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Abstract: Semantic communication is not focused on improving the accuracy of transmitted symbols,
but is concerned with expressing the expected meaning that the symbol sequence exactly carries.
However, the measurement of semantic messages and their corresponding codebook generation are
still open issues. Expansion, which integrates simple things into a complex system and even generates
intelligence, is truly consistent with the evolution of the human language system. We apply this idea
to the semantic communication system, quantifying semantic transmission by symbol sequences
and investigating the semantic information system in a similar way as Shannon’s method for digital
communication systems. This work is the first to discuss semantic expansion and knowledge collision
in the semantic information framework. Some important theoretical results are presented, including
the relationship between semantic expansion and the transmission information rate. We believe such
a semantic information framework may provide a new paradigm for semantic communications, and
semantic expansion and knowledge collision will be the cornerstone of semantic information theory.

Keywords: semantic information theory; semantic communications; information theory; 6G; game
theory

1. Introduction and Overview

It is well known that Shannon’s information theory [1] answers two fundamental
questions in digital communication theory [2], namely about the ultimate data compression
rate (answer: the entropy H) and the ultimate reliable transmission rate of communication
(answer: the channel capacity C). It also addresses technical implementation problems in
digital communication systems, enabling the end user to receive the same symbols as the
sender. However, with the ever-increasing demand for intelligent wireless communications,
communication architecture is evolving from only focusing on transmitting symbols to
the intelligent interconnection of everything [3]. In the 1950s, Weaver [4] discussed the
semantic problem of communications, and categorized communications into the following
three levels:

Level A. How accurately can the symbols of communication be transmitted? (The
technical problem.)

Level B. How precisely do the transmitted symbols convey the desired meaning? (The
semantic problem.)

Level C. How effectively does the received meaning affect conduct in the desired way?
(The effectiveness problem.)

Recently, semantic information theory including semantic communications has at-
tracted much attention. However, how to set up a reasonable and feasible measure of
semantic messages is still an open problem, which may be the greatest challenge for the
new developments of semantic communication (SC) systems. On the other hand, currently
in 6G networks, intelligent interconnections of everything will bring a new paradigm of the

Entropy 2022, 24, 1842. https://doi.org/10.3390/e24121842 https://www.mdpi.com/journal/entropy

https://doi.org/10.3390/e24121842
https://doi.org/10.3390/e24121842
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/0000-0002-8168-6870
https://orcid.org/0000-0002-0658-6079
https://doi.org/10.3390/e24121842
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e24121842?type=check_update&version=2


Entropy 2022, 24, 1842 2 of 14

communication mode with semantic interaction. In this regard, finding a way to quickly
reflect the semantic processing of messages will become one more promising pathway to
6G intelligent networking systems.

This paper proposes a new communication system framework based on information
framework expansion and knowledge collision. It extends Shannon’s theory of commu-
nication (Level A) to a theory of semantic communication (Level B). This work is initially
influenced by Choi and Park [5], but it provides further important contributions, which are
as follows:

• We generalize the work of Choi and Park from a single fixed semantic type to a
dynamic expansion mode, associated with knowledge collision, which can reflect the
asynchronous knowledge update processes between the sender and the receiver to
some degree. In addition, it also takes into account the effect of channel noise in the
new model.

• We present a new measure related to the semantic communication system based on
the framework with semantic expansion and knowledge collision, called the Measure
of Comprehension and Interpretation, which can be used to quantify the semantic
entropy of discrete sources.

• We discuss the additional gains from semantic expansion and find the relationship be-
tween the semantic expansion and the transmission information rate. We demonstrate
that knowledge matching of its asynchronous scaling up plays a key role in semantic
communications.

As a primary work, the system proposed in this paper only focuses on discrete cases
and makes some drastic simplifications. We assume that semantics are abstractly generated
only from signals and knowledge, without considering other factors. In addition, semantic
types, signals, responses, and knowledge instances (explained in Section 2) are represented
by random variables. Moreover, we do not focus on the effectiveness problem (Level C),
which is beyond the scope of this paper. However, we believe that these simplifications
are necessary for us to focus on the “core” issues to clearly explain and set up connec-
tions within a general semantic information theory. To the best of our knowledge, this
is the first study to explore the semantic expansion and the asynchronous scaling up of
semantic knowledge. The insights gained from this work may be of great assistance to the
development of future intelligent semantic communication systems and 6G.

The rest of this paper is organized as follows. Section 2 introduces the related work
of semantic communications. It summarizes the key concepts and theoretical results of
Shannon’s information theory and semantic information theory. In Section 3, we present the
new generalized model of semantic communications from two aspects, one is an attempt to
set up a close relationship with the Shannon communication model, and the other is to find
a feasible modification of the model so that it can exactly reflect the quick surge of semantic
communications from the user requirements. In Section 4, we lay out the implementation
details of the simulation and discuss the experimental results. Finally, we conclude the
paper in Section 5.

2. Related Work

In this section, we introduce the framework of semantic information theory, specif-
ically the key concept, semantic entropy. We then go on to explore the works that we
are concerned with, semantic communication as a signaling game with correlated knowl-
edge bases.

2.1. Preliminaries

Although Shannon’s information did not address the semantic problem of communi-
cations, it provided important insights into the message-processing techniques associated
with the focus of both the sender and the receiver’s attention. Thus, in this subsection, we
briefly introduce the main concepts and theoretical results of Shannon’s information theory.
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Entropy. It is a measure of the uncertainty of a random variable [2]. Let X be a discrete
random variable with alphabet X and probability mass function p(x) = Pr{X = x}, x ∈ X .
The entropy H(X) of X is defined as follows:

H(X) = − ∑
x∈X

p(x) log p(x). (1)

Mutual information. It is a measure of the amount of information that one random
variable contains about another. That is, mutual information can be seen as the reduction
in the uncertainty of one random variable due to the knowledge of the other. Let us
consider two random variables X and Y with a joint probability mass function p(x, y) and
the marginal probability mass functions p(x) and p(y). The mutual information between
X and Y is defined as follows:

I(X; Y) = ∑
x∈X

∑
y∈Y

p(x, y)
p(x, y)

p(x)p(y)
. (2)

Channel capacity. The channel capacity is the maximum amount of mutual informa-
tion given the conditional transit probability from X to Y, p(y|x). It is defined by

C = max
p(x)

I(X; Y), (3)

where X and Y are the input and output of the channel, respectively.
Source coding theorem. As N → ∞, N i.i.d. (independent identically distribution)

random variables with entropy H(X) can be compressed into a little more than NH(X) bits
to represent them completely, the information loss can be negligible in this case. Conversely,
if they are compressed into fewer than NH(X) bits, there will be errors with a non-zero
probability.

Channel coding theorem. For a discrete memoryless channel, all rates below capacity
C are achievable. Conversely, any sequence of codes with a negligible error must obey the
rule that its transmission rate R is not greater than the channel capacity, R ≤ C.

2.2. Semantic Information Theory

In the literature, there are some works that focus on the semantic information theory.
Carnap and Bar-Hillel [6] were the first to propose the concept of semantic entropy, using
logical probability rather than statistical probability to measure the semantic entropy of a
sentence. For simplicity, it is necessary here to clarify that we use p and m to denote statisti-
cal probability and logical probability in this paper, respectively. The logical probability of a
sentence is measured by the likelihood that the sentence is true in all possible situations [7].
Then, the semantic information of the message e is defined as follows:

HS(e) = − log2(m(e)), (4)

where m(e) is the logical probability of e. However, this metric led to a paradox that any
fact has an infinite amount of information when it contradicts itself, i.e., HS(e ∧ ¬e) = ∞.
Floridi [8] solved the paradox in Carnap and Bar-Hillel’s proposal [6], adopting the relative
distance of semantics to measure the amount of information.

Bao et al. [7] defined the semantic entropy of a message x as follows:

HS(x) = − log2(m(x)), (5)

where the logical probability of x is given by

m(x) =
µ(Wx)

µ(W)
=

∑
w∈W,w|=x

µ(w)

∑
w∈W

µ(w)
. (6)
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W is the symbol set of a source, |= is the proposition satisfaction relation, and Wx is the set
of models for x. In addition, µ is a probability measure, ∑

w∈W
µ(w) = 1.

Besides the logical probability, there are some definitions of semantic entropy based on
different backgrounds [9,10]. D’Alfonso [11] utilized the notion of truthlikeness to quantify
semantic information. Kolchinsky and Wolpert [12] defined semantic entropy as the
syntactic information that a physical system has about its environment, which is necessary
for the system to maintain its own existence. Kountouris and Pappas [13] advocated for
assessing and extracting the semantic value of data at three different granularity levels,
namely the microscopic scale, mesoscopic scale, and macroscopic scale.

Analogous to Shannon’s information theory, some related theories at the semantic level,
such as semantic channel capacity, semantic rate distortion, and information bottleneck [14],
are also explored. Based on (5), Bao et al. further proposed the semantic channel coding
theorem [7]. Moreover, Liu et al. [15] formulated rate distortion in semantic communication
as follows:

R(Ds, Dw) = min I(W; X̂, Ŵ) (7)

where Ds is the semantic distortion between source, X, and recovered information, X̂,
at the receiver. Dw is the distortion between semantic representation, W, and received
semantic representation, Ŵ. In addition, some works [16,17] generalized it, leading to the
development of semantic rate distortion theory.

In recent years, the fusion of semantic communication algorithms and learning the-
ory [18–21] has driven the changes in communication architecture. Although these explo-
rations did not fully open the door to semantic communication, they provided us with the
motivation to move forward theoretically.

2.3. Semantic Communication as a Lewis Signaling Game with Knowledge Bases

Recently, Choi and Park [5] proposed an SC model based on the Lewis signaling game,
which provided some meaningful results. Their work motivated us to conduct this study
to some degree. Further, we make a generalization of this model by adding the scaling
up update module of the knowledge instance at both the sender and the receiver, which
may be asynchronous, and closer to real semantic communications in the era of intelligent
communication, i.e., human to robots, robots to robots, machines to machines and cells to
cells in bio-molecular communications, etc. Thus, we provide further details.

Suppose there is a semantic communication system where Alice is the sender and Bob
is the receiver. Let T ∈ T denote the semantic type that includes semantic information or
messages. Alice wishes to transmit T to Bob by sending a signal S ∈ S , and Bob chooses
its response R ∈ R. Both Alice and Bob utilize their local knowledge bases KA and KB,
respectively. The semantic architecture can be described as follows:

KA KB

↓ ↓
T → S → R (= T̂),

where KA ∈ KA and KB ∈ KB are knowledge instances. If R = T, the communication
process can be seen as successful. Moreover, the reward for one communication is defined
as follows:

u =

{
1, if R = T;

0, otherwise.
(8)

Our object is to maximize the average reward. We use the success rate of semantic agreement
(SRSA) to represent it.

The knowledge base can be regarded as the side information. Alice has her knowledge
base KA. The instance of Alice’s knowledge base at each time is KA ∈ KA, which affects the
generation of semantic types. On the other hand, Bob has his knowledge base KB and its
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instance is KB ∈ KB. KB is the “core”, which is used to infer the intended message together
with the received signal.

Based on these foundations, Choi and Park [5] derived some meaningful results. On
the one hand, the similarity of the two knowledge instances plays a crucial role in SC. With
limited bandwidth, the communication quality is regulated by I(KA; KB|S). On the other
hand, the SRSA is dependent on the similarity of knowledge bases at both ends of the
communication, the sender and the receiver. However, a close relationship with Shannon’s
communication model was not established. In this work, we will construct a generalization
of the model by adding the knowledge scaling up update module at both the sender and the
receiver, which may be asynchronous, but it can closely reflect the quick surge of semantic
communications in many potential applications.

3. Semantic Communication Models

In this section, we will present the generalized model of semantic communications
from two different aspects, one is an attempt to set up a close relationship with the Shannon
communication model, and the other is to find a feasible modification of the model so that it
can exactly reflect the quick surge of semantic communications from the user requirements.
In this regard, we first set up a basic model, and then extend it by adding the knowledge
base update functional module with information framework expansion and knowledge
collision.

3.1. Motivation

Shannon’s communication system is concerned with the accurate transmission of
symbols over channels. However, it does not take into account the differences in the
knowledge backgrounds of the two parties, which affect whether the communication can
convey the desired meaning. In other words, the matching of knowledge can also be treated
as another special channel, although it may not actually exist in an explicit form. In this
work, we denote it as a virtual channel. We want to fill this gap and propose an intelligent
communication system with the coexistence of the real channel and virtual channel, making
it easier to formulate the information framework. Thus, we consider not only the physical
channel for symbol transmission but also the virtual channel for the transfer of knowledge
between two parties. Moreover, the knowledge of both parties is also evolving, so we take
into account the asynchronous scaling up updates of knowledge and semantic expansion.

3.2. Basic Model

Let us first observe the channel, which is the physical medium of message exchange,
and plays a key role in the model setup of a complete semantic communication system.
A communication channel is a system in which the output depends probabilistically on its
input [2]. For simplification, we still use Alice and Bob as the two parties participating in
the communication. Suppose Alice and Bob are at opposite ends of a memoryless channel,
which can transmit physical signals. The channel is said to be memoryless if the probability
distribution of the output depends only on the input at that time and it is conditionally
independent of previous inputs or outputs. That is, the output of the channel is only related
to the input at the current moment and no feedback processing is considered here.

We use S and Ŝ to represent the input and output of the channel. Under the interference
of the noise, the signal S becomes Ŝ through channel transmission. Specifically, Alice
observes the input S of the channel, and Bob observes the output Ŝ. Let KA and KB
represent the knowledge instance possessed by Alice and Bob, respectively. On the one
hand, Alice encodes S as T with KA. This means that Alice uses the knowledge instance
KA to process the signal S, resulting in the semantic type T, i.e., (S, KA)→ T. On the other
hand, Bob decodes Ŝ into the response R with KB, which can be expressed as (Ŝ, KB)→ R.
The architecture of this process can be expressed as follows:
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T ← S
(a)−→ Ŝ → R (= T̂)

↑ ↑

KA
(b)
99K KB

(9)

We denote the process (S, KA)→ T as semantic encoding and (Ŝ, KB)→ T̂ as semantic
decoding. They indicate the understanding of meaning at the semantic level by both parties.
The definitions of symbols are summarized as follows:

• Semantic Types: T = tk, k = 1, . . . , |T |, is a random variable that is generated by Alice.
• Signals: S = sl , l = 1, . . . , |S|, is a signal that Alice sends to Bob.
• Responses: R = rn, n = 1, . . . , |R|, is a response that Bob chooses.
• Knowledge instances: KA ∈ KA and KB ∈ KB represent the knowledge instance used

by Alice and Bob during semantic encoding and decoding, respectively.

Lemma 1. Under the knowledge instances KA and KB, the mutual information between T and T̂
is obtained as follows:

I(T; T̂) = I(S; Ŝ) + I(KA; KB|S, Ŝ) + I(S; KB|Ŝ) + I(Ŝ; KA|S) (10)

where I(KA; KB|S, Ŝ), I(S; KB|Ŝ) and I(Ŝ; KA|S) represent the conditional mutual information.

Proof. Since (S, KA) → T and (Ŝ, KB) → T̂, we obtain H(T) = H(KA, S) and H(T̂) =
H(KB, Ŝ). With the characteristics of entropy and mutual information, it follows that

I(T; T̂) = H(T)− H(T|T̂) (11)

= H(KA, S)− H(KA, S|KB, Ŝ) (12)

= H(S) + H(KA|S)− H(S|KB, Ŝ)− H(KA|KB, S, Ŝ) (13)

= H(S)− H(S|KB, Ŝ) + H(KA|S)− H(KA|KB, S, Ŝ) (14)

= I(S; KB, Ŝ) + I(KA; KB, Ŝ|S) (15)

= I(S; Ŝ) + I(KA; KB|S, Ŝ) + I(S; KB|Ŝ) + I(Ŝ; KA|S), (16)

which completes the proof.

The mutual information between T and T̂ reflects the effectiveness of communication.
It indicates the highest rate in bits per channel use at which information can be sent with
an arbitrarily low probability of error. We note that I(T; T̂) consists of the following three
terms:

1. I(S; Ŝ), the mutual information between the input and output of the channel. It
corresponds to the channel capacity in Shannon’s information theory.

2. I(KA; KB|S, Ŝ), the mutual information between KA and KB given S and Ŝ. It indicates
the amount of information that two knowledge instances contain about each other
when signals are known.

3. I(S; KB|Ŝ) + I(Ŝ; KA|S), the conditional mutual information between S and KB, Ŝ and
KA.

From Equation (10), we know that if Bob wants to fully understand what Alice means,
the communication process needs to meet two conditions, one is the accuracy of the
received symbols during channel transmission, and the other is the matching degree of the
knowledge instances of both parties. In other words, (i) The transmission S → Ŝ should
be reliable. It indicates the effect of channel noise on signal transmission. Moreover, the
physical carrier of this process actually exists, which we call an explicit channel. (ii) The
two knowledge instances should be similar. Although there is no actual transmission
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between KA and KB, we assume that there is a virtual channel that reflects the probabilistic
relationship between knowledge instances, which we call an implicit channel. The explicit
channel and implicit channel together form the transmission medium of a communication
system. Specifically, the characteristics of the explicit channel determine the value of the
first term in Equation (10), and the implicit channel determines the second term. In addition,
the last term is affected by both explicit and implicit channels.

If the communication system has only the explicit channel, it degenerates to the
Shannon case, and I(T; T̂) = I(S; Ŝ). Furthermore, we are interested in the following three
special cases (demonstrated in Appendix A).

I. The explicit channel is noiseless, i.e., S = Ŝ. In this setting, the Formula (10) can be
simplified to

I(T; T̂) = H(S) + I(KA; KB|S), (17)

which is consistent with the result in [5]. The mutual information between T and T̂
is subjected to the entropy of the signal S and the conditional mutual information
between KA and KB given S. In semantic communications or emergent communica-
tions, the signal S is usually limited. According to Equation (17), one can increase
the conditional mutual information between KA and KB to solve the problem from
another perspective. In other words, in the case of limited technical bandwidth, the
SC performance can be improved by increasing the similarity between two knowledge
instances.

II. The implicit channel is noiseless, i.e., KA = KB. This means that Alice and Bob
have the same knowledge instance, so the communication performance will not be
affected by the difference in the background of both parties. I(T; T̂) can be expressed
as follows:

I(T; T̂) = I(S; Ŝ) + H(KA)− I(KA; S; Ŝ) (18)

I(T; T̂) = I(S; Ŝ) + H(KB)− I(KB; S; Ŝ), (19)

where I(KA; S; Ŝ) = I(KA; S) − I(KA; S|Ŝ) is the mutual information between KA,
S and Ŝ. Even when the implicit channel is noiseless, I(T; T̂) is not exactly equal
to I(S; Ŝ), and we cannot ignore the influence of knowledge in SC. Compared to
Shannon’s channel capacity, it adds a term, regulated by the relationship between the
knowledge instance and the signal.

Corollary 1. If the implicit channel is noiseless, the mutual information between T and T̂ satisfies

I(S; Ŝ)
(a)
≤ I(T; T̂)

(b)
≤ I(S; Ŝ) + H(KA). (20)

Moreover, if KA is a function of S and Ŝ, the left equation (a) holds; if KA is independent of the
signal S or Ŝ, the right equation (b) holds.

Proof. The non-negativity of mutual information, I(KA; S; Ŝ) ≥ 0, means that I(T; T̂) can
be upper bounded by I(S; Ŝ) + H(KA). Because the mutual information is lower than the
entropy, we obtain H(KA)− I(KA; S; Ŝ) ≥ 0. By combining these results, we obtain

I(S; Ŝ) ≤ I(T; T̂) ≤ I(S; Ŝ) + H(KA), (21)

which completes the proof of the bound of I(T; T̂).

III. Both explicit and implicit channels are noiseless, i.e., S = Ŝ, KA = KB. In this
setting, the mutual information between T and T̂ equals the entropy of T or T̂,

I(T; T̂) = H(T) = H(T̂). (22)
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Equation (22) indicates that Bob can perfectly understand the meaning of Alice when
channels are noiseless. That is, no information is lost.

The following result shows the bounds of SRSA, constrained by the characteristics of
the explicit and implicit channels.

Lemma 2. The SRSA satisfies

SRSA = Pr{T = T̂} ≤ 1− H(KA, S|KB, Ŝ)− 1
log |T | (23)

Proof. (KB, Ŝ) can be seen as an estimator for (KA, S). Let Pe = Pr{T 6= T̂}; then, with
Fano’s Inequality, we obtain

Pe ≥
H(KA, S|KB, Ŝ)− 1

log |T | (24)

Since SRSA= 1− Pe, we can obtain Equation (23), which completes the proof.

3.3. EXK-SC Model

Let S1 and S2 denote the input signals of the explicit channel. Ŝ1 and Ŝ2 are their
corresponding output signals. Similarly, K1

A and K2
A represent Alice’s knowledge instances.

Alice encodes S1 as T1 with K1
A, and S2 as T2 with K2

A. On the other hand, Bob uses K1
B and

K2
B, decoding Ŝ1 and Ŝ2 into T̂1 and T̂2, respectively. In the basic model, the encoding and

decoding processes of the two transmissions are

S1, K1
A → T1 Ŝ1, K1

B → T̂1 (25)

S2, K2
A → T2 Ŝ2, K2

B → T̂2 (26)

It is well known that the integration of lots of simple things can be expanded to a
complex system and can even generate intelligence. Such an expansion process is consistent
with the evolution of the human language system. Based on a similar idea, we extend the
basic model proposed in Section 2.3 using expansion. In this context, Alice wishes to send
an expansion of multiple signals to Bob. We first consider the case of two signals, which
can be generalized to more instances. Now, what Alice sends is expanded from S = S1
to S = S1 ⊕ T2. We use ⊕ to denote semantic expansion. Specifically, the expansion of
signals only represents their semantic combination. For instance, ’ Shannon published a paper’
expands to ’Shannon published a paper in The Bell system technical journal [1]’.

As known, expansion often implies collision and fusion. Similarly, the expansion
of signals corresponds to the collision of knowledge bases in this work. For Alice, we

use KA = K1
A

α
�K2

A to represent the collision process, where � denotes the collision and
α is the collision factor. Specifically, α is between 0 and 1, determined by the task. The
collision factor reflects the role of K2

A compared to K1
A when the collision occurs. It can

also be understood as the relative proportion of the contribution to the newly generated
knowledge instance. The process of collision represents the knowledge scaling up updates,

which may be synchronous or asynchronous. Similarly, we use KB = K1
B

β
�K2

B to represent
the knowledge collision of Bob, where β is a collision factor. The expansion and collision
process can proceed continuously as follows:

S = S1 ⊕ S2 ⊕ S3 · · · ⊕ Sn (27)

KA = K1
A

α1
�K2

A
α2
�K3

A · · ·
αn−1
� Kn

A (28)

KB = K1
B

β
�K2

B

β2
�K3

B · · ·
βn−1
� Kn

B. (29)
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Without loss of generality, the one-step expansion architecture of semantic communi-
cations is described as follows:

S
(a)−→ Ŝ

⇑ ⇓
T ← S1 ⊕ S2 Ŝ1 ⊕ Ŝ2 → R (= T̂)

↑ (c) ↑ (d)

K1
A

α
�K2

A
(b)
99K K1

B

β
�K2

B

(30)

We named it EXK-SC. Moreover, H(S1⊕ S2, K1
A

α
�K2

A) is called the Measure of Compre-
hension and Interpretation (MCI), which reflects the generation and evolution of semantics.
It should be noted that T is not a simple logic combination of T1 and T2, i.e., T 6= T1 ⊕ T2.
For example, T1 is ‘Apple Inc.’, it is a company and S1 can be ‘Apple’. T2 is ‘the thirteenth
generation’, it is a number and S2 can be ‘thirteen’. However, their collision may give rise
to a new word called ‘iphone’, which is a mobile communication product. In particular, T
reflects the result of S under the influence of knowledge collision.

Based on these definitions above, we obtain some new results.

Lemma 3. The mutual information between T and T̂ is given by

I(T; T̂) = I(S; Ŝ) + I(K1
A

α
�K2

A; K1
B

β
�K2

B|S, Ŝ) + I(S; K1
B

β
�K2

B|Ŝ) + I(Ŝ; K1
A

α
�K2

A|S). (31)

Proof. It is similar to that of Lemma 1, we omit the proof here.

Equation (31) indicates that besides the characteristics of explicit and implicit channels,
the relationship between α and β also affects the performance of communication.

Lemma 4. When the explicit channel is noiseless, the gain brought by semantic expansion is
given by

I(T; T̂)− I(T1; T̂1) = (1 + γ)(H(S)− H(S1)), (32)

where

γ =
I(K1

A
α
�K2

A; K1
B

β
�K2

B|S1 ⊕ S2)− I(K1
A; K1

B|S1)

H(S1 ⊕ S2)− H(S1)
. (33)

Proof. We note that
I(T1; T̂1) = H(S1) + I(K1

A; K1
B|S1). (34)

Then,

I(T; T̂)− I(T1; T̂1)

H(S)− H(S1)
(35)

=
H(S) + I(K1

A
α
�K2

A; K1
B

β
�K2

B|S)− H(S1)− I(K1
A; K1

B|S1)

H(S1 ⊕ S2)− H(S1)
(36)

= 1 +
I(K1

A
α
�K2

A; K1
B

β
�K2

B|S)− I(K1
A; K1

B|S1)

H(S1 ⊕ S2)− H(S1)
(37)

= 1 + γ. (38)
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We have

I(T; T̂)− I(T1; T̂1) = (1 + γ)(H(S)− H(S1)), (39)

which completes the proof.

Lemma 4 shows that the semantic enhancement, I(T; T̂)− I(T1; T̂1), is determined
not only by the knowledge scaling up but also by the cost of the information rate over the
explicit physical channel, H(S)− H(S1). It exactly illustrates the relationship between the
semantic expansion and the transmission information rate.

Lemma 5. When the explicit channel is noiseless, the mutual information between T and T̂ is
bounded by

1
2
(H(S1) + H(S2)) ≤ I(T; T̂) ≤ H(K1

A
α
�K2

A) + H(S) (40)

Proof. Since expansion would create more possibilities, leading to an increase in uncer-
tainty, we can obtain

H(S1 ⊕ S2) ≥ H(S1) H(S1 ⊕ S2) ≥ H(S2). (41)

Because of the non-negativity of entropy and conditioning reduces entropy, Equation (40) can be
derived directly. We omit the proof.

Lemma 5 shows the bounds of the semantic communication rate in the perfect explicit
channel mode. The upper bound is composed of the entropy rate over the explicit channel
and the collision of knowledge instances of the sender, which is reasonable, as expected.

4. Experiment and Numerical Results

In this section, we use SRSA to measure the performance of SC, especially the impact
that asynchronous knowledge scaling up has on the system.

Basic Model. We use Q-learning in [22] to complete semantic encoding and decoding,
which may reflect the continuous semantic learning process. Let |S| = M = 2, |KA| =
|KB| = L = 2, |T | = L2M2. In addition, S, KA and KB are uniformly distributed. We would
like to discuss the impact of the characteristics of the explicit channel and implicit channel
on SC. We use the binary symmetric channel (BSC) to denote the explicit channel. The BSC
is shown in Figure 1, which shows the probabilistic relationship between S and Ŝ, with the
error probability ε1.

 

!

 

!

 ! "#

 ! "#

"#

"#

Figure 1. Binary symmetric channel.

For the implicit channel, we assume the correlation between KA and KB satisfies

KB =

{
KA, with probability 1− ε2

U, with probability ε2,

where U ∼ Unif{1, L} is an independent random variable. ε2 illustrates the discrepancy
between the knowledge bases at both parties of communications, 0 < ε2 < 1. In Figure 2,
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we show the SRSA with ε1 ∈ [0, 0.5] and ε2 ∈ [0, 0.5]. When ε1 = ε2 = 0, SRSA reaches the
maximum 1. As ε1 and ε2 increase, SASA will decrease in both directions. This indicates
that two channels jointly determine the quality of communication. For high-quality SC, it
is necessary to meet the condition that Ŝ = S and KB = KA with a high probability.

0.4
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0.6

0.1 0

0.7

S
R

S
A

0.8

0.2 0.1

2

0.9

0.2

1

0.3

1

0.3
0.4

0.4

0.5

Figure 2. The simulation results of SRSA with the explicit channel error probability ε1 and the implicit
channel error probability ε2.

In addition, we discuss the impact of explicit and implicit channels on SC, respectively.
We take the channel error ε1 and ε2 as the horizontal axis, and the SRSA entering the
stable region as the vertical axis. Figure 3a shows the results of the explicit channel. As ε1
increases, the mean value of SRSA first decreases and then has a gradual increase. When
ε1 = 0 or 1, the communication performance is the best and the mean is close to 1. Moreover,
it falls to a low point when ε1 = 0.5. On the other hand, the trend of variance is completely
opposite to that of the mean. These results are consistent with the description of channels
in Shannon’s information theory. Figure 3b shows the results of the implicit channel. As ε2
increases, the mean value of SRSA keeps decreasing, and the variance increases. It reflects
the impact of knowledge misalignment on SC.
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Figure 3. A comparison of the impact of explicit and implicit channels on SC. (a) Explicit channel.
(b) Implicit channel.

EXK-SC Model. We want to explore how semantic communication quality varies in
the context of different relationships between the receiver and the sender’s knowledge
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instance. For simplicity, we assume that the explicit channel is noiseless, so we can focus on
knowledge updates. That is, SRSA varies with the relationship of K1

B, K2
B, β, and K1

A, K2
A, α.

We categorize it into four cases.

• Case I: K1
B = K1

A, K2
B = K2

A and β = α. The implicit channel is noiseless. Bob has the
same asynchronous knowledge scaling-up updates mode as Alice. That is, the receiver
has all the knowledge of the sender.

• Case II: K1
B 6= K1

A (with error probability 0.5), K2
B = K2

A and β = α. The receiver has
partial knowledge of the sender.

• Case III: K1
B = K1

A, K2
B 6= K2

A (with error probability 0.5) and β = α. The receiver has
partial knowledge of the sender.

• Case IV: K1
B = K1

A, K2
B = K2

A and β = 1
2 α. The collision factors are not equal to this.

The symbols K1
A, K2

A, α, K1
B, K2

B, β are consistent with the definitions in Section 3.3.
Figure 4 illustrates the simulation results of SRSA with the number of runs, where Figure 4a
is the mean and Figure 4b is the variance. In all four cases, the mean of SRSA gradually
converges to a stable region. Case I is close to 1, which implies that when the receiver has
all the knowledge of the sender, it can express exactly the same semantics as the sender.
In other words, Bob has the same asynchronous knowledge scaling-up updates mode as
Alice, which facilitates the success of SC. The curves of case II and III are almost the same,
but the value of case II is always higher than that of case III. This is as expected because
K1

A and K1
B play a leading role in the collision compared to K2

A and K2
B. Case IV reflects the

learning of SRSA when Bob and Alice have different collision factors. The value of case
IV is higher than that of II and III, which indicates that the collision factor plays a smaller
role than the knowledge itself in SC. These results also show that learning can improve SC
quality with only partial background knowledge; however, there is an upper bound. On
the other hand, the variance of case I continues decreasing, and the other three cases also
stabilize after peaking quickly. This further suggests that learning can evolve continuously
with full knowledge, but there is an upper limit to it only with partial or no knowledge.
This can be treated as the cost resulting from the imperfect knowledge base.
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Figure 4. The simulation results of SRSA with the number of runs. We divide it into four cases. Case
I: K1

B = K1
A, K2

B = K2
A and β = α; II: K1

B 6= K1
A (with an error probability of 0.5), K2

B = K2
A and β = α;

III: K1
B = K1

A, K2
B 6= K2

A (with an error probability of 0.5) and β = α; IV: K1
B = K1

A, K2
B = K2

A and
β = 1

2 α. (a) The mean of SRSA. (b) The variance of SRSA.

5. Conclusions

In this paper, we presented the concept of semantic expansion and knowledge colli-
sion in SC. It represents the combination and superposition of information by the sender.
Based on semantic expansion, we further proposed a semantic communication system
called EXK-SC. Moreover, semantic expansion corresponds to knowledge collision, which
provides the possibility for the evolution and upgrading of communication systems. On
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the other hand, we reached some conclusions for semantic information theory in the con-
text of asynchronous scaling up updates of knowledge, while obtaining some bounds
for SC. Specifically, the receiver’s understanding of the knowledge collision and updates
determines the effectiveness of semantic communication.

It should be pointed out that in the near future, task-oriented semantic communication
designs under this new framework may emerge as an interesting topic. Another topic of
interest is how to set up the type class methods to provide more insights on the knowledge
base formulation and the system design, which requires further study. Semantic commu-
nication is evolving towards intelligence. The insights gained from this work may be of
assistance to the development of future semantic communication systems and 6G. It is also
expected to pave the way for the design of next-generation real-time data networking and
provide the foundational technology for a plethora of socially useful services, including
autonomous transportation, consumer robotics, VR/AR, and the metaverse.
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Appendix A. Proof of the Mutual Information for Three Special Channel Cases

I. The explicit channel is noiseless. Since S = Ŝ, we have I(S; Ŝ) = H(S) and I(KA; KB|S, Ŝ)
= I(KA; KB|S). Moreover, S is a function of Ŝ, it follows that I(S; KB|Ŝ) = 0. Similarly,
Ŝ is also a function of S, and we obtain I(Ŝ; KA|S) = 0. Thus, the formula (10) can be
simplified to

I(T; T̂) = H(S) + I(KA; KB|S), (A1)

II. The implicit channel is noiseless. Since KA = KB, the mutual information between
T and T̂ is written as follows:

I(T; T̂) = I(S; Ŝ) + I(KA; KB|S, Ŝ) + I(S; KB|Ŝ) + I(Ŝ; KA|S) (A2)

= I(S; Ŝ) + H(KA|S, Ŝ) + I(S; KA|Ŝ) + I(Ŝ; KA|S) (A3)

= I(S; Ŝ) + H(KA)− I(KA; S, Ŝ) + I(S; KA|Ŝ) + I(Ŝ; KA|S) (A4)

= I(S; Ŝ) + H(KA)− I(KA; S)− I(KA; Ŝ|S) + I(S; KA|Ŝ) + I(Ŝ; KA|S) (A5)

= I(S; Ŝ) + H(KA)− I(KA; S) + I(KA; S|Ŝ) (A6)

= I(S; Ŝ) + H(KA)− I(KA; S; Ŝ). (A7)

It can also be expressed as follows:

I(T; T̂) = I(S; Ŝ) + H(KB)− I(KB; S; Ŝ). (A8)

III. Both explicit and implicit channels are noiseless, i.e., S = Ŝ, KA = KB. In this
setting, we have I(KA; KB|S) = H(KA|S). Thus, Equation (17) is written as follows:

I(T; T̂) = H(S) + H(KA|S) = H(KA, S) = H(T). (A9)



Entropy 2022, 24, 1842 14 of 14

Similarly, we also obtain I(T; T̂) = H(T̂).
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