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Abstract: SLC26A4 is one of the most common genes causing autosomal recessive non-syndromic
sensorineural hearing loss (SNHL). It has been reported to cause Pendred Syndrome (PDS) and
DFNB4 which is deafness with enlarged vestibular aqueduct (EVA). However, mutated SLC26A4 is
not conclusive for having either DFNB4 or PDS. Three unrelated Jordanian families consisting of eight
affected individuals with congenital bilateral hearing loss (HL) participated in this study. Whole-
exome and Sanger sequencing were performed to investigate the underlying molecular etiology
of HL. Further clinical investigations, including laboratory blood workup for the thyroid gland,
CT scan for the temporal bone, and thyroid ultrasound were performed. Three disease-causing
variants were identified in SLC26A4 in the three families, two of which were novel. Two families had
a novel pathogenic homozygous splice-site accepter variant (c.165-1G>C), while the third family had
compound heterozygous pathogenic variants (c.1446G>A; p.Trp482* and c.304G>A; p.Gly102Arg).
Our approach helped in redirecting the diagnosis of several affected members of three different
families from non-syndromic HL to syndromic HL. Two of the affected individuals had typical PDS,
one had DFNB4, while the rest had atypical PDS. Our work emphasized the intra- and inter-familial
variability of SLC26A4-related phenotypes. In addition, we highlighted the variable phenotypic
impact of SLC26A4 on tailoring a personalized healthcare management.

Keywords: Pendred syndrome; enlarged vestibular aqueduct; SLC26A4; hearing loss;
heterogeneity; DFNB4

1. Introduction

Solute carrier family 26, member 4 (SLC26A4; OMIM ID 605646) is a protein-coding
gene for pendrin that is mainly expressed in the thyroid gland, inner ear, and kidneys [1–4].
Pathogenic variants in this gene are known to cause two autosomal recessive disorders:
Pendred syndrome (PDS, OMIM: 274600) and DFNB4 (OMIM: 600791) which is deafness
with enlarged vestibular aqueduct (EVA). Both phenotypes include sensorineural hearing
loss (SNHL) and EVA. Mondini deformity, and vestibular abnormalities may also present in
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some patients with SLC26A4-related phenotypes [5,6]. Whereas some patients with PDS can
manifest hypothyroidism with or without goiter, others may have normal thyroid function
and structure [7–10]. Of note, goiter becomes apparent after the age of ten years [8].
Hypothyroidism, as one of PDS manifestations, if left untreated, can lead to different
complications including cardiovascular disease, depression and infertility [10]. Therefore,
it is recommended for those patients to have regular follow-up visits to optimize the
L-thyroxine therapy [7].

DFNB4 has a wide spectrum of variability in terms of onset, severity, and progression.
The onset of DFNB4’s HL can be triggered by head trauma [11–13]. EVA is considered
the most penetrant feature of both PDS and DFNB4 [12]. Mixed HL and SNHL have been
associated with DFNB4 [12]. Renal Pendrin plays a role in maintaining the blood’s pH,
particularly in cases of metabolic alkalosis [14]. Patients with PDS should not be given
thiazide diuretics as it can lead to life-threatening hypovolemia and metabolic alkalosis [15].

Only a few studies have been reported from Middle Eastern countries investigating the
phenotypes associated with SLC26A4 [16–20]. These studies were conducted on patients
from the United Arab Emirates (UAE), Iran, and Palestine [16–20]. Interestingly, intra- and
inter-familial variabilities were observed in some of these studies. To date, the genetic
background of patients with SLC26A4-related phenotypes has not been reported in the
Jordanian population.

In this study, we provide a detailed description of the clinical, audiological, radio-
logical, and genetic findings of three unrelated Jordanian families initially reported with
non-syndromic SNHL or mixed hearing loss (MHL). Intra- and inter-familial variability
were investigated. This work highlights the gap of the absence of a conclusive corre-
lation between SCL26A4 variants and the associated phenotypes. We also outline the
main features of the affected individuals and suggest changes for their periodic health
care follow-up.

2. Materials and Methods
2.1. Participants

Seventeen members from three unrelated Jordanian families were recruited in this
study, eight of which were initially diagnosed with non-syndromic SNHL or MHL (Figure 1).
Written informed consents were taken from all participating members including the chil-
dren’s guardians. All research was conducted in conformity with the defined ethical
standards of the declaration of Helsinki and was approved by the institutional review
board (IRB) (IRB number 2016/110) of Jordan University Hospital (JUH).
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Figure 1. Pedigrees of the three investigated Jordanian families (F1, F2, and F3) with variants in 
SLC26A4. Females are represented by circles and males are represented by squares. Filled symbols 
indicate affected individuals with hearing loss while empty symbols represent unaffected individ-
uals. Arrows point to the proband of each family. The zygosity of the identified genotypes, validated 
using Sanger sequencing, was presented under the symbol of affected individuals and first-degree 
family members. Abbreviations: W: wild type, M1: mutation c.165-1G>C, M2: mutation (c.304G>A; 
p. Gly102Arg), and M3: mutation (c.1446G>A; p.Trp482*). 
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gion; (b) variants with minor allele frequency (MAF) for subpopulations of ≤1% in gno-
mAD (https://gnomad.broadinstitute.org; last accessed 19 November 2022), TOPMed 
(https://topmed.nhlbi.nih.gov; last accessed 19 November 2022), 1000 Genomes Project 
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some.com; last accessed 19 November 2022). Variant classification was based on expert 
specifications of the ACMG/AMP guidelines for genetic hearing loss [22]. 

2.4. Co-Segregation Analysis 
Primers flanking the identified candidate variants were designed. Sequences of the 

forward and the reverse primers and their PCR conditions are presented in Table S3. Co-
segregation of the disease with the identified candidate variants was performed by bi-
directional Sanger sequencing. The diagrammatic representation of SLC26A4 was created 

Figure 1. Pedigrees of the three investigated Jordanian families (F1, F2, and F3) with variants in
SLC26A4. Females are represented by circles and males are represented by squares. Filled symbols
indicate affected individuals with hearing loss while empty symbols represent unaffected individuals.
Arrows point to the proband of each family. The zygosity of the identified genotypes, validated
using Sanger sequencing, was presented under the symbol of affected individuals and first-degree
family members. Abbreviations: W: wild type, M1: mutation c.165-1G>C, M2: mutation (c.304G>A;
p. Gly102Arg), and M3: mutation (c.1446G>A; p.Trp482*).
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2.2. DNA Extraction

Peripheral blood samples were withdrawn from all participating members, and a de-
tailed clinical history was taken prior to evaluation. gDNA was obtained from whole
blood using Promega Wizard Genomic DNA Purification Kit (Promega, Madison, WI, USA)
following the instructions provided by the manufacturer. DNA was stored at −20 ◦C after
examining its purity and concentration using NanoDrop 2000 spectrophotometer (Thermo
Fisher Scientific, Waltham, MA, USA).

2.3. Whole-Exome Sequencing and Data Analysis

Whole-exome sequencing (WES) was performed for the proband of each family
(F1: IV-3, F2: IV-1, and F3: V3), as described elsewhere [21]. Our filtration approach
was based on gene list-focused analysis (Table S1). The gene list was generated by com-
piling the genes from deafness-related literature, OMIM (https://omim.org; last accessed
19 November 2022), Hereditary Hearing Loss Homepage (HHL; https://hereditaryhearingloss.
org; last accessed 19 November 2022), and Deafness Variation Database (DVD; https:
//deafnessvariationdatabase.org; last accessed 19 November 2022). The variants were pri-
oritized according to the following steps: (a) variants located in the coding and flanking re-
gion; (b) variants with minor allele frequency (MAF) for subpopulations of ≤1% in gnomAD
(https://gnomad.broadinstitute.org; last accessed 19 November 2022), TOPMed (https:
//topmed.nhlbi.nih.gov; last accessed 19 November 2022), 1000 Genomes Project (http://
www.internationalgenome.org; last accessed 19 November 2022), NHLBI Exome Sequenc-
ing Project (https://evs.gs.washington.edu/EVS/; last accessed 19 November 2022), and
DGV (http://dgv.tcag.ca/dgv/app/home; last accessed 19 November 2022);
(c) total read depth of ≥10× reads. We compiled a list of the variants that fulfilled the
previous filtration approach (Table S2). The short variant list underwent further anal-
ysis based on the mode of recessive inheritance, patient clinical picture, relevant liter-
ature, and available data from HGMD (http://www.hgmd.cf.ac.uk/ac/index.php; last
accessed 19 November 2022), OMIM (https://omim.org; last accessed 19 November 2022),
GeneCards (www.genecards.com; last accessed 19 November 2022), and varsome (https:
//varsome.com; last accessed 19 November 2022). Variant classification was based on
expert specifications of the ACMG/AMP guidelines for genetic hearing loss [22].

2.4. Co-Segregation Analysis

Primers flanking the identified candidate variants were designed. Sequences of the
forward and the reverse primers and their PCR conditions are presented in Table S3.
Co-segregation of the disease with the identified candidate variants was performed by bi-
directional Sanger sequencing. The diagrammatic representation of SLC26A4 was created
using Lollipops variant visualization tool (https://joiningdata.com/lollipops/index.html;
last accessed 19 November 2022).

2.5. Clinical Examination

Individuals had a detailed clinical evaluation. Pure tone audiometry was performed
for the affected patients at the time of the study. Previous history of audiological assess-
ments was retrieved from the medical records of the patients. High-resolution temporal
bone computerized tomography (CT) scan without contrast was performed for all affected
individuals to look for EVA. EVA is considered enlarged if its midpoint width is more
than or equals to 1.5 mm based on Valvassori and Clemis criterion. Thyroid ultrasound
(U/S) and thyroid function tests including serum thyroid stimulating hormone (TSH),
serum free thyroxine (FT4), serum free triiodothyronine (FT3), anti-thyroid peroxidase
antibodies (anti-TPO Ab), thyroglobulin (Tg), and anti-thyroglobulin antibodies (anti-
Tg Ab) were evaluated for affected members. Previous medical records were obtained
and investigated thoroughly.

https://omim.org
https://hereditaryhearingloss.org
https://hereditaryhearingloss.org
https://deafnessvariationdatabase.org
https://deafnessvariationdatabase.org
https://gnomad.broadinstitute.org
https://topmed.nhlbi.nih.gov
https://topmed.nhlbi.nih.gov
http://www.internationalgenome.org
http://www.internationalgenome.org
https://evs.gs.washington.edu/EVS/
http://dgv.tcag.ca/dgv/app/home
http://www.hgmd.cf.ac.uk/ac/index.php
https://omim.org
www.genecards.com
https://varsome.com
https://varsome.com
https://joiningdata.com/lollipops/index.html
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3. Results
3.1. Audiological Findings

Participants from three unrelated Jordanian families presenting with the initial diag-
nosis of non-syndromic SNHL or MHL and their unaffected first-degree family members
were included in this study for genetic assessment (Figure 1).

We examined the audiological and hearing loss status of the affected members of
the three families (Table 1 and Figure 2). F1 had four affected siblings (IV−2, IV−3, and
the twins IV−4, and IV−5) and they all had congenital severe to profound SNHL that
is progressive and bilateral (Figure 2A–D). The elder brothers (IV−2; 29 years and IV−3;
25 years) who had moderately severe to profound SNHL are completely deaf now as they
did not receive any HL intervention. Figure 2A–C shows the progression pattern of one
of the elder brothers (IV−3) which progressed from severe sloping at the age of 1 year
and 7 months to flat profound at 6 years to dead ears at 17 years (Figure 2A–C). However,
the twins (IV−4 and IV−5; 17 years) had unilateral cochlear implant at the right side at
the age of 9 years which improved their HL from profound to moderate (Figure 2E,F).
Speech rehabilitation for the twins continued until high school age. Moreover, distant
family members were reported to have HL.
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F3 had two affected siblings (V−3; 16 years, and V−4; 23 years). V−4 had severe to 
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Figure 2. Audiograms of selected family members. Audiograms of F1: IV3 (c.165−1G>C) are shown
in (A–C) at the age of 1 year and 7 months, 6 years, and 17 years, respectively. (D) for F1: IV-2 at the
age of 3 years. Audiograms of F1: IV−5 are depicted in (E,F) before and after cochlear implant at
the age of 4 and 5 years, respectively. (G) for F2 (p.Gly102Arg and p.Trp482*): IV−1 at the age of
7 years. (H) for F2: IV-3 at the age of 5 years. (I) for F3 (c.165−1G>C): V−4 at the age of 20 years.
The symbols of the red circles and the blue crosses represent the readings of earphones unmasked
air conduction of the right and left ear, respectively. Blue triangles for the masked air conduction
readings of the right ear. The (<) and (>) symbols are used to represent the reading of the mastoid
unmasked air conduction of the right and left ears, respectively. Arrows on any of the symbols
represent no response.
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Table 1. Audiological findings and investigations of the affected members.

F# Individual Age Sex Age at HL Onset
Severity of HL

HL Progression Vertigo/Dizziness SNHL Intervention
High-Resolution Temporal Bone
Computerized Tomography (CT)

Scan without ContrastRight Ear Left Ear

1

IV−2 29 M Congenital Severe to
profound SNHL

Moderately
severe to

profound SNHL
Yes No Completely deaf

Enlarged vestibular aqueducts (Rt
1.5 mm, Lt 2 mm).

Focal dehiscence of the posterior
semi-circular canals bilaterally.

Prominent/Slightly dilated vestibule.

IV−3 25 M Congenital Profound SNHL Profound SNHL Yes No Completely deaf

Appearances are suggestive of Type
II incomplete partition (Mondini

deformity) bilaterally manifested by
fused cystic cochlear apex as well as
enlarged vestibular aqueducts. (Rt

2 mm, Lt 2.5 mm).
Focal dehiscence of the posterior

semicircular canals bilaterally.

IV−4 17 F Congenital Profound SNHL Profound SNHL Yes Yes Cochlear implant at 9 years old Both vestibular aqueducts are dilated
(Rt 3 mm, Lt 2.6 mm).

IV−5 17 F Congenital Profound SNHL Profound SNHL Yes Yes Cochlear implant at 9 years old Both vestibular aqueducts are dilated
(Rt 2 mm, Lt 2.2 mm).

2

IV−1 9 M 2 years Severe to
profound SNHL

Severe to
profound SNHL Yes No Hearing aids

Enlarged vestibular aqueducts (Rt
3.5 mm, Lt 3 mm). Mildly dilated

vestibule bilaterally.

IV−3 5 M 2 years Moderate to
severe MHL

Severe to
profound MHL Yes No Hearing aids

Enlarged vestibular aqueducts (Rt
2.4 mm, Lt 1.7 mm). Mildly dilated
vestibule bilaterally. Probable focal

bony dehiscence of the posterior part
of the superior semicircular canals

bilaterally. These also showed
slightly small lumen and faint

sclerosis compared to the anterior
part of the semicircular canal.

3

V−3 16 F 3.5 months Moderately
severe SNHL

Moderately
severe SNHL Yes No Hearing aids Not available.

V−4 23 M 1.3 years Severe to
profound SNHL

Severe to
profound SNHL Yes No Hearing aids Bilateral enlarged vestibular

aqueduct (Rt 1.9 mm, Lt 3 mm).

Abbreviations: SNHL: sensorineural hearing loss, MHL: mixed hearing loss, Rt: right, Lt: left.
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F2 had two affected young siblings (IV−1; 9 years and IV−3; 5 years). They had SNHL
and MHL, and the onset was at 2 years. Their HL has been deteriorating constantly and the
eldest affected child, IV−1, had more severe HL in comparison to his younger sibling IV−3.
Both affected siblings (IV−1 and IV−3) are currently using hearing aids (Figure 2G,H).

F3 had two affected siblings (V−3; 16 years, and V−4; 23 years). V−4 had severe to
profound progressive MHL that started at the age of 1 year and 4 months while V−3 had
moderately severe SNHL that has started at the age of 3.5 months (Figure 2I). They are both
currently using hearing aids.

3.2. WES Findings

The proband of each family (F1: IV−3, F2: IV−1, and F3: V3) underwent WES
which identified three disease-causing variants (DCV) in the SLC26A4 gene (Transcript ID:
NM_000441.1, Table 2).

3.2.1. Family F1 and Family F3 WES Findings

A novel homozygous splice-site accepter variant (c.165−1G>C) in SLC26A4 was
identified in F1 and F3. In silico variant assessment tools predicted this splice variant
to cause a splice site loss (Table 2). This variant is absent from the population database
(gnomAD; https://gnomad.broadinstitute.org; last accessed 19 November 2022) and is not
listed in ClinVar. Loss of function (LoF) variants are a known mechanism of pathogenicity
in SLC26A4, and LoF variants have been previously reported as disease-causing near the
same splicing region [5,23]. Furthermore, this variant co-segregated with the disease in
both families. Collectively, we classify this LoF variant as pathogenic.

3.2.2. Family F2 WES Findings

We found two variants in SLC26A4 (c.1446G>A and c.304G>A). The first variant
(c.1446G>A; p.Trp482*) is a novel nonsense variant in exon 13. Nonsense-mediated mRNA
decay (NMD) is predicted to occur as the distance between this stop codon and the nearest
3’ end of the exon–exon junction is >55 nucleotides long. This LoF variant was not available
in either ClinVar or gnomAD databases. Several studies reported pathogenic LoF variant
in exon 13 [24,25].

The second variant in F2 is a missenses variant (c.304G>A; p.Gly102Arg) and is located
in the splicing region of exon 3. This change introduced arginine instead of glycine at
residue number 102. This variant was reported in ClinVar (ID: VCV001301849, classified
as pathogenic/likely pathogenic; last accessed 24 April 2022) and gnomAD (total allele
frequency: 0.000003978). This variant has been previously reported in Iranian patients
affected with SNHL and with PDS [26–29]. Further, co-segregation analysis for F2 revealed
these two variants (c.1446G>A and c.304G>A; Table 2 and Figure 1) to be in trans. Given
together, we classified these two variants as pathogenic.

3.3. Co-Segregation Analysis

The three candidate variants were further investigated for co-segregation by Sanger
sequencing (Figures 1 and 3). All affected individuals in F1 (IV-2, IV-3, IV-4, and IV-5) and
F3 (V-3 and V-4) were homozygous for the sequence change (c.165-1G>C). The parents
(F1: III-7 and III-8, F3: IV-1 and IV-2) were heterozygous carriers. The available unaffected
sibling was either heterozygous (F3: V-6) or homozygous for the wild type allele (F1:
IV-1). Regarding F2, the unaffected father harbored the nonsense variant (c.1446G>A;
p.Trp482*) in a heterozygous state, while the mother had the missense variant (c.304G>A;
p.Gly102Arg) in a heterozygous state. The affected F2 members (IV-1 and IV-3) were
found to be bi-allelic for c.1446G>A and c.304G>A. Their unaffected sibling (IV-2) was
heterozygous for c.304G>A (Figures 1 and 3).

https://gnomad.broadinstitute.org
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Table 2. Candidate variants identified by whole-exome sequencing in the three families.

Family
Number

Gene

Variant Coordinate

Exon HGVS
cDNA

HGVS
Amino
Acids

Transcript Consequences

ClinVar,
Last

Accessed
12 July

2022

Maximum
Minor
Allele

Frequency
gnomAD

Zygosity In-Silico Predictions ACMG
Classifica-

tion

Reference

hg38 hg19

1 and 3

SLC26A4

chr7:107663295 chr7:107303740 - c.165−1G>C -

NM_000441.1

Splice
acceptor

Not
reported

V2/V3:
Absent Homozygous

- NetGene2: Not
detected acceptor site

- NNSplice: Not
detected acceptor site
- MaxEntScan: High

impact
- SpliceAI: Acceptor

loss

Pathogenic

2
chr7:107663435 chr7:107303880 3/21 c.304G>A p.Gly102Arg

Missense
Splice
region

Reported
(Variation

ID:1301849)

V2:
0.000008800
V3: Absent

Compound
Heterozy-

gous

REVEL score: 0.944
(Pathogenic)

SIFT: 0 (Damaging)
PROVEAN: 0.9569

(Damaging)

Pathogenic [26–29]

chr7:107695941 chr7:107336386 13/21 c.1446G>A p.Trp482* Nonsense Not
reported

V2/V3:
Absent

Nonsense-mediated
decay is predicted Pathogenic

Abbreviations: ACMG, American College of Medical Genetics; gnomAD, the genome aggregation database; HGVS, human genome variation society; V, version.
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Pathogenic variants in SLC26A4 are associated with DFNB4 (OMIM: #600791) and
PDS (OMIM: #274600). These genetic findings urged us to further investigate inner ear
malformations that are associated with DFNB4, and thyroid manifestations that might be
due to PDS in affected individuals.

3.4. Temporal Bone CT Findings

Affected members of the three families were examined by temporal CT for inner ear
malformations (Table 1 and Figure 4). Temporal CT scan of the four affected siblings in F1
(IV−2, IV−3, and the twins IV−4, and IV−5) showed that they had bilateral asymmetrical
EVA. Moreover, the two brothers (IV−2 and IV−3) had bilateral focal dehiscence of the
posterior semi-circular canals. IV−3 had appearances suggestive of Mondini deformity as
well. IV−3’s CT scan showed unremarkable right external auditory canal, clear mastoid air
cells, antrum and middle ear cleft, and normal morphology and alignment of the middle
ear ossicles. The basal cochlear turn of IV−3 appears normal. The cochlear apex appears
cystic due to fused middle and apical turns. The dilated vestibular aqueduct and significant
thinning of the bony roof of the posterior semicircular canal suggestive of dehiscence were
found in IV−3 CT scan as well. Normal appearances of the internal auditory canal, carotid
canal, jugular bulb and cochlear aqueduct. Normal appearances of the lateral and superior
semicircular canals were detected. The twins (IV−4 and IV−5; 17 years) were the only
affected members to experience dizziness and vertigo.

F2 affected siblings (IV−1 and IV−3) showed bilateral asymmetrical EVA for both of
them and focal bony dehiscence of the posterior semicircular canals for IV−3 bilaterally.
No dizziness or vertigo was reported. V−3 and V−4 from F3 denied having vertigo and
dizziness. CT scan of F3: V−4 showed bilateral asymmetrical EVA. Given together, all of
the diagnostic criteria of DFNB4 associated with SLC26A4 were met in the three families
with some variability. All affected members had early-onset (between 0 to 2 years) bilateral
progressive SNHL or MHL. The severity of the HL ranged from moderate to profound and
it was associated with vertigo or dizziness in only the twins (F1: IV−4 and IV−5). Available
CT scans of all affected individuals revealed that they have bilateral and asymmetric EVA
at variable widths exceeding 1.5 mm. Three of the affected individuals (F1: IV−2 and
IV−3, F2: IV−3) have shown to have focal dehiscence of the posterior semi-circular canals
bilaterally. Moreover, only one patient (F1: IV-3) had appearances suggestive of Mondini
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deformity. The MHL of IV−3 can be due to chronic otitis media with effusion which
indicated medical treatment and grommet tube insertion. At the time of examination,
the tubes were no longer present in the ear, but the surgical site was complicated with
perforation on the right side and glue was still present on the left side. There was an
incomplete closure of air-bone gap on the right side and partial incomplete closure on
the left side. Moreover, the MHL can also be due to the CT findings of the focal bony
dehiscence of the posterior part of the superior semicircular canals bilaterally (Figure 4).
The genetic testing pinpointed the two-differential diagnoses for the affected individuals.
However, thyroid endocrine profiling would settle on their diagnosis as DFNB4 or PDS.
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3.5. Thyroid Findings

We examined the clinical features suggestive of PDS for the three affected families
(Table 3). F1 affected siblings (IV−2, IV−3, and the twins IV−4, and IV−5) showed wide
variability in their findings. The eldest two siblings (IV−2 and IV−3) have normal sized
thyroid gland without lesions in their thyroid U/S. Their blood tests were all normal
except for Tg which was only elevated in IV-3. Thyroid U/S for the twins (IV−4 and
IV−5) showed diffuse goiter with multiple bilateral small anechoic oval nodules and
heterogeneous echogenicity. It is worth mentioning that F1: IV-4 was diagnosed with
hypothyroidism four years ago and required L-Thyroxine therapy; however, she has not
been compliant with it. The blood tests of her twin (IV-5) showed that she was euthyroid.
Although Tg was elevated in both, it was 10−fold higher in IV−4.

Both of F2 affected members were similar in findings of the affected individual F1:
IV−3. Thyroid gland size was normal by U/S without any nodularity. All blood tests were
within the normal range except for Tg which was elevated in both patients. We have tested
their unaffected young brother F2: IV−2 as a control to make sure if his Tg level was also
elevated, which apparently was within the normal range.

F3 affected members (V−3 and V−4) did not have any goiter. Thyroid U/S of F3:
IV−4 was normal in size and echogenicity.

The genetic findings of SLC26A4 along with the clinical examination and investigations
suggested a variable set of differential diagnosis for the affected patients. Variability was
noted in inter- and intra-familial levels.



Genes 2022, 13, 2192 10 of 17

Table 3. Clinical characteristics and investigations of the thyroid gland.

F# Individual Age Visible
Goiter

FT3
(1.2–4.1
pg/mL)

FT4
(0.89–1.72 ng/dL)

TSH
(0.4–4.5 mIU/mL)

TG
(3.5–77 ng/mL)

Anti-TG Ab
(Up to 115.0 IU/mL)

Anti-TPO Ab
(Up to 30 IU/mL) Thyroid Ultrasound

1

IV−2 29 No 3.4 1 2 66.08 <10.0 3.2

Normal size, echo pattern, and blood
flow of the thyroid gland.

No thyroid nodules are seen.
Normal submandibular glands.

No cervical lymph node enlargement.
Right thyroid lobe measured about

1.5 × 1.6 × 4.6 cm.
Left thyroid lobe measured about

1.7 × 1.1 × 5 cm.

IV−3 25 No 3.2 1.1 4 112 <10.0 1.3

Normal size, echo pattern, and blood
flow of the thyroid gland.

No thyroid nodules are seen.
Normal submandibular glands.

No cervical lymph node enlargement.
Right thyroid lobe measured about

2.1 × 1.6 × 4.8 cm.
Left thyroid lobe measured about

1.8 × 1.3 × 5.1 cm.

IV−4 17 Yes 3.8 0.869 5.27 1000 Negative Negative

Both thyroid lobes and isthmus are
diffusely enlarged.

Isthmus AP diameter of 8.9 mm.
Multiple bilateral anechoic oval

nodules some with septation.
Heterogeneous course echo texture.

IV−5 17 No 3.7 1.08 2.23 138 Negative Negative

Both thyroid lobes and isthmus are
enlarged. Isthmus AP diameter 5 mm.

Multiple bilateral small
anechoic nodules.

There is well defined hypo echoic
and anechoic nodule of 9 × 3.5 mm
in the left lobe close to the isthmus.
Heterogeneous course echo texture.
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Table 3. Cont.

F# Individual Age Visible
Goiter

FT3
(1.2–4.1
pg/mL)

FT4
(0.89–1.72 ng/dL)

TSH
(0.4–4.5 mIU/mL)

TG
(3.5–77 ng/mL)

Anti-TG Ab
(Up to 115.0 IU/mL)

Anti-TPO Ab
(Up to 30 IU/mL) Thyroid Ultrasound

2

IV−1 9 No 2.4 1.4 1.2 130.6 10.6 8.7

Normal size, echo pattern, and blood
flow of the thyroid gland.

No thyroid nodules are seen.
Normal submandibular glands.

No cervical lymph
node enlargement.

Right thyroid lobe measured about
1.7 × 1.7 × 4.2 cm.

Left thyroid lobe measured about
1.2 × 1.7 × 4 cm.

IV−3 5 No 3 1.3 1.6 96.59 11.8 4.9

Normal size, echo pattern, and blood
flow of the thyroid gland.

No thyroid nodules are seen.
Normal submandibular glands.

No cervical lymph
node enlargement.

Right thyroid lobe measured about
1 × 1.5 × 3.6 cm.

Left thyroid lobe measured about
1.5 × 1.4 × 3.1 cm.

IV−8 7 No 3.8 1.57 1.4 18.1 11.8 4.7 -

3

V−3 16 No - - - - - - -

V−4 23 No - - 2.02 - - -

Both thyroid lobes and isthmus
appear normal in size and

echogenicity.
The right thyroid lobe measuring

2.5 × 3.7 × 4.6 cm.
The left thyroid lobe measuring

2.7 × 2.5 × 5.7 cm.
No cystic or solid mass lesions could

be seen.
No significant enlarged lymph nodes

could be seen on both sides of
the neck.

Abbreviations: U/S: Thyroid ultrasound, TSH: serum thyroid-stimulating hormone, FT3: serum-free triiodothyronine, FT4: serum-free thyroxine, anti-TPO Ab: anti-thyroid peroxidase
antibody, Tg: thyroglobulin, anti-Tg Ab: anti-thyroglobulin antibody.
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4. Discussion

In this study, we performed genetic and clinical analyses on three unrelated Jordanian
families with SNHL or MHL (Figure 1). After WES analysis, we identified three variants in
SLC26A4, two of which (c.165−1G>C and p.Trp482*) were novel (Table 2). This is the first
report for patients with PDS-suggestive findings to be molecularly investigated in Jordan.

Genetic Findings in SLC26A4. All of the affected individuals from the three investi-
gated families had bi-allelic alterations in SLC26A4. Members with HL from F1 and F3
were homozygous for the same splice-site variant (c.165−1G>C), while those in F2 had
compound heterozygous variants (p.Trp482* and p.Gly102Arg; Figures 1 and 3). However,
variants in SLC26A4 causing DFNB4 or PDS can also be di-genic with other genes such as
FOX1, EPHA2, and KCNJ10 [30–34]. These genes did not harbor any candidate DCVs in
our cases. This implies that the described variabilities in the SLC26A4-related phenotypes
in our families are not driven by di-genic variants in the aforementioned genes.

Audiological findings in the context of the DCVs. Previous studies correlated the number
of mutated alleles in SLC26A4 to the severity of DFNB4. Bi-allelic variants led to higher
inner ear fluid pressure, worse hearing threshold, and more severe inner ear malformations
by having a wider EVA and Mondini defect [13]. All the patients in this study had early-
onset SNHL that is pre-or peri-lingual, progressive, associated with EVA, and sometimes
vestibular abnormalities. These described audiological findings were compatible with the
differential diagnosis of DFNB4 and PDS. Cochlear implants for SLC26A4-related cases
demonstrated better residual hearing than those who did not [11]. Likewise, in our study,
audiograms of one of the twins (F1: IV−5) before and after the cochlear implantation
showed improvement. This can be noticed by comparing the audiograms of her two elder
siblings (F1: IV−2 and IV−3) who did not have a cochlear implant and are completely deaf
now (Figure 2 and Table 1) [11]. All cases affected by SLC26A4-related phenotypes require
periodic audiological examinations to calibrate their hearing aids [8]. Cochlear implants
are advised to be used to prevent these patients from being mute.

Thyroid findings in the context of the DCVs. Since DFNB4 and PDS have multiple
overlapping features, thyroid manifestations are considered the distinguishing feature
between SLC26A4’s associated phenotypes [7]. Typically, PDS is associated with goiter
and accompanying overt hypothyroidism, subclinical hypothyroidism, or euthyroidism [7].
Goiter in PDS usually develops in late childhood and early adolescence, making it difficult
to diagnose PDS at a young age [35]. To evaluate thyroid function, several investigations
were carried out, including thyroid U/S and other lab testing [7].

Families with the homozygous splice-site variant (c.165−1G>C). Thyroid investigations for
the four affected individuals from F1 who had the splicing variant (c.165−1G>C) showed
that only one patient (F1: IV−4) had hypothyroidism with goiter, which is typical for PDS.
However, the rest of the four affected members were euthyroid. The only euthyroid patient
with diffuse enlargement and nodularity in thyroid U/S was F1: IV-5 (the twin of F1: IV−4).
Thus, she was also diagnosed with PDS. Similarly, Sakurai et al. showed that identical
twins with PDS can have different levels of progression [36]. Particularly, although both
had thyroid nodules, one of the twins developed papillary thyroid carcinoma whereas
the other twin’s nodules were benign [36]. Several studies showed that PDS nodules can
progress to thyroid carcinoma [36]. This association was validated functionally by low
SLC26A4’s mRNA expression and low immunostaining for pendrin in cancerous thyroid
tumors [36,37]. Therefore, we recommend periodic follow-up investigations for the investi-
gated twins (F1: IV−4 and F1: IV−5) to exclude any possible malignant transformation in
the future.

The two other affected siblings in this family (F1: IV−2 and IV−3) had different
symptoms than the twins (F1: IV−4 and IV−5). The individuals (F1: IV−2 and IV−3)
did not have goiter, favoring the diagnosis of DFNB4 rather than PDS. Nevertheless, the
elevated Tg in F1: IV−3 triggered the suspicion of atypical PDS [7,35]. Elevated serum Tg is
a non-specific finding of PDS and can be associated with different thyroid pathologies [38].
In compliance, elevated Tg levels have been reported in PDS patients who do not have
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goiter [35]. Therefore, F1: IV−3 should have periodic thyroid function tests to monitor the
potential progression of thyroid disorder.

F3 had the same DCV that was identified in F1 (c.165−1G>C). Available findings
for F3: V−4 (MHL, EVA, and normal thyroid U/S) are suggestive of DFNB4. However,
this cannot exclude the possibility of PDS as further thyroid investigations are needed.
Therefore, further surveillance is needed to diagnose any delayed thyroid abnormalities.

In the same splicing region of the identified variant in F1 and F3 (c.165−1G>C), another
pathogenic variant was reported by Trevino et al. (c.165−1G>A) [23]. The previously re-
ported variant (c.165−1G>A) was compound heterozygous with another likely pathogenic
missense variant (p.Ala411Pro). The siblings, harboring the variant (c.165−1G>A), had
PDS. The elder sibling had a significantly enlarged goiter at the age of 20 years, but she was
clinically euthyroid. This sibling had prelingual SNHL diagnosed at the age of 6 months.
Her clinical picture was similar to that of F1: IV−5, who had congenital SNHL and euthy-
roid nodularity except that her goiter was not as large as the elder sibling’s as reported by
Trevino et al [23]. This could be a sign that the nodules in F1: IV−5 might enlarge over time,
resulting in large neck goiter in their twenties. This necessitates close monitoring of F1:
IV−5 by endocrinologists. The younger sibling reported by Trevino et al [23]. had congeni-
tal HL and was mute. He had delayed motor milestones and congenital hypothyroidism.
His large goiter was noted at 9 years of age. Although he was treated with iodine, he
presented clinically with hypothyroidism and mental retardation at the age of 14 years [23].
Compared with F1: IV−4, he had a more severe and earlier onset type of PDS.

Furthermore, the siblings reported by Trevino et al. [23] had Mondini deformity,
which was not found in the two PDS patients in F1 (IV−4 and IV−5). Only F1: IV−3
had the Mondini deformity, which we considered in his diagnosis as atypical PDS with
elevated Tg and congenital SNHL. Although these two splicing variants (c.165−1G>A
and c.165−1G>C) are located in the same position, inter- and intra-familial phenotypic
variability can be observed. This can be attributable to yet-to-be-identified modifier genes.

A family with compound heterozygous variants. The two affected children in F2, IV−1
and IV−3, had compound heterozygous variants (p.Trp482* and p.Gly102Arg). Thyroid
investigations for these two children showed elevated Tg levels and euthyroid without
goiter. Their normal thyroid size can be attributed to their young age [35]. Their third
unaffected young brother (F2: IV-2) had normal Tg levels. Based on these tests, we
diagnosed F2: IV−1 and IV−3 as atypical PDS. A member from F1, IV−3, also had atypical
PDS, albeit with different variants in SLC26A4. Their management plan should include
a multidisciplinary approach by pediatric, endocrine, and ear, nose, and throat (ENT)
physicians. Moreover, their parents should be informed that they have normal thyroid
function tests but that they require regular follow-ups. Cochlear implants should be
initiated for them as soon as possible.

One of the variants in F3 (p.Trp482*) has not been reported before, while the other
(p.Gly102Arg) has been reported in several studies [26–29]. Taylor et al. reported the
variant (p.Gly102Arg) in a homozygous state in a PDS patient presenting with goiter and
hypothyroidism [26]. He was diagnosed with HL at 17 months [26]. In our study, affected
members in F2 had a comparable age of HL onset at 24 months. In addition, Cengiz et al.
reported the same variant with SNHL without any indications of thyroid or EVA [28].
A functional study on this variant by minigene splicing assay (p.Gly102Arg) detected
abnormally spliced transcripts that resulted in altered pendrin function and loss of iodide
efflux [27,29].

The nutritional status of iodine affects the onset of thyroidal abnormalities and the de-
velopment of goiter in PDS patients [7]. We do not think that it had an effect on our patients
as they are all living in the same region in Jordan where we have adequate iodine levels
with a urine iodine concentration median of around 203 µg/L [39]. Moreover, unaffected
family members and their family history are not known to have any thyroid manifestations.

This study showed a wide variety of phenotypes associated with SLC26A4 variants at
inter- and intra-familial levels. Only two patients had PDS (F1: IV−4 and F1: IV−5), one
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had DFNB4 (F1: IV−2), and the remaining patients had atypical PDS (F1: IV-3 and F2: IV-1
and IV−3). Unfortunately, we could not formulate a deferential diagnosis for F3: V−2 and
V−4 due to the limited available data.

SLC26A4 in the Middle Eastern countries. Two families from the United Arab Emirates
were reported to have disease-causing variants in SLC26A4 [16]. One of them had findings
suggestive of PDS within all affected family members, while the other had DFNB4 [16].
Another study conducted in Palestine revealed two families with variants in SLC26A4 [17].
One of these families was reported to have members with either DFNB4 or atypical PDS; the
individuals from the other family were found to have severe to profound HL [17]. Moreover,
three studies were reported from the Iranian population and described variable inter- and
intra-familial manifestations in the SLC26A4-related phenotypes [18–20]. Collectively, these
findings highlight that inter-and intra-familial variability of SLC26A4-related phenotypes
in the Middle East region can be evident in reports of certain countries but not others.

Previously, no significant associations were drawn between the types of SLC26A4
variants, the onset of HL, and the tendency for progression [13,40–46]. However, PDS
patients have been marked to have a worsening outcome of HL compared to DFNB4
patients. We believe this supports the idea that DFNB4 and PDS are continua to each
other [13]. A study on several SLC26A4 variants causing either PDS or DFNB4 showed that
pendrin function, which is iodide and chloride transportation to thyrocytes, was completely
lost in PDS but some of these ions were transported in DFNB4 [47]. This suggested that the
minimal residual function of pendrin in DFNB4 is good enough to prevent or delay the
onset of goiter [47]. Moreover, this wide variability in clinical aspects suggests that there
are other modifier genes or epigenetic changes affecting the phenotypes.

Given the variable phenotypic impact of SLC26A4, healthcare management needs
to be personalized. Typical PDS patients should follow up for malignant transformation.
Thiazide diuretics should not be administered to PDS patients to avoid hypovolemia
and metabolic alkalosis [14,15]. Atypical PDS patients, even if they do not manifest any
thyroid-related symptoms, should have the thyroid profile added to their periodic health-
care plan. DFNB4 patients, along with typical and atypical PDS, should be observed by
ENT physicians.

5. Conclusions

This study further stresses the variability associated with mutated SLC26A4’s pheno-
types and reports them for the first time in the Jordanian population. We identified three
variants in SLC26A4, two of which were novel. We studied the associated phenotypes,
which were variable at the intra-and inter-familial levels. Augmenting our current find-
ings with the previous and future corpus of genetic findings might pave the way to the
establishment of genotype–phenotype correlations. This study reveals the importance of
tailoring personalized medical care for individuals with variants in SLC26A4 based on their
associated phenotype. Early diagnosis of SLC26A4-related phenotypes can improve the
management of potential thyroid manifestations. This work creates an avenue towards con-
sidering SLC26A4 as part of the molecular testing for children presenting with congenital
or early-onset SNHL.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/genes13122192/s1, Table S1: The deafness-associated gene list
that was used for filtration; Table S2: The list of the variants and their details after the initial filtration;
Table S3: Primers for the identified variants in SLC26A4 that were used for the co-segregation analysis
by Sanger Sequencing.
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