C1
|
C2
|
C3
|
C4
|
C5
|
C6
|
C7
|
C8
|
C9
|
C10
|
C11
|
SN
|
Author
|
Country
|
Journal
|
Study Type
|
FoV
|
Objective
|
PS
|
Cli-Val
|
Diagnosis (Invasive/Noninvasive)
|
Treatment (Invasive/Noninvasive)
|
1 |
Smetherman et al. [182] (2021) |
USA |
Breast Imaging |
P.R. |
Cancer |
Improving the quality of care and/or reducing healthcare costs by using AI |
1012 |
No |
Noninvasive |
NR |
2 |
Challen et al. [183] (2019) |
UK |
Artificial intelligence, bias and clinical safety |
R. |
Clinical safety |
To set short and medium ML clinical safety goals |
NR |
No |
Noninvasive |
NR |
3 |
Almazán et al. [82] (2019) |
Italy |
Clinical Pharmacy |
P.R. |
Renal |
Evaluate the effectiveness, safety, and economic cost of nivolumab in real-world clinical practice |
221 |
No |
Noninvasive |
NR |
4 |
Yuan et al. [184] (2020) |
China |
Medical Sciences |
P.R. |
Renal |
Challenges in kidney diagnosis and treatment |
NR |
No |
Noninvasive |
NR |
5 |
Solanki et al. [185] (2022) |
Australia |
Operational ethics in AI framework |
R |
NA |
NR |
NR |
No |
Noninvasive |
NR |
6 |
Biswas et al. [102] (2018) |
India |
DL-based strategy for accurate Carotid Intima-Media Measurement |
R |
Heart |
The carotid intima-media thickness (cIMT) is an important biomarker for monitoring cardiovascular disease and stroke |
204 |
No |
Noninvasive |
NR |
7 |
Siy et al. [186] (2018) |
Taiwan |
IEEE Conference |
R |
Skin |
DL-based psoriasis detection |
5700 |
No |
Noninvasive |
NR |
8 |
Aijaz et al. [71] (2022) |
Pakistan |
Journal of Healthcare Engineering |
R |
Skin |
Effective classification of different psoriasis types using deep learning applications |
473 |
No |
Noninvasive |
NR |
9 |
Ali et al. [188] (2022) |
Iraq |
Kidney Diseases Transplantation |
P. |
Renal |
Renal medicine |
NR |
No |
NR |
NR |
10 |
Viswanathan et al. [189] (2020) |
India |
Preventive health check in patients with diabetes |
R. |
Diabetes |
Cost-effective carotid ultrasound screening for diabetes patients |
NR |
NR |
Noninvasive |
NR |
11 |
Sarki et al. [198] (2020) |
USA |
Health Information Science and Systems |
P.R. |
Diabetes Retinopathy |
Deep learning-based automated identification of multiple classes of diabetic eye disorders |
1748 |
NR |
Noninvasive |
NR |
12 |
Quan et al. [199] (2021) |
Japan |
IEEE Access |
P.R. |
Parkinson’s |
Using dynamic speech features, a deep learning-based approach for Parkinson’s disease detection |
45 |
NR |
Noninvasive |
NR |
13 |
Kamble et al. [191] (2021) |
India |
Measurement and Sensor |
P.R. |
Parkinson’s |
Parkinson’s disease classification using digital spiral drawings |
25 |
NR |
Noninvasive |
NR |
|
|
C12
|
C13
|
C14
|
SN
|
Author
|
AI Type
|
Cost Analysis Parameter
|
Outcome of study
|
|
|
AI Type
|
ACC
|
SEN
|
SPE
|
AUC
|
MCC
|
F1
|
Cost Analysis Parameter
|
Input Modality
|
Model Analysis
|
Screening cost
|
Maintain Cost
|
Cost Savings (USD) Per. Sample
|
|
1 |
Smetherman et al. [182] (2021) |
NR |
NR |
NR |
NR |
NR |
NR |
NR |
NR |
Image |
Yes |
Yes |
NR |
318 |
AI could assess individual situations, make appropriate decisions, and aid in the management of renal disease. |
2 |
Challen et al. [183] (2019) |
NR |
NR |
NR |
NR |
NR |
NR |
NR |
NR |
NR |
NR |
NR |
NR |
NR |
ML DSS deployment will most likely concentrate on diagnostic decision support. ML Diagnostic decision assistance should be assessed with the same rigors as a novel laboratory screening test. |
3 |
Almazán et al. [82] (2019) |
NR |
NR |
NR |
NR |
NR |
NR |
NR |
NR |
Point Data |
Yes |
Yes |
NR |
61 |
AI for improved clinical benefit from nivolumab therapy. |
4 |
Yuan et al. [184] (2020) |
NR |
NR |
NR |
NR |
NR |
NR |
NR |
NR |
Point Data |
Yes |
Yes |
NR |
62 |
Artificial intelligence can consider individual situations, make appropriate decisions, and make significant advancements in the management of renal disease. |
5 |
Solanki et al. [185] (2022) |
NR |
NR |
NR |
NR |
NR |
NR |
NR |
NR |
NR |
Yes |
Yes |
Yes |
Yes |
Guidelines, frameworks, and advancement of technologies for ethical AI that reflect human values, such as self-direction, in healthcare. |
6 |
Biswas et al. [102] (2018) |
DL |
86.78 |
0.76 |
NR |
0.86 |
NR |
NR |
NR |
Image |
NR |
NR |
NR |
NR |
High-level features are extracted from the CCA US photos using CNN’s 13 layers. To produce clear and crisp segmented images, these features were upsampled using FCN upsampling layers, and the skipping operation was carried out. |
7 |
Siy et al. [186] (2018) |
DL |
91.5 |
NR |
NR |
NR |
NR |
NR |
NR |
Image |
NR |
NR |
NR |
NR |
A DNN-based psoriasis detection presented having 91.5% accuracy. |
8 |
Aijaz et al. [71] (2022) |
DL |
84.2 |
0.81 |
0.71 |
NR |
NR |
NR |
NR |
Image |
NR |
NR |
NR |
NR |
This study employed a CNN-based deep learning classification strategy to categorize the five types of psoriasis. |
9 |
Ali et al. [188] (2022) |
NR |
NR |
NR |
NR |
NR |
NR |
NR |
NR |
NR |
NR |
NR |
NR |
NR |
Machine learning and artificial intelligence have ushered in a new era in medicine and nephrology. |
10 |
Viswanathan et al. [189] (2020) |
NR |
NR |
NR |
NR |
NR |
NR |
NR |
NR |
Image |
NR |
NR |
NR |
14 |
Diabetes exacerbated the deposition of atherosclerotic plaque. Risk assessment includes other factors in addition to the degree of vessel stenosis. |
11 |
Sarki et al. [198] (2020) |
DL |
84.88 |
0.87 |
NR |
NR |
NR |
NR |
NR |
Image |
NR |
NR |
NR |
NR |
The development of moderate and multi-class DL algorithms for the automatic detection of DED, according to the British Diabetic Association (BDA) criteria. |
12 |
Quan et al. [199] (2021) |
DL |
80.90 |
0.87 |
0.92 |
0.83 |
0.53 |
NR |
NR |
Speech |
NR |
NR |
NR |
NR |
The dynamic articulation transition features and the bidirectional LSTM model are combined ingeniously in the proposed method to record the time-series properties of continuous speech data. |
13 |
Kamble et al. [191] (2021) |
ML |
91.6 |
NR |
NR |
NR |
NR |
0.8 |
NR |
Image |
NR |
NR |
NR |
NR |
Digitalized spiral drawing tests significantly affect how PD patients and healthy controls are classified. |