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Abstract: Hepatocellular carcinoma (HCC) is a complex disease involving altered interactomes of
transcripts and proteins. MicroRNAs (miRNAs) are small-noncoding RNAs that can interact with
specific gene transcripts and an array of other vital endogenous non-coding RNAs (lncRNAs) that
can influence gene expression. Maternally Expressed Gene 3 (MEG3) is an imprinted lncRNA that
is reported to be downregulated in HCC (in both cell lines and tumors). Alcohol Dehydrogenase
4 (ADH4) is a well-known prognostic protein biomarker for predicting the survival outcomes of
patients with hepatocellular carcinoma whose expression is regulated by miR-664a-3p, which is
upregulated in HCC. In this study, we performed a battery of robust and systematic in silico analyses
to predicate the possible lncRNA–miRNA interactions between MEG3, miR-664a-3p, and ADH4.
miRNA–mRNA and lncRNA–miRNA hybrid structures were primarily obtained, and the minimum
free energies (MFEs) for the 3′UTR (Untranslated Regions) of ADH4-miR-664a-3p and the 3′UTR of
MEG3-miR-664a-3p interactions were assessed to predict the stability of the obtained RNA heterodu-
plex hybrids. The hybrid with the least minimum free energy (MFE) was considered to be the most
favorable. The MFEs were around −28.1 kcal/mol and −31.3 kCal/mol for the ADH4-miR-664a-3p
and MEG3-miR-66a-3p RNA hybrids, respectively. This demonstrated that lncRNA-MEG3 might be
a competitive endogenous RNA that acts as a molecular sponge for miR-664a-3p. In summary, our
interaction analyses results predict the significance of the MEG3/miR-664a-3p/ADH4 axis, where
MEG3 downregulation results in miR-664a-3p overexpression and the subsequential underexpression
of ADH4 in HCC, as a novel axis of interest that demands further validation.

Keywords: MEG3; miR-664a-3p; alcohol dehydrogenase 4; tumor suppressor; hepatocellular carcinoma;
mean binding energy

1. Introduction

Hepatocellular carcinoma (HCC) refers to the primary carcinoma of the liver and ranks
as the sixth most common cancer affecting the human population [1]. According to the
Global Cancer Observatory (https://gco.iarc.fr/ (accessed on 5 October 2022)), the national
mortality burden in India for HCC stands at 2.4%, accounting for about 33,793 deaths.
Preliminary causes include chronic liver conditions, such as Hepatitis B Virus (HBV) [2–5]
and Hepatitis C Virus (HCV) [6,7] infections, cirrhosis, non-alcoholic fatty liver disease
(NAFLD) [8–11], and non-alcoholic steatohepatitis (NASH) [11–13]. Additionally, several
other epigenetic mechanisms involving long non-coding RNAs (lncRNAs), microRNAs
(miRNAs), histone modifications, and DNA methylation are gaining importance in regulat-
ing various target genes vital to the development and progression of HCC [14].

Maternally Expressed Gene 3 (MEG3) is located on Chromosome 14q32.3. In humans,
it is located on the imprinted DLK1-MEG3 locus. The mouse ortholog commonly referred
to as Meg3 or Gene trap locus 2 (Glt2) is positioned on Ch 12 [15,16]. MEG3 encodes for an
lncRNA, which is commonly expressed in normal tissues [17–19]. However, MEG3 expres-
sion is lost in cancers of the brain [20], breast [21], lung [21], cervix [21], and colon [22]. In
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HCC, MEG3 is underexpressed when compared to in normal liver tissues [23]. MEG3 un-
derexpression has been validated in various HCC cell line models, such as PLC/PRF/5 [23],
HepG2 [24], and Huh7 [25]. Overall, these experimental pieces of evidence suggest that
MEG3 is downregulated and acts as a bona fide tumor suppressor in HCC.

MicroRNAs (miRNAs) play a crucial role in regulating the gene expression of tar-
get genes by binding to the 3′UTRs of target transcripts and degrading mRNA through
RISC-mediated endonuclease activity [26,27]. Several studies have reported miR-664a-3p
expression to be overexpressed in HCC [28]. A study by Wang in 2019 reported miR-664 to
be overexpressed in HCC cell lines, as well as in HCC patients, adding to the progression
and spread of HCC [29].

The alcohol dehydrogenase (ADH) superfamily spans five classes of dehydrogenases:
class I (ADHIA, ADHIB, and ADHIC), class II (ADH4), class III (ADH5), class IV (ADH6),
and class V (ADH7) [30]. ADH4 is primarily involved in the metabolism of aliphatic
alcohols, including retinol, ethanol, and hydroxysteroid, and it occupies center stage in the
hepatic regulation of the metabolism of various lipid peroxidation processes [31]. Previous
studies have shown that ADH4 is significantly downregulated, and they have predicted its
suitability as a prognostic marker in HCC [32–34].

In the present study, we employed a range of robust algorithms and bioinformatics
tools to identify a novel axis that might be central to HCC development and progression.
Based on RNA–RNA interactions, we predicted that MEG3 interacts with miR-664a-3p,
resulting in the overexpression of ADH4 in normal liver, while the reverse effect occurs
due to the underexpression of MEG3 in HCC.

2. Materials and Methods
2.1. Retrieval of lncRNA, miR-664a, and ADH4 Sequences

Reference nucleotide sequences were obtained from standard databases. The gene co-
ordinates for human lncRNA MEG3 were found to be Chr14: 100,826,108–100,861,026. The
full-length nucleotide sequence of MEG3 (NC_000014.9: https://www.ncbi.nlm.nih.gov/
nuccore/NC_000014.9?rport=fasta&from=100826108&to=100861026 (accessed 5 October
2022)) and the transcript of ADH4 (M15943.1: https://www.ncbi.nlm.nih.gov/nuccore/
M15943.1?report=fasta (accessed 5 October 2022)) were obtained from the National Center
for Biotechnology Information Nucleotide (Internet). Bethesda (MD): National Library
of Medicine (US), National Center for Biotechnology Information; (1988)—Accession No.
NC_000014.9, Homo sapiens Maternally Expressed Gene 3; (cited 5 October 2022). The
mature sequence of miR-664a-3p (UAUUCAUUUAUCCCCAGCCUACA) was obtained
from miRbase (https://www.mirbase.org/ (accessed 5 October 2022)) [35].

2.2. Expression of ADH4 in HCC

The next-generation sequencing (RNA-Seq) gene expression quantification data de-
rived from the complete transcriptome profiling of the genes expressed in normal liver
tissues (n = 70) and in HCC (n = 352) were downloaded from the TCGA-LIHC dataset from
The Genomic Data Commons (GDC: https://gdc.cancer.gov/about-gdc) (data accessed on
5 October 2022) of the National Cancer Institute. The expression values of ADH4 in terms of
transcripts per million from the whole transcriptome profile were obtained for which a dif-
ferential expression analysis was performed on normal and HCC datasets (Supplementary
Data 1: TCGA miR664a and ADH4 values.xlsx). The differential expression values were
used to obtain box plots using Microsoft Excel. Further, the protein expression of ADH4 in
the normal, as well as the TCGA-LIHC dataset, was obtained and analyzed using the Hu-
man Protein Atlas (HPA: https://www.proteinatlas.org/ (accessed on 5 October 2022)) [36].
The association of the differential expression of ADH4 in the normal and HCC datasets
was determined in terms of overall survival (OS) and disease-free survival (DFS) using
Gene Expression Profiling Interactive Analysis 2 (GEPIA 2.0: http://gepia2.cancer-pku.cn/
(accessed on 5 October 2022)) [37]. KM survival plots were plotted such that the true
median expression values occurred with a confidence interval of 95%.

https://www.ncbi.nlm.nih.gov/nuccore/NC_000014.9?rport=fasta&from=100826108&to=100861026
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https://www.mirbase.org/
https://gdc.cancer.gov/about-gdc
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2.3. Differential Expression of miR-664a-3p and MEG3 in HCC

The miR-Seq quantification data were downloaded from the TCGA-LIHC dataset from
the Genomic Data Commons portal (accessed on 5 October 2022). The expression values
of miR-664a-3p in terms of transcripts per million in normal liver and HCC datasets were
obtained from the whole transcriptome profile (Supplementary Data 2: TCGA miR664a
and ADH4 values.xlsx). A differential expression analysis of miR-664a-3p in normal liver
and HCC datasets were performed for which box plots were plotted. Further, mRNA
expression was analyzed using The University of ALabama at Birmingham CANcer data
analysis portal tool (UALCAN: http://ualcan.path.uab.edu/index.html (accessed on 5
October 2022)) [38]. For analyzing MEG3 expression in HCC, the TCGA-LIHC datasets
were analyzed using UALCAN. The datasets for the differential expression of miR-664a-3p
and lncRNA-MEG3 for normal and primary HCC were obtained from TCGA and analyzed
using the UALCAN tool. The differential expression between the normal and tumor
datasets was considered statistically significant if the means of differential expression for
miRNA and lncRNA was p < 0.05 (95% CI).

2.4. Construction of miRNA–mRNA RNA Heteroduplex Hybrids

The interaction of miR-664a-3p and the 3′UTR of ADH4 mRNA was constructed
using the BiBiserve2-RNAhybrid tool (https://bibiserv.cebitec.uni-bielefeld.de/rnahybrid/
(accessed on 5 October 2022)) [39]. The RNA heteroduplex hybrids were scored in terms
of mean free energy (MFE). The top five RNA–RNA hybrids were considered for further
analysis, and the hybrid with the least MFE was considered the best possible hybrid
predicted.

2.5. Construction of lncRNA–miRNA RNA Heteroduplex Hybrids

The interaction of lncRNA MEG3 and miR-664a-3p was constructed based on sequence
complementarity using the BiBiserve2-RNAhybrid tool. The top five hybrids were con-
sidered for further analysis, and the hybrid with the least MFE was considered the best
possible hybrid predicted based on sequence complementarity.

2.6. Predicting the Accessibility of Binding Regions of MEG3-miRNA RNA Heteroduplex

Once the complementary sequences involved in the hybrid were identified, the actual
binding of the lncRNA and miRNA was computed considering intramolecular interactions
to provide a biophysically realistic model with accurate MFE using Freiburg RNA Tools: In-
taRNA (http://rna.informatik.uni-freiburg.de/IntaRNA/Input.jsp (accessed on 5 October
2022)) [40,41].

3. Results
3.1. ADH4 Is Downregulated in HCC

The differential expression analysis of the expression values derived from the GDC
portal for ADH4 in TCGA-LIHC (Supplementary Data 1) pointed towards a significant
downregulation in HCC (Figure 1A). Moreover, the immunohistochemistry (IHC) details
of ADH4 from the HPA analysis of normal and HCC tissue samples clearly showed the
protein to be downregulated in HCC as compared to its higher expression in normal liver
tissues (Supplementary Figure S1: HPA.TIF). It was observed that, when compared to the
normal datasets, the HCC tissue datasets showed lower or no expression for ADH4. The
individual patient details and IHC characteristics can be seen in Table 1. The significance
of ADH4 expression in HCC was scored in terms of OS and DFS. It was observed that the
differential expression of ADH4 is significant both in terms of OS (Figure 1B) and DFS
(Figure 1C). The KM plots for OS showed that higher ADH4 expression corresponded to
better survival as compared to decreased ADH4 expression. This clearly shows that ADH4
is downregulated in terms of differential expression in HCC.

http://ualcan.path.uab.edu/index.html
https://bibiserv.cebitec.uni-bielefeld.de/rnahybrid/
http://rna.informatik.uni-freiburg.de/IntaRNA/Input.jsp


Genes 2022, 13, 2254 4 of 10

Genes 2022, 13, x FOR PEER REVIEW 4 of 11 
 

 

of ADH4 from the HPA analysis of normal and HCC tissue samples clearly showed the 
protein to be downregulated in HCC as compared to its higher expression in normal liver 
tissues (Supplementary Figure S1: HPA.TIF). It was observed that, when compared to the 
normal datasets, the HCC tissue datasets showed lower or no expression for ADH4. The 
individual patient details and IHC characteristics can be seen in Table 1. The significance 
of ADH4 expression in HCC was scored in terms of OS and DFS. It was observed that the 
differential expression of ADH4 is significant both in terms of OS (Figure 1B) and DFS 
(Figure 1C). The KM plots for OS showed that higher ADH4 expression corresponded to 
better survival as compared to decreased ADH4 expression. This clearly shows that ADH4 
is downregulated in terms of differential expression in HCC. 

 
Figure 1. ADH4 is downregulated in hepatocellular carcinoma. ADH4 expression profiles (A). 
ADH4 mRNA expression box plot (statistical parameters included) (B). Overall survival of ADH4 
in TCGA-LIHC datasets (C). Disease-free survival of ADH4 in TCGA-LIHC datasets. 

Table 1. Patient characteristics for HPA ADH4 expression in HCC and normal liver tissues. 

Patient ID Sex Age State Staining Intensity Quantity More Details 
3402 Female 54 Normal Medium Moderate >75% https://www.proteinat-

las.org/ENSG00000198099-ADH4/tis-
sue/liver#img (accessed on 5 October 2022) 

3222 Female 63 Normal Medium Moderate >75% 
2429 Male 55 Normal Medium Moderate >75% 
3215 Female 61 HCC Low Weak 25–75% 

https://www.proteinat-
las.org/ENSG00000198099-ADH4/pathol-

ogy/liver+cancer#img (accessed on 5 October 
2022) 

2766 Female 73 HCC Not detected Negative None 
2177 Female 58 HCC Low Weak 25–75% 
3196 Male 65 HCC Not detected Negative None 
2280 Male 80 HCC Medium Moderate 25–75% 
2556 Male 72 HCC Low Weak 25–75% 
3346 Female 73 HCC Medium Moderate 25–75% 
3477 Male 67 HCC Low Weak 25–75% 

3.2. LncRNA-MEG3 Is Downregulated and miR-664a-3p Is Upregulated in HCC 
The differential expression of lncRNA-MEG3 was obtained from TCGA-LIHC. The 

UALCAN analysis showed that MEG3 was downregulated in HCC tissues (n = 371) as 
compared to normal liver tissues (n = 50), with a significance of p = 7.0333E-06 (Figure 2A). 
Likewise, the UALCAN analysis of the differential expression of miR-664a-3p showed a 
significant upregulation of miRNA in HCC (p = 1.2608 × 10−11 (Figure 2B) (a value of p < 
0.05 was considered statistically significant). Further, the expression values derived from 

Figure 1. ADH4 is downregulated in hepatocellular carcinoma. ADH4 expression profiles (A).
ADH4 mRNA expression box plot (statistical parameters included) (B). Overall survival of ADH4 in
TCGA-LIHC datasets (C). Disease-free survival of ADH4 in TCGA-LIHC datasets.

Table 1. Patient characteristics for HPA ADH4 expression in HCC and normal liver tissues.

Patient ID Sex Age State Staining Intensity Quantity More Details

3402 Female 54 Normal Medium Moderate >75% https://www.proteinatlas.org/ENSG0000019
8099-ADH4/tissue/liver#img (accessed on 5

October 2022)
3222 Female 63 Normal Medium Moderate >75%
2429 Male 55 Normal Medium Moderate >75%

3215 Female 61 HCC Low Weak 25–75%

https://www.proteinatlas.org/ENSG0000019
8099-ADH4/pathology/liver+cancer#img

(accessed on 5 October 2022)

2766 Female 73 HCC Not detected Negative None
2177 Female 58 HCC Low Weak 25–75%
3196 Male 65 HCC Not detected Negative None
2280 Male 80 HCC Medium Moderate 25–75%
2556 Male 72 HCC Low Weak 25–75%
3346 Female 73 HCC Medium Moderate 25–75%
3477 Male 67 HCC Low Weak 25–75%

3.2. LncRNA-MEG3 Is Downregulated and miR-664a-3p Is Upregulated in HCC

The differential expression of lncRNA-MEG3 was obtained from TCGA-LIHC. The
UALCAN analysis showed that MEG3 was downregulated in HCC tissues (n = 371) as
compared to normal liver tissues (n = 50), with a significance of p = 7.0333E-06 (Figure 2A).
Likewise, the UALCAN analysis of the differential expression of miR-664a-3p showed a
significant upregulation of miRNA in HCC (p = 1.2608 × 10−11 (Figure 2B) (a value of
p < 0.05 was considered statistically significant). Further, the expression values derived
from the GDC Data Portal (Supplementary Data 2: TCGA miR664a and ADH4 values.xlsx)
validated the upregulation of miR-664a-3p expression in HCC (Figure 2C).

3.3. ADH4 Is Targeted by miR-664a-3p in HCC

The probability of RNA–RNA interactions between miR-664a-3p and the 3′UTR of
ADH4 was identified and scored using the RNA Interactome Database (RNAInter: http:
//www.rnainter.org/ (accessed on 5 October 2022)) on a scale of 0.0–1.0. The interaction had
a score of 0.4571. The miRNA–mRNA interaction predicted was supplemented by strong
published experimental evidence (PUBMED ID: 28374914). miRNA–mRNA heteroduplex
hybrid structures were constructed using RNAhybrid, and the best-predicted structure had
an MFE of −28.1 kcal/mol (Figure 3).

https://www.proteinatlas.org/ENSG00000198099-ADH4/tissue/liver#img
https://www.proteinatlas.org/ENSG00000198099-ADH4/tissue/liver#img
https://www.proteinatlas.org/ENSG00000198099-ADH4/pathology/liver+cancer#img
https://www.proteinatlas.org/ENSG00000198099-ADH4/pathology/liver+cancer#img
http://www.rnainter.org/
http://www.rnainter.org/
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3.4. MEG3 Acts as a Competitive Endogenous Sponge for miR-664a-3p

The RNAInter analysis of lncRNA–miRNA predicted the interaction between MEG3-
miR-664a-3p with a score of 0.528 on a confidence scale of 0.0–1.0. The miRNA–mRNA inter-
action predicted was supplemented by strong published experimental evidence (PUBMED
ID: 28374914). Further, the RNA heteroduplex hybrid structures constructed using RNAhy-
brid predicted the best hybrid to have an MFE of −31.3 kcal/mol (Figure 4). IntaRNA
predicted realistic model for the mRNA–miRNA interaction between the 10th–20th base
positions of miR-664a-3p and the 931st–941st base positions of ADH4, with an overall MFE
of −16.64 kcal/mol (Figure 5A–C). Moreover, a more realistic hybrid model based on the
accessibility of nucleotides for base pairing predicted binding between the 3rd–22nd bases
of miR-664a-3p and the 2nd–21st bases of MEG3, with an overall MFE of −24.75 kcal/mol
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(Figure 5D–F). The individual energy values for the interaction can be obtained from
Supplementary Tables S1–S3: List of Supplementary Tables MEG3.pdf.
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Figure 5. Prediction of accessible regions in RNA heteroduplexes. (A) Graph showing minimum free
energy prediction for stable ADH4 mRNA. (B) Graph showing minimum free energy prediction for
stable miR-664a-3p. (C) Minimum free energy prediction for the miRNA–mRNA hybrid. (D) Graph
showing minimum free energy prediction for stable lncRNA MEG3 structure. (E) Graph showing
minimum free energy graph for the stable miR-664a-3p structure. (F) Minimum free energy prediction
for the lncRNA–miRNA hybrid.

4. Discussion

RNA–RNA interactions involving lncRNAs and miRNAs occupy center stage in the
post-transcriptional regulation of gene expression [42]. Various studies have revealed the
significance of the tumor-suppressive effect of lncRNA MEG3 in HCC [42–49]. In our study,
the datasets obtained from TCGA-LIHC showed a unanimous underexpression of MEG3
in HCC as compared to in normal liver, pointing out that MEG3 acts as a bona fide tumor
suppressor in HCC.

miR-644 overexpression is also found to be associated with the downregulation of me-
thionine adenosyl transferase and global hypomethylation in HCC [28], pointing towards
the intricate effect and regulation of other epigenetic processes, such as DNA methylation
by miRNAs. miR-664a-3p is reported to be upregulated in HepG2, Huh7, and MHCC97
HCC cell lines and is predicted to be associated with poor overall survival in HCC [29]. The
analysis of the TCGA-LIHC dataset pointed towards a similar upregulation of miR-664a-3p
in HCC.
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ADH4 is a well-known prognostic biomarker for HCC [32]. Various studies have
provided evidence that the downregulation of ADH4 is linked to the poor overall survival
of HCC [50,51]. We mined the HPA-IHC data of ADH4, and they clearly show that ADH4
is underexpressed in HCC tissues. The Kaplan–Meier survival analysis inferred overall
survival to be higher under the positive expression of ADH4, while the survival outcomes
dropped under decreased ADH4 expression. Further, studies involving the validation
of ADH4 in HCC using various methods, such as Western blot [32], RTqPCR [52], and
DNA microarrays [53], have accurately predicted ADH4 to be downregulated. Addition-
ally, ADH4 was predicted to be a prominent prognostic biomarker for the evaluation of
immunotherapy efficiency in HCC patients [52].

Through our in silico analysis, we showed ADH4 to be a direct target for miR-664a-
3p, wherein the structures of the miRNA–mRNA interaction between miR-664a-3p and
the 3′UTR of ADH4 were identified and scored in terms of sequence complementarity
and MFE. Likewise, similar models of interactions between miR-664a-3p and lncRNA-
MEG3 were constructed based on sequence complementarity and MFE. We found that the
mRNA–miRNA heteroduplex hybrid yielded a higher MFE (−28.1 kcal/mol) than a stable
heteroduplex between miRNA and lncRNA, which yielded a lower MFE (−31.3 kCal/mol).
Further, a more realistic model for mRNA–miRNA and lncRNA–miRNA interactions
was predicted based on the accessibility of binding regions, which assigned an MFE of
−16.64 kcal/mol for the miR-664a-3p-ADH4 interaction and an MFE of −24.75 kcal/mol
for the MEG3-miR-664a-3p interaction. Based on the overall MFE predicted by three
separate parameters (sequence complementarity, accessibility of binding regions, and
MFE), it is inferred that MEG3 acts as a competitive sponge for miR-664a-3p.

Based on the previous discussion, it can be concluded that the MEG3/miR-664a-
3p/ADH4 axis is vital in the process of HCC carcinogenesis. In normal liver, MEG3 is
not repressed and can act as a competitive sponge for miR-664a-3p, and MEG3 also acts
as a molecular checker of miRNA expression and, in turn, prevents its binding to the
3′UTR of ADH4 mRNA (Figure 6A). However, in HCC, due to MEG3 downregulation,
miR-664a-3p is upregulated and is free to bind to the 3′UTR of ADH4 mRNA, resulting in
RNA-induced silencing of ADH4 (Figure 6B). Interestingly, we did find a study validating
the existence of such an axis in HCC [54]. However, our study predicts miRNA–mRNA
and miRNA–lncRNA hybrids based on MFE, which is novel and can serve as a template
for in silico predictions of other RNA–RNA interactions that can form the basis for further
in vitro validations in HCC.
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