Skip to main content
. 2022 Dec 9;19(24):16583. doi: 10.3390/ijerph192416583

Table 3.

Univariate logistic regression analysis of associations of sociodemographic variables with smartphone addiction, N = 440.

Non-Smartphone
Addicted
Smartphone Addicted OR 95% CI p
n (%) n (%) Lower Upper
Gender
Male 74 (43.5) 160 (59.3) 1.88 1.28 2.78 0.001
Female 96 (56.5) 110 (40.7) Ref.
Age
≤25 92 (54.1) 184 (68.1) 2.88 1.50 5.53 0.001
26–30 52 (30.6) 68 (25.2) 1.88 0.93 3.80 0.075
≥31 26 (15.3) 18 (6.7) Ref.
Occupation status
Employed 60 (35.3) 67 (24.8) Ref.
Unemployed 20 (11.8) 46 (17.0) 2.06 1.09 3.84 0.025
Students 90 (52.9) 157 (58.1) 1.56 1.01 2.41 0.044
Family monthly income
<5000 TK 14 (8.2) 25 (9.3) Ref.
5000–<10,000 TK 21 (12.4) 35 (13.0) 0.93 0.39 2.18 0.873
10,000–<20,000 TK 39 (22.9) 70 (25.9) 1.00 0.46 2.15 0.990
≥20,000 TK 96 (56.5) 140 (51.9) 0.81 0.40 1.65 0.573
Marital status
Single 120 (70.6) 210 (77.8) Ref.
Married 48 (28.2) 51 (20.4) 0.65 0.41 1.02 0.064
Divorced/Widowed/Others 2 (1.2) 5 (1.9) 1.42 0.27 7.47 0.673
Family size
Small (≤4) 90 (52.9) 114 (42.2) Ref.
Average (5–7) 75 (44.1) 131 (48.5) 1.37 0.92 2.04 0.112
Large (≥8) 5 (2.9) 25 (9.3) 1.42 1.45 10.72 0.007
Education level
Primary or secondary 19 (11.2) 28 (10.4) Ref.
College or university qualification 151 (88.8) 242 (89.6) 1.08 0.58 2.01 0.790

OR = odds ratio, CI = confidence interval, A p-Value ≤ 0.05 was considered significant.