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Abstract

C57BL/6J (B6J) and C57BL/6N (B6N) mice are the most frequently used substrains in

C57BL/6 (B6) inbred mice, serving as physiological models for in vivo studies and as back-

ground strains to build transgenic mice. However, the differences in metabolic phenotypes

between B6J and B6N mice are not coherent, and genotypic differences in metabolically

important tissues have not been well studied. The phenotypic differences between B6J and

B6N substrains have often been attributed to the role of the nicotinamide nucleotide transhy-

drogenase (Nnt) gene, whereby B6J has a spontaneous missense mutation of Nnt. Never-

theless, phenotypic differences between the two cannot be explained by Nnt mutations

alone, especially in metabolic traits. Therefore, we aimed to investigate the genetic cause of

the phenotypic differences between B6J and B6N mice. Determining consistent genetic dif-

ferences across multiple tissues involved in metabolic traits such as subcutaneous and vis-

ceral white adipose tissues, brown adipose tissue, skeletal muscle, liver, hypothalamus,

and hippocampus, may help explain phenotypic differences in metabolism between the two

substrains. We report candidate genes along with comparative data on body weight, tissue

weight, blood components involved in metabolism, and energy balance of B6J and B6N

mice. Insulin degrading enzyme, adenylosuccinate synthase 2, and ectonucleotide triphos-

phate diphosphohydrolase 4 were highly expressed in B6J mice compared with those in

B6N mice, and Nnt, WD repeat and FYVE domain containing 1, and dynein light chain

Tctex-type 1 were less expressed in B6J mice compared with those in B6N mice in all seven

tissues. Considering the extremely wide use of both substrains and their critical importance

in generating transgenic and knock-out models, these findings guide future research across

several interrelated fields.
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Introduction

C57BL-derived inbred mouse B6 is currently the most frequently used laboratory animal and

is a vital tool in various biomedical studies, with more than 20 different substrains. Among

these substrains, B6J and B6N mice are the most commonly used, owing to their strain stability

and ease of breeding. B6J was the first mouse substrain that had its genome fully sequenced

[1]; thus, many transgenic mice, including those produced using the Cre-lox and FLP-FRT

recombination systems, have been generated with a B6J background, and in vivo studies using

B6J as physiological or pathological models have increased rapidly. However, the B6N sub-

strain has recently become more common and standardized because it was used as the

embryonic stem cell line for large-scale knockout generation and phenotyping projects (e.g.,
International Knockout Mouse Consortium, International Mouse Phenotyping Consortium,

and NIH Knockout Mouse Project), generating more than 5,000 targeted mutant mouse lines

that are currently available to researchers worldwide [2]. Thus, both the B6J and B6N mice

substrains have become indispensable and exclusive materials. Nevertheless, researchers are

indifferent to the genetic and phenotypic differences between the two substrains [3, 4], and

generate mice with mixed substrains [5], or do not explicitly address the substrain distinction

in their publications [6]. Moreover, these unaddressed differences can lead to confounding

experimental outcomes or misinterpretations; therefore, comprehensive information about

the properties of these mouse substrains needs to be ascertained.

To date, various genomic differences such as indels, structural variations, and single nucleo-

tide polymorphisms (SNPs), as well as phenotypic differences between B6J and B6N, have

been reviewed [3, 7], some of which are known to be associated with pathogenesis and require

caution when conducting experiments in such areas. For instance, ophthalmic problems have

been known to occur in B6N mice [7, 8], regardless of genetic engineering [9, 10], as the sub-

strain carries a single nucleotide deletion that causes a frameshift mutation and subsequent

protein truncation in the crumbs cell polarity complex component 1 (Crb1) gene, which is

associated with retinal degeneration. Therefore, in ocular research, it would not be appropriate

to choose B6N as a background or in vivomodel, crossbreed it with B6J, or compare it with

B6J. Similarly, these substrain differences must be considered when selecting mouse substrains

in metabolic studies.

Many phenotypic differences [11–24] between B6J and B6N, especially in metabolic traits

such as glucose tolerance, insulin secretion, and body weight, have been attributed to loss of

function mutations in the nicotinamide nucleotide transhydrogenase (Nnt) gene, including

deletion of five exons and a missense mutation within the Nnt locus, which is harbored only in

B6J mice [11, 25, 26]. However, conflicting data that do not correlate with Nntmutations exist

for differences in body weight between the two substrains, with reports of B6J mice weighing

more than B6N mice [12–14, 27, 28], B6J mice weighing less than B6N mice [15, 29–32], and

no difference in body weight between the two substrains [16, 17, 33]. In addition, conflicting

data also exist regarding whether glucose tolerance and insulin secretion are impaired in B6J

or B6N mice [12–19, 29, 31, 33]. These contradictory reports suggest that Nnt is not the only

genetic variant that needs to be considered, and other unknown variants that affect metabolic

traits in these substrains need to be ascertained.

In this study, we aimed to investigate the genetic causes of the phenotypic differences

between B6J and B6N substrains other than Nnt by comparing mice with spontaneous lack of

Nnt and Nnt-wild type mice. Metabolic phenotypic differences between B6J and B6N sub-

strains were characterized by examining blood components involved in metabolism, energy

balance, and body and tissue weight. Determining consistent genetic differences across multi-

ple tissues involved in metabolic traits such as subcutaneous and visceral white adipose tissues,
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brown adipose tissue, muscle, liver, and brain may help explain phenotypic differences in

metabolism between the two substrains. Considering the extremely wide use of both substrains

and their critical importance in generating transgenic and knock-out models, these findings

guide future research across several interrelated fields.

Materials and methods

Animals and experimental design

All experimental procedures were approved and performed in accordance with the Institu-

tional Animal Care and Use Committee of the RIKEN Yokohama Campus. Seven-week- old

male C57BL/6J and C57BL/6NCrl mice were purchased from the Oriental Yeast Company,

Ltd. (Shiga, Japan). Genotyping for nicotinamide nucleotide transhydrogenase (Nnt) in both

substrains confirmed that only B6J lacks NNT (S1 Fig). Mice were acclimated for 1 week and

maintained on an alternating 12 h light/dark cycle at a temperature of 23 ˚C, with free access

to food and water. After the acclimatization period, the mice were randomly divided into two

experimental groups per strain (n = 5 per group): normal diet (ND) (CLEA Rodent Diet CE-2;

CLEA Japan Inc., Shizuoka, Japan) or a high-fat diet (HF) (High-Fat Diet 32; CLEA Japan

Inc.) for 30 weeks. The basic diet composition is shown in S1 Table. At the age of 20–30 weeks

old, a metabolic assessment was performed. At the age of 38 weeks old, mice were euthanized

under isoflurane anesthesia, and blood and organs were collected. Inguinal white adipose tis-

sue (iWAT), epididymal white adipose tissue (eWAT), brown adipose tissue (BAT), skeletal

soleus muscle (muscle), liver, hypothalamus (Hyt), and hippocampus (Hic) were rapidly

removed, weighed, and submerged in RNAlater solution (Thermo Fisher Scientific, Waltham,

MA, USA) at 4 ˚C for 20 h, and stored at –20 ˚C. The timeline of the experiment is demon-

strated in S2 Fig.

Plasma parameters

Blood glucose levels were determined using a compact glucose analyzer (Glutest Sensor;

Sanwa Kagaku, Nagoya, Japan). Plasma insulin (Morinaga Institute of Biological Science,

Kanagawa, Japan), leptin (R&D Systems, Minneapolis, MN, USA), and adiponectin (Otsuka

Pharmaceutical Co., Ltd., Tokyo, Japan) levels were measured using an ELISA kit. Plasma tri-

glyceride (TG), total cholesterol (T-Cho), high-density lipoprotein cholesterol (HDL), non-

esterified fatty acids (FFA), alanine aminotransferase (ALT), aspartate aminotransferase

(AST), and lactate dehydrogenase (LDH) levels were measured using reagents from Wako

Pure Chemical Industries, Ltd. (Osaka, Japan). All assays were performed according to the

manufacturer’s instructions.

Metabolic assessments

Oxygen consumption (VO2) and carbon dioxide exhalation (VCO2) were measured using an

open-circuit metabolic gas analysis system connected directly to a mass spectrometer

(ARCO-2000; Arco Systems Inc., Chiba, Japan). The mice were housed in individual acrylic

chambers with free access to food and water. After five days of acclimation, in which food

intake and VCO2/VO2 values stabilized, data were recorded in individual mice for 1 min at

15 min intervals over a 7-day period, and mean values for every 12-h were used for the analy-

sis. The measurement protocol including the airflow (0.3 L/min) and data acquisition inter-

val was determined to measure 10 mouse chambers simultaneously along with the

calibration gas line Total energy expenditure was calculated based on Lusk’s equation

[34]. Carbohydrate and fat consumption were calculated based on Frayn’s equation [35].
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Energy expenditure = 3.816 × VO2 + 1.231 × VCO2 [kcal]. Total carbohydrate

consumption = 4.585 × VCO2 − 3.226 × VO2 [mg.min−1]. Fat consumption = 1.695 × VO2

− 1.701 × VCO2 [mg.min−1]. Data were normalized to body weight. Locomotor activity was

estimated based on the number of infrared beams broken in both the x- and y-directions

using an activity monitoring system combined with a food intake recording system

(ACTIMO-100M/MFD-100M; Shin Factory, Fukuoka, Japan).

RNA sequencing

Tissue preparation and RNA isolation. Minced tissues were homogenized with Sepasol

RNAI solution (Nacalai Tesque, Kyoto, Japan) using a TissueLyser LT instrument (Qiagen,

Hilden, Germany) set at 50 strokes/s for 5 min. The homogenate from adipose tissues was

centrifuged at 3000 × g for 10 min, and the bottom layer was transferred into a new tube to

separate the fat from the upper layer. Chloroform was then added to the sample, and the vor-

texed sample was centrifuged at 14000 × g for 10 min to separate the RNA phase. The RNA

phase was then transferred to a new tube and subjected to total RNA purification using QIA-

cube and the RNeasy kit (Qiagen). Quality analysis of RNA samples was performed using

TapeStation (Agilent Technologies, Santa Clara, CA, USA) and RNA ScreenTape (Agilent

Technologies).

Library construction and sequencing. Libraries were generated with the NEBNext Ultra

RNA Library Prep Kit for Illumina (New England Biolabs, Ipswich, MA, USA). mRNA was

enriched from total RNA (250 ng) using magnetic poly-T beads. First- and second-strand

cDNAs were synthesized using random hexamer primers, M-MuLV reverse transcriptase,

DNA polymerase I, and RNase H, followed by the conversion of overhangs to blunt ends.

DNA fragments were ligated with NEBNext adaptors and size-fractionated with the AMPure

XP system (Beckman Coulter, Inc., CA, USA) before treatment with the USER enzyme (New

England Biolabs) and polymerase chain reaction (PCR) amplification with universal and index

primers using Phusion high-fidelity DNA polymerase. PCR products were purified using the

AMPure XP system, and the quality of the library was assessed using the TapeStation system

(Agilent Technologies). Pooled libraries were sequenced on an Illumina HiSeq 2500 platform

to obtain 50 bp single-end reads.

Read mapping and quantification of gene expression level. Reads were mapped to

genes in the reference mouse genome (UCSC mm9) and assembled into transcripts, whose

abundance was estimated as the expected number of fragments per kilobase per million base

pairs sequenced (FPKM) using Cufflinks (v 1.3.0). Bowtie (v 0.12.7) was used to build an index

of the reference genome, and TopHat (v 1.4.0) was used to align the reads.

Differential gene expression analysis. Data were analyzed using Strand NGS (v. 2.7,

Strand Life Sciences, Bengaluru, India). DESeq was used to compare pairs of sample groups

that included five biological replicates for each group. All genes were tested to obtain the corre-

sponding p-values, followed by multiple testing corrections using the Benjamini and Hochberg

method to acquire the corrected p-value (q). Comparing the significance of differences in gene

expression levels between groups was analyzed using Tukey’s post hoc test on normalized

FPKM.

Statistical analysis

Statistical analyses were performed using GraphPad Prism 8 software. Quantitative two-group

data were analyzed using an unpaired two-tailed t-test. A comparison of data with two and

three factors was performed using an analysis of variance ANOVA.
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Results

B6J mice have lower body weight than B6N mice

There were considerable differences in body weight between the B6J and B6N groups, regard-

less of whether they were fed ND or HF (Fig 1). Regression analysis showed that B6J mice

gained less weight than B6N mice 2-fold in the ND group and 1.2-fold in the HF group. Previ-

ously, there have been conflicting findings as to whether B6J or B6N mice are more likely to

gain weight [12–17, 27–33]. The present results corroborate with prior studies showing that

B6N mice were more likely to gain weight [15, 29–32].

B6J mice exhibit lower adiposity than B6N mice

Substrain differences in tissue weight were found in white adipose tissues, muscle, and liver of

the ND-fed group. The weights of the white adipose tissues (iWAT and eWAT) of ND-fed B6J

mice were significantly (p<0.0001 for both iWAT and eWAT) less than those of B6N mice,

when measured in absolute weight (S3A and S3B Fig) and when normalized to body weight

(Fig 2A and 2B). Liver and muscle weights were slightly less in absolute weight in ND-fed B6J

mice (S3D and S3E Fig); however, liver and muscle weights normalized to body weight were

slightly higher in B6J mice (Fig 2D and 2E) compared with those in B6N mice. In the group of

mice fed HF, the iWAT weight of B6J mice tended to be lower than that of B6N mice (Fig 2A

and S3A Fig), whereas eWAT was similar (Fig 2B and S3B Fig). The relative weight of BAT of

HF-fed B6J mice tended to be higher than that of B6N mice (Fig 2C). Similarly, B6J mice fed

HF tended to have higher relative weight of liver and muscle than B6N mice (Fig 2E and 2D).

Looking at the effect of the HF diet on tissue weight, HF caused a significant (p = 0.011 for B6J

and p = 0.003 for B6N) reduction in the muscle in both B6J and B6N mice (Fig 2D). In contrast,

Fig 1. Difference in body weight between B6J and B6N mice on ND or HF. The body weight of male B6J and B6N

mice on ND or HF was monitored up to 38 weeks of age (n = 5 per group). Data are presented as mean ± SEM.

Asterisks (�) denote significant differences (� p<0.05, �� p<0.01) between B6J and B6N mice at each time point in the

same food group. The lines and the equation were based on regression analysis (log-ratio transformed). ND, normal

diet; HF, high-fat diet; open circles (blue), ND-fed B6J; open circles (red), ND-fed B6N; filled squares (blue), HF-fed

B6J; filled squares (red), HF-fed B6N.

https://doi.org/10.1371/journal.pone.0271651.g001
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HF significantly (p = 0.002 for B6J and p = 0.013 for B6N) increased liver in both B6J and B6N

mice (Fig 2E). HF also significantly (p = 0.0003 for iWAT and p = 0.025 for BAT) increased

iWAT and BAT weights, but only in B6J mice, not in B6N mice (Fig 2A and 2C). Surprisingly,

HF did not increase eWAT weight in both B6J and B6N mice; rather, eWAT weight in B6N

mice was significantly (p<0.0001) less in the HF group than in the ND group (Fig 2B). Collec-

tively, these results indicate that B6J mice have lower adiposity and more pronounced HF-

induced increases in iWAT and BAT than B6N mice. Moreover, the increased fat retention in

BAT in B6J mice suggests that metabolic strategies such as burning more energy or increasing

the conversion of WAT to BAT may have resulted in less weight gain in B6J mice.

Plasma leptin and adiponectin levels in B6J mice are lower than those in

B6N mice

To confirm the lower adiposity in B6J mice than in B6N mice (Fig 2A and S3A Fig), we mea-

sured two adipokines: leptin and adiponectin. In the ND-fed groups, the plasma leptin levels

of B6J mice were significantly (p = 0.0002) lower than those of B6N mice (Fig 3A). The adipo-

nectin levels were also lower in ND-fed B6J mice than in ND-fed B6N mice but in a slightly

weaker trend (p = 0.07, Fig 3B). In the HF-fed groups, adipokine levels were also lower in B6J

mice than in B6N mice; however, the difference was not statistically significant (Fig 3A and

3B). Considering that leptin increases with fat accumulation and adiponectin decreases, the

leptin/adiponectin ratio correlates well with adiposity [36]. In addition, this ratio is correlated

with insulin resistance, which may represent adipose tissue dysfunction [36]. Therefore, we

calculated the ratio of leptin to adiponectin and found it to be approximately four-fold lower

(p = 0.0002) in B6J mice than in B6N fed ND (Fig 3C), confirming that the B6J substrain has

lower adiposity than B6N substrain.

Plasma insulin levels of B6J mice are lower than those of B6N mice

We further compared commonly measured blood metabolic parameters, such as glycemic

(glucose and insulin), lipidic (T-Cho, HDL, FFA, and TG), and liver enzymes (ALT, AST, and

Fig 2. Tissue weights in B6J and B6N mice on ND or HF. Relative tissue weights were calculated by organ weight/body weight (body mass

percentage). (A) iWAT, inguinal white adipose tissue; (B) eWAT, epididymal white adipose tissue; (C) BAT, brown adipose tissue; (D) Muscle, skeletal

muscle; and (E) Liver. Values are means + SEM (n = 5) for B6J group (blue color) and B6N group (red color). Two-way ANOVA indicated a significant

interaction between substrain and diet for iWAT (p<0.01; F = 11.96; Df = 16) and eWAT (p<0.0001; F = 47.48; Df = 16). There was a significant effect

of strain on muscle (p<0.001; F = 18.46; Df = 16) independent of diet, and significant effect of diet on muscle (p<0.001; F = 25.63; Df = 16) and on liver

(p<0.0001; F = 27.80; Df = 16) independent of strain. Individual means were compared within groups using unpaired Student’s t-test. Asterisks (�) and

daggers (†) indicate significant differences between B6J and B6N substrain groups, and ND and HF diet groups, respectively (�� p<0.01 and ����

p<0.0001, † p<0.05, †† p<0.01, ††† p<0.001, and †††† p<0.0001). J, B6J substrain; N, B6N substrain; ND, normal diet; HF, high-fat diet; open

circles, ND-fed B6J; filled circles, ND-fed B6N; open squares, HF-fed B6J; filled squares, HF-fed B6N.

https://doi.org/10.1371/journal.pone.0271651.g002
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LDH). The only blood components that differed between B6J and B6N mice were insulin and

FFA (Fig 4A and 4B). Insulin concentrations were significantly (p = 0.015) lower in B6J mice

than in B6N mice under the ND fed condition (Fig 4A). FFA was significantly (p = 0.010)

lower in HF-fed B6J mice than in HF-fed B6N mice (Fig 4B). T-Cho (Fig 4C), HDL (Fig 4D),

ALT (Fig 4E), AST (Fig 4F), and LDH levels (Fig 4G) were not statistically different between

B6J and B6N mice, in either diet group, whereas these levels were considerably higher in the

HF groups than in the ND groups (Fig 4C–4G). Additionally, the blood glucose level in B6J

mice and, not in B6N mice was higher in the HF group than in the ND group (Fig 4H). Simi-

larly, TG concentration in B6J mice fed the HF diet were significantly (p = 0.003) lower than in

mice fed the ND diet, with less reduction in B6N mice (Fig 4I).

B6J mice consume more energy than B6N mice

To determine the difference in metabolic rates between B6J and B6N mice, we measured oxy-

gen consumption and carbon dioxide production and calculated energy, carbohydrate, and fat

consumptions (normalized to body weight). Values are presented per diet and per light/dark

phase (“Dark” for the active phase and “Light” for the inactive phase, “24 h” throughout both

phases). Although the overall differences between B6J and B6N mice were not large, some

marked differences were observed such as energy expenditure, with B6J mice tending to

expend more energy than B6N mice during the active phase (Fig 5A). Similarly, there was a

notable difference in carbohydrate consumption when fed ND, with B6J mice consuming

more carbohydrates than B6N mice during the active phase (Fig 5B). Fat consumption data

also showed differences between B6J and B6N when fed HF, with B6J mice consuming more

fat than B6N mice throughout the day (Fig 5C). In addition, behavioral factors that affect met-

abolic rates, such as physical activity and food intake, were assessed. B6J mice tended to be

Fig 3. Differences in plasma leptin, adiponectin, and leptin to adiponectin ratio in B6J and B6N mice on ND or HF. (A) Leptin, (B) Adiponectin, (C)

Leptin/Adiponectin. Bars are representative of means + SEM (n = 5) for B6J group (blue color) and B6N groups (red color). Two-way ANOVA indicated a

significant effect of strain on leptin (p<0.01; F = 8.78; Df = 16) and adiponectin (p<0.05; F = 5.97; Df = 16) independent of diet, and a significant effect of diet

on leptin (p<0.01; F = 9.29; Df = 16) and on leptin/adiponectin (p<0.01; F = 11.40; Df = 16) independent of strain. Individual means were compared within

groups using unpaired Student’s t-test. Asterisks (�) and daggers (†) indicate significant differences between B6J and B6N substrain groups and ND and HF

diet groups, respectively (��� p<0.001, † p<0.05, and †† p<0.01). J, B6J substrain; N, B6N substrain; ND, normal diet, HF, high-fat diet; open circles, ND-fed

B6J; filled circles, ND-fed B6N; open squares, HF-fed B6J; filled squares, HF-fed B6N.

https://doi.org/10.1371/journal.pone.0271651.g003
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more active than B6N mice when fed both ND or HF (Fig 5D) and took considerably less food

(Fig 5E).

DEGs between B6J and B6N

Table 1 shows the number of DEGs (p<0.05) in the iWAT, eWAT, BAT, muscle, liver, hypo-

thalamus, and hippocampus between B6J and B6N mice. Comparable numbers of DEGs were

upregulated and downregulated in each tissue in the ND and HF groups, respectively. The

gene names of the DEGs in each tissue are listed in S2 Table, along with their average fold

change (FC), p-values, and corrected p-value (q). Among the DEGs that were highly expressed

in B6J mice compared to B6N mice, three genes: insulin degrading enzyme (Ide), adenylosuc-

cinate synthase 2 (Adss2), and ectonucleotide triphosphate diphosphohydrolase 4 (Entpd4) in

the ND group and five genes: Ide, Adss2, Entpd4, B-TFIID TATA-box binding protein associ-

ated factor 1 (Btaf1), and transmembrane protein 267 (TMEM267) in the HF group over-

lapped in all seven tissues examined in the present study. Likewise, among the DEGs that

showed lower expression in B6J mice compared with in B6N mice, four genes: Nnt, WD

repeat and FYVE domain containing 1 (Wdfy1), dynein light chain Tctex-type 1 (Dynlt1),

and RAB4A, member RAS oncogene family (Rab4A) in the ND group and three genes:

Nnt,Wdfy1, and Dynlt1 in the HF group were identified. Of these overlapping genes,Wdfy1

Fig 4. Differences in metabolic parameters in the plasma of B6J and B6N mice on ND or HF. (A) Insulin, (B) FFA, non-esterified fatty acids:, (C)

T-Cho, total cholesterol;, (D) HDL, high-density lipoprotein cholesterol;, (E) ALT, alanine aminotransferase;, (F) AST, aspartate aminotransferase;, (G)

LDH, lactate dehydrogenase;, (H) Glucose, and (I) TG, triglyceride. Bars are representative of means + SEM (n = 5), for B6J group (blue color) and B6N

group (red color). Two-way ANOVA indicated a significant interaction between substrain and diet for TG (p<0.05; F = 5.89; Df = 15). There was a

significant effect of strain on insulin (p<0.05; F = 6.87; Df = 16) and FFA (p<0.05; F = 4.67; Df = 15) independent of diet, and a significant effect of diet

on T-Cho (p<0.0001; F = 27.50; Df = 16), HDL (p<0.001; F = 18.66; Df = 16), ALT (p<0.01; F = 11.83; Df = 16), AST (p<0.01; F = 10.74; Df = 16),

LDH (p<0.001; F = 19.75; Df = 16), and TG (p<0.001; F = 22.85; Df = 15) independent of strain. Individual means were compared within groups using

unpaired Student’s t-test. Asterisks (�) and daggers (†) indicate significant differences between B6J and B6N substrain groups and ND and HF diet

groups, respectively (� p<0.05, † p<0.05, †† p<0.01, and ††† p<0.001). J, B6J substrain; N, B6N substrain; ND, normal diet, HF, high-fat diet; open

circles, ND-fed B6J; filled circles, ND-fed B6N; open squares, HF-fed B6J; filled squares, HF-fed B6N.

https://doi.org/10.1371/journal.pone.0271651.g004
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Fig 5. Differences in metabolic assessments between B6J and B6N mice. (A) Energy expenditure (B) Carbohydrate consumption (C) Fat consumption (D)

Activity, and (E) Food intake. Values are means + SEM (n = 5, experimented in duplicates), and asterisks (�) indicate significant differences (� p<0.05, ��

p<0.01, and ��� p<0.001, unpaired Student’s t-test). Open circles, ND-fed B6J; filled circles, ND-fed B6N; open squares, HF-fed B6J; filled squares, HF-fed

B6N.

https://doi.org/10.1371/journal.pone.0271651.g005

Table 1. Number of differentially expressed genes (DEGs) in the iWAT, eWAT, BAT, muscle, liver, Hyt, and Hic between B6J and B6N mice fed a normal diet

(ND) or a high-fat diet (HF).

J > N J < N J > N J < N

iWAT ND 731 1349 Liver ND 972 906

HF 888 790 HF 768 629

ND \HF 29 31 ND \HF 85 44

eWAT ND 2450 2547 Hyt ND 1037 1163

HF 1190 753 HF 2109 1987

ND \HF 160 105 ND \HF 186 132

Bat ND 2001 2162 Hic ND 1122 1099

HF 2489 2110 HF 1177 929

ND \HF 259 336 ND \HF 102 99

Muscle ND 933 917 7 tissues ND 3 4

HF 1491 1448 HF 5 3

ND \HF 203 122 ND \HF 3 3

DEGs were screened using the criteria of p<0.05 and fold change (FC) >1. J>N, the expression level in B6J was higher than in B6N; J<N, the expression level in B6J was

lower than in B6N; ND\HF, the number of overlapping DEGs among ND-fed and HF-fed mice. iWAT, inguinal white adipose tissue; eWAT, epididymal white adipose

tissue; BAT, brown adipose tissue; Muscle, skeletal muscle; Hyt, hypothalamus; Hic, hippocampus; ND, normal diet; HF, high-fat diet.

https://doi.org/10.1371/journal.pone.0271651.t001
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showed high FC and was significantly (q<0.05, S3 Table) lower in ND-fed B6J mice by approx-

imately 4- to 6-fold compared with in ND-fed B6N mice (Fig 6E). Entpd4 also showed consis-

tent FC in the HF group with approximately 2- to 3-fold higher expression in B6J mice than in

B6N (Fig 6C).

The effect of a high-fat diet on the expression of these overlapping genes was not observed

in most tissues. However, decreased Ide expression and increased Dynlt1 expression in the

liver (Fig 6A and 6F) and decreased Entpd4 expression in BAT (Fig 6C) were observed under

HF conditions compared to those observed under ND conditions.

Discussion

Phenotypic differences among B6 substrains have been reported in many studies in a variety of

fields, including metabolism [7, 12, 14–19, 31, 33], alcohol preference [37–40], stress response

[27, 32, 41–46], cardiovascular [20, 21, 47], oxidative stress [22, 23], vision [8–10], bone [28],

liver [29, 30, 48], kidney [24, 49, 50], microbiota [15], and seizures [51]. However, the genes

responsible for these phenotypic differences have not been identified. Often, NNT deficiency

Fig 6. Expression levels of DEGs between B6J and B6N on ND or HF. The gene name is indicated at the top of each plot, and the y-axis represents the

normalized signal values. (A) Ide, insulin degrading enzyme; (B) Adss2, adenylosuccinate synthase 2; (C) Entpd4, ectonucleotide triphosphate

diphosphohydrolase 4; (D) Nnt, nicotinamide nucleotide transhydrogenase; (E)Wdfy1, WD repeat and FYVE domain containing 1; (F) Dynlt1, dynein

light chain Tctex-type1. Boxes are representative of means ± SEM (n = 5) for the B6J (blue color) and B6N (red color) groups. Three-way ANOVA

(Df = 110 for all analysis) indicated a significant interaction between substrain, diet, and tissue for Adss2 (p<0.05; F = 2.59) and Entpd4 (p<0.01;

F = 3.24); a significant interaction between substrain and diet forWdfy1 (p<0.001; F = 13.96); a significant interaction between diet and tissue for Ide
(p<0.05; F = 2.71), Entpd4 (p<0.0001; F = 10.38),Nnt (p<0.001; F = 4.32), andDynlt1 (p<0.0001; F = 9.51) and a significant interaction between strain

and tissue for Adss2 (p<0.0001; F = 10.90), Entpd4 (p<0.0001; F = 5.49),Nnt (p<0.0001; F = 6.75),Wdfy1 (p<0.001; F = 4.34), andDynlt1 (p<0.05;

F = 2.24). There was a significant effect of strain on Ide, Adss2, Entpd4, Nnt,Wdfy1, andDynlt1 (p<0.0001; F = 554, 453, 723, 289, 821, and 406,

respectively) independent of diet and tissue, and a significant effect of diet on Ide (p<0.01; F = 10.40), Entpd4 (p<0.05; F = 6.56),Wdfy1 (p<0.01;

F = 8.73), andDynlt1 (p<0.0001; F = 17.78) independent of strain and tissue. There was a significant effect of tissue on Ide (p<0.05; F = 2.39), Adss2
(p<0.05; F = 2.53), Entpd4 (p<0.0001; F = 8.65),Nnt (p<0.05; F = 2.31),Wdfy1 (p<0.05; F = 2.54), andDynlt1 (p<0.05; F = 2.21) independent of strain

and diet. Daggers (†) indicate significant differences between ND and HF groups († p<0.05, †† p<0.01, and ††† p<0.001, Tukey’s post hoc test). ND,

normal diet; HF, high-fat diet; open blue boxes, ND-fed B6J; open red boxes, ND-fed B6N; filled blue boxes, HF-fed B6J; filled red boxes, HF-fed B6N.

https://doi.org/10.1371/journal.pone.0271651.g006
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due to a spontaneous missense mutation of Nnt in B6J mice is considered to be responsible for

these phenotypic differences and abnormal traits in B6J mice [11–24], including metabolic

dysfunctions such as impaired glucose tolerance, diminished insulin secretion, and over-

weightness. This speculation is based on the fact that the enzymatic function of NNT is to

pump protons across the inner mitochondrial membrane [26]. However, the difference in the

phenotype between B6J and B6N substrain is not always correlated to the absence or presence

of NNT. For example, Nnt-deficient B6J mice (S1 Fig) in the present study were considerably

underweight compared with B6N mice (Fig 1), as reported by previous studies [15, 29–32].

However, there are conflicting data on body weight differences: overweight B6J mice [12–14,

27, 28] or unchanged weight [16, 17, 33]. Similarly, there are also conflicting data on the differ-

ences in blood insulin and glucose levels between B6J and B6N mice with several studies

reporting that B6J mice have lower insulin levels [12–14, 17–19, 29, 31], higher glucose levels

[12, 15, 18, 19, 31], and lower glucose levels [14] compared to B6N mice, whereas some studies

did not report any differences in glucose [16, 17, 29, 31, 33] or insulin [16, 31] levels. In our

study, we observed higher glucose levels but lower insulin levels in Nnt-deficient B6J mice

compared with Nnt-wild type B6N mice (Fig 4). Moreover, literature on DEGs between B6N,

B6J, and B6J expressing the full-length Nnt gene (B6JBAC) in the adrenal, testes, and heart has

shown that there were no common DEGs across tissues when comparing the B6J and B6JBAC

mice, despite the presence of far more DEGs in both compared with in B6N mice, suggesting a

very modest effect of NNT status on transcriptome regulation and phenotype differences [52].

Given the discrepancy between the B6J and B6N phenotypes and NNT levels, we speculate

that genetic mutations other than Nntmutation alleles are present in either B6J or B6N

substrains.

We investigated DEGs between B6J and B6N substrains in seven tissues involved in meta-

bolic function: iWAT, eWAT, BAT, muscle, liver, hypothalamus, and hippocampus tissues,

assuming that, besides Nnt, there are common genes across tissues regulating metabolic phe-

notypes that may explain the substrain differences. As a result, six DEGs, including Nnt, over-

lapped in all seven tissues regardless of dietary conditions (Fig 6). Three DEGs: Ide, Adss2, and

Entpd4 were significantly (p<0.05) more expressed in B6J mice than in B6N mice, whereas

three DEGs: Nnt,Wdfy1, and Dynlt1 were significantly (p<0.05) less expressed in B6J mice

compared with B6N mice.

Previously,Wdfy1 and Entpd4 have been reported to be differentially expressed in the brain

and pancreas between B6J and B6N [39, 53]; thus, our findings are consistent with those of

this study. HighWdfy1 expression in the brain of B6N is speculated to be related to reduced

alcohol intake in B6N mice [39], whereas lowWdfy1 expression in the pancreas of B6J mice is

associated with the progression of chronic pancreatitis in B6J mice [53]. Although these previ-

ous studies did not focus on Entpd4 [39, 53], its higher expression in B6J mice compared with

that in B6N mice is consistent with the finding of the present study.

Watkins-Chow and Pavan have reported that the presence of increased copy number varia-

tion (CNV) at the Ide locus in B6J mice results in increased Ide expression [54]. The CNV may

contribute to the divergence in Ide expression between B6J and B6N observed in this study.

The lists of B6N substrains of protein-inactivating sequence variations (sequence variations

causing premature stop codons, loss of stop codons and SNPs, and short in-frame insertions

and deletions) that referenced the B6J mouse genome [55] did not include the Ide, Adss2,

Entpd4,Wdfy1, and Dynlt1 genes identified in this study. Therefore, CNVs in B6J and B6N

mice should be investigated in addition to indels and SNPs [56]. Additionally, IDE is an

enzyme that degrades insulin. Considering the lower blood insulin concentration and

slightly higher glucose concentration in B6J mice compared with those in B6N mice (Fig 4A

and 4H), the higher Ide expression level in B6J mice is consistent with the lower blood insulin
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concentration (Fig 6A). These results suggest that Idemay be responsible for the phenotypic

differences in insulin secretion between B6J and B6N mice. Ide also plays a role in type 2 diabe-

tes and Alzheimer’s disease [57]; thus, caution should be exercised when using B6 substrains

in studies targeting these diseases.

A previous study has reported that mice lacking nucleobindin 2 (NUCB2), a precursor of

nesfatin involved in appetite regulation, exhibit insulin resistance and highWdfy1 expression

in their visceral macrophages [58], suggesting thatWdfy1may be also involved in insulin sig-

naling. However, since the genetic background of the floxed mice used in the NUCB2 paper

[58] was B6J, and that of the crossbred recombinase mice was “C57BL/6J; C57BL/6N” [59], we

cannot rule out the possibility that highWdfy1 expression was simply due to comparing B6N,

which has highWdfy1 expression, with B6J, which has low expression. Similarly, the use of

mice with a mixed background of B6J and B6N in immunological studies leads to confounding

result interpretations. For example, the effect of granzyme A (GZMA) on viral arthritis

remains inconclusive because the phenotypes observed in experiments using GZMA knockout

mice vary from paper to paper [60]. However, the genetic background of GZMA knockout

mice was found to be a mix of B6J and B6N, indicating that viral arthritis ameliorated in

GZMA knockout mice was not the consequence of loss of GZMA expression, but rather of the

genetic background of B6N, including Nnt [60].

To the best of our knowledge, no literature on Adss2 and Dynlt1 as DEGs between B6J

and B6N mice currently exists. Nevertheless, we have identified DEGs between B6J and B6N

(S2 Table), which may help plan mouse experiments. One limitation of this paper is that it

lacks the potential to generalize the substrain differences due to the small sample size and

the fact that only male mice were selected. Furthermore, gene expression analysis was con-

ducted using an old version of the mouse genome mm9. However, in the DEG analysis

between the two substrains, the well-known Nnt was also retrieved as a persistent gene

across tissues, and q values for the six genes found here were below 0.1 in most of the condi-

tions: seven tissues and two diets (S3 Table). This suggests that the genotypic data in this

study are likely to be applicable and reliable. Our findings may be useful for revisiting past

studies that have used B6J, B6N, or B6 substrains to determine whether their results answer

the original research objectives or are merely a measurement of the differences between B6J

and B6N.

Conclusion

Nntmutations in B6J mice have been implicated as a cause of obesity and various metabolic

abnormalities and are described as the causative genetic explanation for the phenotypic differ-

ences between B6J and B6N mice [11–24]. However, there is a discrepancy in metabolic traits

between B6J and B6N that cannot be explained by Nnt alone, raising the possibility that

mutant alleles other than Nnt exist. We have identified persistent differentially expressed genes

between B6J and B6N mice across all seven regions and two diets. Because these genes are

associated with several diseases, including type 2 diabetes and Alzheimer’s, perhaps B6J and

B6N substrains are unsuitable models for these diseases. Considering the extremely wide use

of both substrains and their critical importance in generating transgenic and knock-out mod-

els, our findings help guide future research across several interrelated fields.

Supporting information

S1 Table. Basic diet composition of the normal diet (ND) and high-fat diet (HF).

(TIF)
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S2 Table. Differentially expressed genes between B6J and B6N mice fed a normal diet or a

high-fat diet. P-values were calculated using the moderated t-test, followed by multiple testing

corrections using the Benjamini-Hochberg method to acquire the corrected p-value (q). Fold

change (FC) values were calculated as log2 of B6J relative to B6N.

(XLSX)

S3 Table. Differentially expressed genes between B6J and B6N mice overlapped across the

tissues. P-values were calculated using the moderated t-test, followed by multiple testing cor-

rections using the Benjamini-Hochberg method to acquire the corrected p-value (q). Fold

change (FC) values were B6J relative to B6N. ND, normal diet; HF, high-fat diet; iWAT, ingui-

nal white adipose tissue; eWAT, epididymal white adipose tissue; Bat, brown adipose tissue;

Muscle, skeletal muscle; Hyt, hypothalamus; Hic, hippocampus.

(TIF)

S1 Fig. Genotyping of the Nnt gene. Polymerase chain reaction analysis of Nnt alleles. DNA

was obtained from the tail of B6J and B6N mice. The amplification products were 579 bp and

743 bp for the wild-type and mutant alleles, respectively.

(TIF)

S2 Fig. Timeline showing the sequence of events the mice underwent. Four groups of ani-

mals were used. Colored boxes represent mouse substrain and diet groups; open blue box, nor-

mal diet (ND)-fed C57BL/6J (B6J); open red box, ND-fed C57BL/6NCrl (B6N); filled blue box,

high-fat diet (HF)-fed B6J; filled red box, HF-fed B6N. Body weight was measured at the ages

indicated by arrows. Mice were subjected to an indirect calorimetry system at the time points

indicated as “metabolic assessment”. All animals were sacrificed and samples were taken at 38

weeks of age.

(TIF)

S3 Fig. Absolute tissue weights in B6J and B6N mice on ND or HF. (A) iWAT, inguinal

white adipose tissue; (B) eWAT, epididymal white adipose tissue; (C) BAT, brown adipose tis-

sue; (D) Muscle, skeletal muscle; (E) Liver. Bars are representative of means + SEM (n = 5) for

the B6J (blue color) and B6N (red color) groups. Two-way ANOVA indicated a significant

interaction between substrain and diet for eWAT (p<0.0001; F = 38.56; Df = 16). There was a

significant effect of strain on iWAT (p<0.0001; F = 27.49; Df = 16) independent of diet, and

significant effect of diet on iWAT (p<0.01; F = 15.61; Df = 16), BAT (p<0.01; F = 9.50;

Df = 16) and liver (p<0.001; F = 18.48; Df = 16) independent of strain. Individual means were

compared within groups by unpaired Student’s t-test. Asterisks (�) and daggers (†) indicate

significant differences between B6J and B6N substrain groups, and ND and HF diet groups,

respectively (�� p<0.01 and ���� p<0.0001, † p<0.05, †† p<0.01, and †††† p<0.0001). J, B6J sub-

strain; N, B6N substrain; ND, normal diet; HF, high-fat diet; open circles, ND-fed B6J; filled

circles, ND-fed B6N; open squares, HF-fed B6J; filled squares, HF-fed B6N.

(TIF)
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