represents the optimal value of the horizontal comparison of the seven
algorithms, and the statistical data are displayed in the last row of the table. The blue
number ratio of the seven algorithms is 31:16:16:9:8:0:22. In general, PERSSA-Renyi entropy
was relatively better.

In Table 8, SSA-symmetric cross entropy had more blue numbers than PERSSA-
symmetric cross entropy, and their bold numbers were similar. The analysis was affected
by the standard deviation (SD).

Figure 8 counts the SD of all of the algorithms. The smaller the standard deviation,
the more stable the algorithm. Therefore, symmetric cross entropy had the best stability,
followed by Renyi entropy. Kapur entropy was slightly less stable, and FCM was the least
stable. In summary, the stability of PERSSA-MET was higher than that of SSA-MET.
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Kapur entropy; (g) FCM. These three red stars are the optimal SD values on PSNR, SSIM, and
FSIM respectively.

The above is the evaluation of segmentation accuracy and stability. The running speed
of the algorithm also needs to be considered in the application. In Table 11, the average
time (T) for the algorithm to segment an image is counted, and the unit of T is seconds.

Table 11. T values.

K
Renyi Entropy Symmetric Cross Entropy Kapur Entropy

FCM
PERSSA SSA PERSSA SSA PERSSA SSA

2 1.70 1.77 1.78 1.84 1.75 1.87 1.69
4 1.85 1.81 1.84 2.00 1.95 1.73 4.37
6 1.91 1.75 1.89 1.91 1.86 1.88 8.43

Comparing PERSSA with SSA, the better T value ratio was 6:3 (Table 11). The three
strategies of PERSSA did not reduce the efficiency of SSA. Conversely, PERSSA was faster
than SSA in optimizing symmetric cross entropy. The main reason lies in the particularity
of the aggregate image histogram, which was not only gentle at the valley but also had
many extreme points, leading to many locally optimal solutions in the search process. SSA
is prone to fall into these local areas, whereas PERSSA can jump out of the local areas in
time with the range-control elite mutation. Therefore, PERSSA-MET is more suitable for
aggregate image segmentation.

Figure 9 shows a line chart of the evaluation values of the seven segmentation algorithms
under four parameters. For the same segmentation method, it was not always optimal in the
four parameters, which brings trouble to the practical evaluation of the algorithms.
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Hence, PSNR, SSIM, FSIM, and T were fused into a new parameter, called the overall 

merit weight proportion (OMWP), which was used to represent the superiority degree of 

each algorithm among all algorithms, and 𝑂𝑀𝑊𝑃 ∈ [0, 1]. This parameter was the com-

prehensive evaluation result of the precision, stability, and speed. It met the application 

requirements. The OMWP value of algorithm I can be calculated by Equation (18), and the 
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Figure 9. Fan charts of seven segmentation algorithms on four evaluation parameters. The red word
is the optimal value under each K value and each parameter.

Hence, PSNR, SSIM, FSIM, and T were fused into a new parameter, called the overall
merit weight proportion (OMWP), which was used to represent the superiority degree
of each algorithm among all algorithms, and OMWP ∈ [0, 1]. This parameter was the
comprehensive evaluation result of the precision, stability, and speed. It met the application
requirements. The OMWP value of algorithm I can be calculated by Equation (18), and the
OMWP values of all the segmentation algorithms are summarized in Table 12.

OMWP(I) =
1

n(i)× n(j) ∑ ∑
∣∣Ii, j − worsti, j

∣∣
besti, j − worsti, j

(18)

where i = 2, 4, 6 are the numbers of the thresholds; j = PSNR(Avg), SSIM(Avg),
FSIM(Avg), PSNR(SD), SSIM(SD), FSIM(SD), and T are the evaluation parameters;
the worst situation is the worst value, such as the minimum values in PSNR(Avg), SSIM(Avg),
and FSIM(Avg) and the maximum values in PSNR(SD), SSIM(SD), FSIM(SD), and T; best is
the optimal value, the opposite of worst; and n(x) is the number of x. In this study, n(i) = 3
and n(j) = 7.
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Table 12. OMWP values.

Algorithm PERSSA SSA

Renyi Entropy 8.79E-01 8.33E-01
Symmetric Cross Entropy 8.05E-01 7.79E-01

Kapur Entropy 7.96E-01 7.23E-01
FCM 3.96E-01

In Table 12, the OMWP values of PERSSA-MET were always higher than those of
SSA-MET. Moreover, the PERSSA-Renyi entropy score was the best one, which proves that
this method has the greatest practicability in the segmentation of aggregate images.

Figure 10 shows the segmentation results and segmentation threshold lines of PERSSA-
Renyi entropy. It can be seen that the selection of the threshold was reasonable and
the algorithm had high segmentation accuracy. In practical applications, the number of
thresholds can be selected according to the requirements.
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Figure 10. The segmentation result of PERSSA-Renyi entropy for No. 5: (a) original image; (b) color
segmentation map with K = 2; (c) color segmentation map with K = 4; (d) color segmentation map
with K = 6; (e) segmentation threshold line.

5. Conclusions

This paper proposed a segmentation model (i.e., PERSSA-MET) for aggregate images
that effectively preserved the rough texture and edge features of the aggregate surface. It
consisted of the swarm intelligence optimization algorithm PERSSA and multiple entropy
thresholding (MET). First, the three evolutionary strategies of PERSSA were specially
proposed for the flat and multi-extreme points of the aggregate image histogram. Piecewise
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mapping made the location distribution of the sparrows more uniform and random, the
expansion parameter was suggested to expand the search range, and the range-control elite
mutation strategy could effectively jump out of the local area, which greatly improved the
optimization accuracy and stability of SSA. Then, PERSSA was utilized to swiftly calculate
the MET thresholds, overcoming the disadvantage of MET’s long operation time as the
number of thresholds (K) increases. The experiments compared the performance of three
METs in aggregate image segmentation. In terms of precision, Renyi entropy was first,
Kapur entropy was second, and symmetric cross entropy was third. In terms of stability,
symmetric cross entropy was first, Renyi entropy was second, and Kapur entropy was
third. Finally, in order to comprehensively evaluate the pros and cons of the algorithm,
an evaluation parameter, OMWP, which combines segmentation precision, stability, and
operation speed was studied and was comprehensive and fair. PERSSA-Renyi entropy
achieved the highest OMWP values, with an optimal balance between precision, stability,
and speed.

In future work, efforts will be made to enhance the image segmentation accuracy and to
take these results as the input of deep learning to achieve the parallel classification of various
aggregate features. Furthermore, this segmentation model, PERSSA-MET, can be extended
to similar fields, such as tissue or cereal images, and has broad application prospects.
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