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Abstract: Protein kinase CK2 plays an important role in cell survival and protects regulatory proteins
from caspase-mediated degradation during apoptosis. The consensus sequence of proteins phos-
phorylated by CK2 contains a cluster of acidic amino acids around the phosphorylation site. The
poly-acidic sequence in yeast protein Asf1 is similar to the acidic loop in CK2β, which possesses a
regulatory function. We observed that the overexpression of Asf1 in yeast cells influences cell growth.
Experiments performed in vitro and in vivo indicate that yeast protein Asf1 inhibits protein kinase
CK2. Our data suggest that each CK2 isoform might be regulated in a different way. Deletion of the
amino or carboxyl end of Asf1 reveals that the acidic cluster close to the C-terminus is responsible for
the activation or inhibition of CK2 activity.
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1. Introduction

Protein kinase CK2 is a constitutively active tetrameric enzyme assigned to the CMGC
group of protein kinases that is independent of second messengers and is regulated through
protein–protein interactions, changes in its concentration and localization, and oligomeriza-
tion [1,2]. CK2-affecting phosphoacceptor sites of proteins are located at serine/threonine
residues that are surrounded by numerous acidic residues (either Asp/Glu or phospho-
rylated amino acids); amongst them, the one at position n + 3 plays the most important
role [3], although, in a few cases, the phosphorylation of tyrosine residues has been already
described [4,5]. It has been estimated that CK2 might be responsible for the generation
of a substantial part of the eukaryotic phosphoproteome [6]. CK2 is involved in many
cellular processes, such as gene expression, cell growth and differentiation, embryogenesis
and apoptosis, circadian rhythms, and cell cycle regulation [7–11]. It has been proposed
that CK2 plays an important role in the transduction of survival signals and protect the
cell against stress [1,9,10,12]. Abnormal levels and nuclear localization of CK2 were origi-
nally found in rapidly proliferating cells in several types of cancer, including lung, kidney,
prostate, mammary gland, and head and neck cancer. It has become apparent that CK2
is dysregulated by an increase in protein expression in all cancer tissues examined so
far [13,14]. CK2 is a modulator of all the hallmarks of tumor. It promotes oncogenesis and
creates a cellular environment favorable to neoplasia [15]. These findings make CK2 a po-
tentially important target for cancer therapy [13,16–18]. CK2 also influences inflammatory,
neurodegenerative (e.g., Alzheimer’s and Parkinson’s diseases), vascular, bone tissue, and
skeletal muscle disorders, and viral diseases, including COVID-19 [19,20].

Human protein kinase CK2 is a tetramer composed of two catalytic α or α’ subunits
with molecular weights of 42 kDa and 38 kDa, respectively, which bind to a dimer of the
27 kDa β subunit with a stoichiometry α2β2, α’2β2, or αα’β2 [1,2,21]. The heterotetramer
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can dissociate under certain conditions, indicating the existence of individual subunits [22].
CK2α and CK2α’ are homologous and differ only in the C-terminal region, while the β

subunit lacks homology to any other regulatory proteins [23]. The regulatory subunit
CK2β is not essential for activity but can affect the ability of the catalytic subunits to
phosphorylate certain substrates [24]. The free catalytic α/α’ subunits hold their activity
against a range of substrates, while the regulatory β subunits might exhibit functions
independent of CK2, targeting the cell cycle, DNA repair, and protein kinases such as Chk1,
A-Raf, and c-Mos [25].

The CK2α subunit is described to be expressed ubiquitously in all tissues [2], whereas
the CK2α’ subunit can be mainly found in the brain and testicles, supporting the notion that
this subunit may have specific functions [26]. Indeed, knockout of the CK2α’ subunit in
mice showed a phenotype similar to globozoospermia in humans, whereas knockout of the
CK2α and CK2β subunits was embryonically lethal [27–29]. Genetic studies performed on
baker’s yeast have shown that the CK2α’ subunit is involved in cell cycle progression, while
the second one (CK2α) is required for the maintenance of cell polarity [30]. Disruption
of yeast CK2β does not affect yeast viability. In yeast cells lacking the CK2 holoenzymes
(double deletion mutant), the binding of the SBF and MBF complexes to G1 promotors is
disturbed, and, therefore, the S-phase entrance is delayed [31]. Interestingly, in human
osteosarcoma cells with tetracycline-regulated CK2 expression, only the expression of
inactive CK2α’ was induced, and not that of inactive CK2α; the significantly decreased cell
proliferation and viability give additional evidence for the functional specialization of CK2
isoforms [32].

Many studies regarding CK2’s regulation and function have been focused on the
identification of cellular substrates and interacting proteins. Based on the high sequence
homology between the two catalytic subunits of human CK2, it is likely that many of the
proteins that have been found in complex with CK2 will interact in similar way with both
the α and α’ subunits. Olsen and Guerra [33] have listed almost 70 proteins that interact
with CK2, and, for some of the interacting proteins, an effect on CK2 activity has been
shown [34].

The identification of protein–protein interactions very often provides insights into its
function. The acidic surrounding of the recognition site was used to query a baker’s yeast
database (SGD) for proteins that may have a potential role in the regulation of apoptosis
and/or CK2 activity. From a few potential candidates, the nucleosome assembly factor Asf1,
which possesses an over 20-amino-acid-long C-terminal cluster of aspartic and glutamic
acids, was chosen as a potential CK2-modulating protein. A global analysis of protein
complexes in Saccharomyces cerevisiae has shown that all four subunits of yeast protein
kinase CK2 form complexes with many proteins, including with Asf1 [35].

The Asf1 protein (a homolog to human CIA) is a ubiquitous eukaryotic histone-
binding, transcription-regulatory, and deposition protein that mediates nucleosome for-
mation in vitro and is required for genome stability in vivo [36]. Asf1 acts as a histone
chaperone during DNA replication through specific interactions with histone H3/H4 and
the histone deposition factor CAF-I [36,37]. Its roles in replication, chromatin remodeling,
and DNA repair have also established Asf1 as an important component of a number of
chromatin assembly and modulation complexes. In addition to its role in conserved inter-
actions with proteins involved in chromatin silencing, transcription, chromatin remodeling,
and DNA repair [36], Asf1 is involved in the induction of apoptosis [38]. Moreover, one of
the human paralogs, Asf1B, is overproduced in most cancer tissues in comparison with
normal ones. Therefore, Asf1B may be recognized as an independent prognostic agent in
multiple types of cancer [39].

The yeast Asf1 protein differs from its animal homolog proteins and contains (1) an N-
terminal 155-amino-acid-long sequence with high homology (65%-90%) to other eukaryotic
species and (2) a long poly-acidic tract present in fungi (in baker’s yeast, an over 20-amino-
acid-long cluster of aspartic and glutamic acids) [36,40]. This pseudoinhibitory acidic
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cluster may influence CK2’s antiapoptotic activity in the eukaryotic cell, which is observed
as the induction of apoptosis in the case of the overexpression of yeast Asf1 [41,42].

The present paper focuses on the analysis of the influence of the Asf1 protein on
human and yeast protein kinase CK2 isoforms.

2. Results

The recombinant proteins, human CK2α and CK2α’ subunits, CK2β, and the three
Asf1 protein variants were overexpressed in E. coli cells, whereas yeast CK2s were expressed
in S. cerevisiae cells and purified as described in the Materials and Methods section.

The acidic surroundings of the recognition site in proteins phosphorylated by CK2
were used to search for potential protein partners of CK2. As a result of the Saccharomyces
genome database search, we identified yeast protein Asf1. The acidic sequence of yeast
Asf1 protein (i.e., D170DEEEEDDEEEDDDEDDEDDEDDD193) shows clear similarity to
the CK2 consensus sequence S/TXXE/D and high similarity to the acidic loop of the human
regulatory CK2β subunit (D55LEPDEELED64), as shown in Figure 1. Based on its similarity
to the clusters of amino acids that are typically present in CK2 substrates, this region
is reminiscent of autoinhibitory sequences identified in a large number of other protein
kinases.
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Figure 1. Sequence alignment of yeast Asf1 aa 171-190, yeast (Sc) CK2β aa 72-91, yeast (Sc) CK2β’ aa
16-35, and human (Hs) CK2β aa 55-74.

In our previous study, we showed that Asf1’s interaction with protein kinases pro-
moted the negative regulation of this enzyme in vivo [43]. Firstly, a possible effect of the
yeast Asf1 protein was examined using the recombinant yeast Asf1 protein, as well as the
recombinant human and yeast catalytic subunits CK2α and CK2α’ (Figure 2). Asf1 exhibits
inhibitory effects towards both subunits. The phosphorylation reaction was carried out
using a constant concentration of recombinant yeast acidic ribosomal P2B as a protein
substrate (10 µM), 20 µM ATP as a phosphate donor, and increasing concentrations of
Asf1 (0–12 µM). Interestingly, as in the case of other modulators, such as heparin, polyly-
sine, NaCl, or some inhibitors, the influence differed between the two subunits. The α

subunit was statistically significantly activated in the presence of a low concentration of
Asf1 (0.2 µM, p < 0.05), and, at higher concentrations, it was inhibited. Compared with
the control, the α’ subunit was significantly inhibited (p < 0.01) compared to the α subunit,
with IC50 values of 1.3 and 2.5 µM, respectively, under standard reaction conditions.

Next, we examined how the Asf1 protein affects the individual isoforms of human
and yeast CK2 (Figure 3). The reaction mixture was incubated for 30 min with a 15 min
preincubation step of CK2 and Asf1 protein. In the case of the free catalytic CK2α’ subunit,
we noted a significant inhibitory effect p < 0.01) compared to that under standard conditions,
while, in the case of the catalytic α subunit or the holoenzyme α2β2, we observed a
significant stimulatory effect (p < 0.05) compared to the control. This could indicate that the
Asf1 protein interacts in different way with each CK2 isoform. It is not clear what causes
the differences in the inhibitory effects of Asf1 with various molecular forms of CK2, but
the results might suggest various protein–protein interactions (especially in the case of
holoenzymes) and differences in regulatory mechanisms.
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Asf1. * and ** indicate significant difference compared to the controls (p < 0.05, p < 0.01).
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Figure 3. Kinase activity of different CK2 isoforms from human (A) and yeast (B) in the presence of
Asf1. Comparison of activity in the absence (black bars) and in the presence of 1 µM Asf1 protein
(grey bars) after preincubation. Relative activity is calculated towards enzyme activity in the absence
of Asf1. ** indicates significant difference compared to the controls (p < 0.01).

As already described in our former studies [44–47], synthetic and natural inhibitors
have different inhibitory potential depending on the protein substrate. We have investigated
the inhibitory action of the Asf1 protein using already characterized substrates from yeast S.
cerevisiae, such as recombinant Svf1, Fip1, and Elf1 [48–50]. The experiments using human
catalytic subunits showed that the Asf1 protein exhibited an inhibitory effect towards the
phosphorylation of different substrates. This could indicate that the Asf1 protein suppresses
the enzymatic activity of CK2α’ for its various substrates. Nevertheless, the intensity of
inhibition differs, as shown in Figure 4. Whereas the phosphorylation of P2B and Fip1 is
significantly inhibited (p < 0.01), with IC50 values of 1.3 and 1.6 µM in the case of CK2α’,
respectively, the phosphorylation of the synthetic peptide RRRADDSDDDDD was not
significantly different from that of the control at 10 µM. Svf1 and Elf1 phosphorylation was
significantly inhibited (p < 0.05), with inhibition constants of 9.8 and 6.0 µM. Similar results
were obtained for the CK2α subunit but with lower IC50 values.
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Figure 4. Comparison of substrate phosphorylation by CK2α’ (A) and CK2α (B) in the presence of
different Asf1 concentrations. Enzyme activity was measured using the following protein substrates:
Elf1 (∆), Fip1 (�), Svf1 (�), synthetic peptide (#), and P2B (•). The experiment was carried out in
the presence of 10 µM of protein substrate and 20 µM ATP. Relative activity is calculated towards
enzyme activity in the absence of Asf1.

It is tempting to speculate that the potential fragment responsible for the modulation
of CK2 is located in the C-terminus of the yeast Asf1 protein. We wondered whether the
whole Asf1 molecule is necessary for CK2 inhibition, or whether only a specific part within
the protein is needed. Based on this, the effect of trypsin-digested full-length Asf1 towards
CK2 activity was examined. Due to the action of trypsin, two longer and several short
peptides were obtained (Figure 5A). Additionally, two shorter Asf1 constructs were tested,
comprising either the conserved amino acids 1-169 or amino acids 170-279, including the
characteristically acidic stretch (Figure 5A). The phosphorylating activities of human and
yeast CK2 were analyzed under standard conditions in the presence of 5 µM of Asf1 protein
or its fragments. As shown in Figure 5B,C, the obtained results suggest that the C-terminal
part (aa 170-279) is responsible for the decrease in CK2 activity. The results of trypsin-
digested Asf1 support this claim. The catalytic activity of CK2α’ was significantly inhibited
by the complete Asf1 protein (approximately 70–75%, p < 0.01). A slightly lower level
(around 8–10%) of CK2α’ inhibition was observed when peptides obtained after hydrolysis
by trypsin were used instead of the full-length Asf1 protein. The Asf1 molecule lacking the
C-terminal acidic stretch Asf11-169 has no CK2-activity-inhibiting properties. This supports
the thesis that the segment responsible for the inhibitory effect on the catalytic activity is
the characteristic acidic fragment of the yeast Asf1 protein, due to the fact that its removal
from the Asf1 protein restored the full kinase activity of the catalytic subunit.

The C-terminal acidic fragment of yeast Asf1 is similar to both the pseudo-substrate
region of the regulatory CK2β subunit and the recognition sequence present in proteins
modified by CK2. Therefore, a possible mechanism of inhibition could involve compe-
tition for the protein-substrate-binding site. We wondered whether the increase in the
protein substrate concentration in the reaction mixture affected the inhibitory potential of
Asf1. Changing the standard reaction conditions yielded different results for the α and α’
subunits. Inhibition studies were performed at fixed concentrations of protein substrate
(P2B) and at variable concentrations of ATP in the absence or in the presence of increasing
concentrations of inhibitor. The inhibition of both catalytic subunits in the presence of 5, 10,
or 20 µM ATP revealed another mode of action between the subunits. The inhibitory effect
estimated in the case of CK2α’ was similar to yet independent of the ATP concentration.
On the other hand, the CK2α subunit was more inhibited in the presence of 5 µM ATP than
20 µM, suggesting an ATP-dependent inhibition mode (Figure 6A,B). Applying different
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protein substrate (P2B) concentrations (25, 50, 75 µM) also led to various effects. The
extent of inhibition was changed only in the case of the CK2α’ subunit (Figure 6C,D). The
phosphorylating activity was less inhibited in the case of higher substrate concentrations,
suggesting a competitive inhibition mode towards the protein substrate. The experiments
were performed with the full-length Asf1 protein and the C-terminal fragment Asf1170-279.
As shown in Figure 6, the inhibition mode is the same, independent of the used Asf1
molecule.
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Figure 5. Comparison of effect of different Asf1 proteins/peptides (A) on CK2 activities from human
(B) and yeast (C). Phosphorylation activity of CK2α (black bars), human CK2α2β2 or yeast CK2α2ββ’
(light grey bars), and CK2α’ (dark grey bars) and human CK2α’2β2 or yeast CK2α’2ββ’ (white bars),
was measured in the presence of Asf1 or its fragments. The relative activity is given in reference to
CK2 incubated with trypsin and STI as control. The experiment was carried out in the presence of
10 µM P2B and 20 µM ATP. * and ** indicate significant difference compared to the controls (p < 0.05,
p < 0.01).
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CK2α’ (C,D) inhibition obtained in the absence and in the presence of the indicated full-length Asf1
(A,C) and Asf1170-79 (B,D) concentrations.

The data suggest that the interaction of the kinase with the inhibiting Asf1 protein is
not exclusively mediated by pseudo-substrate-reproducing motifs. Amino acid stretches
lying beyond the catalytic center of the kinase and/or beyond the pseudo-substrate region
of the inhibiting protein could influence the extent of inhibition. To address this question,
we analyzed the interaction of both CK2 catalytic subunits with the acidic stretch of
Asf1 comprising aa 170-193 (DDEEEEDDEEEDDDEDDEDDEDDD) using the CABS-dock
method. As shown in Figure 7 and Table 1, the binding of the peptide to the enzyme
differs between CK2α and CK2α’. In the case of CK2α’, the peptide stretches from the
ATP-binding pocket (K50) to the activation loop (S195). Both sites are responsible for the
enzyme activity and the substrate recognition. In the case of CK2α, the peptide binds to
the catalytic loop (K158) and activation loop (E180), but not to the ATP-binding pocket. For
this reason, we predict that this could be one explanation for the higher extent of inhibition
in the case of CK2α’ when compared with CK2α; as shown in this work, both subunits
are differently inhibited, dependent on the protein substrate. This might be explained
by the findings of the interaction with the substrate recognition site. The donor–acceptor
distances are between 2.7 and 3.5 Å, which are characterized as moderate, typically found
in proteins [51].

Table 1. List of hydrogen bonds formed between CK2 catalytic subunits and Asf1170-193.

CK2α Asf1 170-193 Distance (Å) CK2α’ Asf1 170-193 Distance (Å)

K158 D177 3.553 K50 E174 3.291
K158 E180 3.295 K50 E175 3.061
E180 D189 2.938 K50 E178 3.141
Q186 E187 3.302 S195 E180 2.826
E230 D170 2.747 S195 E180 2.845

R196 E180 3.362
E231 D186 3.084
G236 D181 2.983
K280 D192 3.249
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In a previous study, the effects of TBB and TBI on the cell growth of several yeast
strains were analyzed [46]. TBB decreased the cell growth of both mutants lacking either
the CK2α or CK2α’ subunit. In the case of TBI, no significant inhibition could be observed.

The first in vivo experiments revealed that the effect of the Asf1 protein towards
protein kinase CK2 is also detectable in yeast cells. In further in vivo experiments, con-
ducted on Asf1-transformed S. cerevisiae cells, CK2 activity was analyzed. Lysates from
yeast overexpressing Asf1 possessed lower phosphorylating activity than lysates from
non-transformed cells [43]. These in vivo results confirmed the results from enzymatic
activity studies of yeast CK2. In further experiments, we estimated the growth rate of yeast
cells to measure the influence of Asf1 overexpression on cell division. For this purpose, S.
cerevisiae strains (wild-type and deletion mutants) were grown either in the presence or
absence of overexpressed Asf1 protein (Figure 8A,B).

The experiments were performed in two different media. One contained glucose as a
carbon source, and the second contained galactose, which also induced the overexpression
of the Asf1 protein. The growth of the wild-type BMA64-1A was inhibited when Asf1
was overexpressed. Interestingly, the cell division of yeast expressing only the CKα’
subunit (Y01428) was inhibited more strongly compared to the wild-type BMA64-1A. This
divergence is explainable by the fact that yeast cells lacking the CK2α’ subunit (Y01837)
grew much faster. In the case of the basal expression of Asf1 (medium with glucose),
this deletion mutant exhibits more than two-times faster growth than the control strain.
Experiments carried out expressing the shorter Asf1170-279 protein gave results similar to
those with the full-length Asf1 protein. After 8 h cultivation, cell lysates were analyzed
towards their expression levels of His-tagged Asf1 protein (Figure 8C,D). Yeast cells grown
in medium supplemented with 2% galactose overexpressed Asf1 when compared to the
basal expression of Asf1 in cells cultured in medium containing 2% glucose. This difference
in the expression of Asf1 resulted in altered effects on the growth rate.
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Figure 8. Influence of Asf1 protein towards yeast growth rate. (A) Medium containing galac-
tose, (B) medium containing glucose. Optical densities determined after 0–8 h for cultures
S. cerevisiae wt (•), S. cerevisiae wt/pYES2/CT::Asf1 (#), S. cerevisiae ∆CK2α’ (�), S. cerevisiae
∆CK2α’/pYES2/CT::Asf1 (�), S. cerevisiae ∆CK2α (N), and S. cerevisiae ∆CK2α/pYES2/CT::Asf1
(∆). (C) SDS/PAGE of lysates from 8 h cultures and (D) Western blot analysis of lysates from 8 h
cultures.

3. Materials and Methods
3.1. Materials

Saccharomyces cerevisiae strains BMA64-1A (wild-type), Y01837 (CK2α’ deletion mutant,
∆CK2α), Y01428 (CK2α deletion mutant, ∆CK2α’) were obtained from EUROSCARF
(Scientific Research and Development GmbH, Oberursel, Germany). Restriction enzymes
were purchased from Thermo Fisher Scientific Polska (Warsaw, Poland). All other materials
were purchased from Merck KGaA (Darmstadt, Germany) if not otherwise stated.

3.2. Purification of Yeast CK2

Yeast strains Saccharomyces cerevisiae were cultivated under aerobic conditions in YPD
medium, i.e., yeast extract, peptone, glucose (Oxoid Ltd. Hampshire, UK) at 28 ◦C to the
exponential growth phase. Yeast cells were collected by centrifugation (4000× g) for 5 min.

Yeast CK2 holoenzymes with the compositions of αα’ββ’, α2ββ’, and α’2ββ’ were
obtained from yeast strains BMA64-1, Y01837, and Y01428, respectively. Native CK2
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holoenzymes were isolated and purified from yeast ribosomal-free extract as previously
described [52], using different chromatography steps, such as ion-exchange chromatogra-
phy, i.e., P11- and DE52-cellulose, followed by affinity chromatography, i.e., α-casein and
heparin sepharose.

Recombinant free catalytic subunits CK2α and CK2α’ were expressed and purified as
previously described [53].

3.3. Overexpression and Purification of Human CK2α and CK2α’ Subunits

Both catalytic subunits were overexpressed and purified as described previously [44].
Briefly, E. coli BL21(DE3)trxB cells (Novagen Merck KGaA, Darmstadt, Germany) harboring
the plasmid pGEX-3X::hsCK2α or pGEX-3X::hsCK2α’ were grown until OD600 = 0.6 at 37 ◦C.
Next, IPTG was added to the final concentration of 0.2 mM and the cultures were continued
at room temperature for 4 h and then centrifuged at 5000× g for 10 min. Bacterial cells were
disrupted by sonication and the supernatant was purified using glutathione-sepharose
(Amersham Pharmacia Biotech UK Ltd., Buckinghamshire, UK). Fractions containing the
CK2 subunit were pooled and dialyzed against 50 mM Tris/HCl buffer, pH 7.5, supple-
mented with 6 mM β-mercaptoethanol and 30% glycerol. The obtained protein preparations
were used in enzymatic assays.

3.4. Purification of Human CK2 Holoenzymes

CK2α2β2 and CK2α’2β2 holoenzymes were purified as described by Turowec et al. [54].
Briefly, both catalytic subunits were overexpressed as GST fusion proteins, whereas the
regulatory subunit was expressed as a His-tagged protein. Obtained bacterial pellets
were mixed prior to lysis. Lysates were purified as previously described for free catalytic
subunits using glutathione-sepharose.

3.5. Cloning of the Asf1, Asf11-169, and Asf1170-279 Proteins into Bacterial Expression Vector pET28a

In order to overexpress the yeast Asf1 protein and its N- and C-terminal fragments,
the appropriate nucleotide sequences were cloned into the pET28a vector (Novagen Merck
KGaA, Darmstadt, Germany) using yeast genomic DNA as a template for standard PCR
and primers adding the BamHI and SalI restriction sites, as listed in Table 2.

Table 2. Primer pairs used in this study.

Protein Expression Vector Primer Sequences *

Asf1 pET28a 5′-CCGGATCCTCAATTGTTTCACTGTTAGGCA-3′

5′-ACGTCGACTTAATTCGTTGAACGTGCCGCA-3′

Asf11-169 pET28a 5′-CCGGATCCTCAATTGTTTCACTGTTAGGCA-3′

5′-CGGTCGACTTATAC GCCGGGCTGTTCAG-3′

Asf1170-279 pET28a 5′-ACGGATCCGATGATGAAGAGGAGGAGGACG-3′

5′-ACGTCGACTTAATTCGTTGAACGTGCCGCA-3′

Asf1 pYES2/CT 5′-CCAAGCTTGGAAAAATGTCAATTGTTTCACTG-3′

5′-CCGAATTCTTAATTCGTTGAACGTGCCGC-3′

Asf1170-279 pYES2/CT 5′-CCAAGCTTGGAAAAATGGATGATGAAGAGGAG-3′

5′-CCGAATTCTTAATTCGTTGAACGTGCCGC-3′

* Restriction sites are underlined.

3.6. Cloning of Asf1 Protein and the C-Terminal Fragment Asf1170-279 into Yeast Expression Vector
pYES2/CT

In order to overexpress the Asf1 protein and its C-terminal fragment aa 170-279
in S. cerevisiae, the appropriate nucleotide sequences were cloned into the pYES2/CT
vector (Invitrogen Thermo Fisher Scientific Polska, Warsaw, Poland) using the pET28a::asf1
plasmid as a template for standard PCR and primers adding HindI and EcoRI restriction
sites for Asf1 and Asf1170-279, as listed in Table 2.
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3.7. Overexpression and Purification of Asf1, Asf11-169, and Asf1170-279 Proteins

E. coli cells harboring the pET28a::asf1, pET28a::asf1(1-169), or pET28a::asf1(170-279)
plasmid were cultured in terrific broth medium (Novagen Merck KGaA, Darmstadt, Ger-
many) until they reached an OD600 = 0.6. IPTG was added to a final concentration of
0.5 mM and the culture was further incubated at 37 ◦C for 4 h. The cells were harvested by
centrifugation at 5000× g for 5 min. The cell lysate was purified by affinity chromatography
using Ni-NTA.

3.8. Protein Substrates

The protein substrates P2B, Svf1, Fip1, and Elf1, used as phosphate acceptors, were
overexpressed and purified as previously described [44,46–48]. The acidic peptide with the
sequence RRRADDSDDDDD was purchased from Sigma-Aldrich Merck KGaA, Darmstadt,
Germany.

3.9. Protein Phosphorylation

CK2 activity was determined in a standard reaction mixture (40 µL of final volume)
containing 20 mM Tris–HCl buffer, pH 7.5, 15 mM MgCl2, 6 mM β-mercaptoethanol, and
20 µM [γ-32P]ATP (specific radioactivity 500–1000 cpm/pmol, Hartmann Analytic GmbH,
Braunschweig, Germany) in the presence of 10 µM protein substrate (P2B, Elf1, Svf1, Fip1).
Incubation was performed at 37 ◦C for 15 min. Afterwards, the reaction was terminated
by adding 7 µL of the SDS-PAGE loading buffer. Reaction mixtures were resolved in
SDS-PAGE, followed by Coomassie blue staining and autoradiography. The phosphate
incorporation level in the protein was estimated by cutting off the corresponding band and
measuring the radioactivity in a scintillation counter (PerkinElmer, Waltham, USA).

Phosphorylation activity using the synthetic peptide RRRADDSDDDDD (50 µM) was
analyzed by spotting an aliquot of the reaction mixture onto P81-cellulose paper (Whatman
International Ltd., Kent, UK). Next, filters were washed thrice with 1% phosphoric acid
and dried before counting in a scintillation counter.

3.10. Asf1 Digestion by Trypsin

First, 100 µg of full-length Asf1 protein was digested by 2 µg of trypsin. The reaction
was carried out for 18 h at 37 ◦C. Afterwards, the reaction was stopped by adding soybean
trypsin inhibitor (STI).

3.11. In Vivo Analysis

Transformed and non-transformed Saccharomyces cerevisiae strains were cultivated in
YPD medium for 8 h at 30 ◦C, starting with an OD600 of 0.4. In order to overexpress Asf1 or
Asf1170-279 proteins, the medium was supplemented with 2% galactose. OD600 values were
measured after 2, 4, 6, and 8 h.

3.12. Western Blot Analysis

Yeast cells were collected after 8 h and disrupted by sonication. Lysates (25 µg protein)
were separated on a 12.5% polyacrylamide gel. Afterwards, proteins were transferred onto
a PVDF membrane. The His-tagged Asf1 protein was detected using an anti-His antibody
conjugated with alkaline phosphatase (Merck KGaA, Darmstadt, Germany).

3.13. Statistical Analysis and Management Data

All data are expressed as mean ± SD (standard deviation) of three independent
experiments and were analyzed using a t test with Statistica software 12.0. A p value < 0.05
was considered statistically significant.

3.14. CABS-Dock Method

This tool can be used in the docking analysis of peptides to proteins. The advantage
of this protein–peptide docking is the opportunity for the flexible docking of a peptide to
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the kinase without any information about the peptide structure and/or the binding site.
This step was performed with the CABS-dock online docking server [55–57], available at
http://biocomp.chemuw.edu.pl/CABSdock/ (accessed on 2 October 2022). The modeled
and docked structures were then analyzed with the UCSF Chimera 1.12rc software. The
binding sites of the structures were identified using the crystal structures of CK2α (PDB
code 1PJK), CK2α’ (PDB code 3OFM), and Asf1170-193.

Up to 40% of the interactions between proteins in higher eukaryotes are estimated
to be mediated by peptidic binding motifs. These motifs are often located within locally
unstructured protein regions, but can also bind their partners as short isolated peptides [58].

4. Conclusions

In this report, we showed that the Asf1 protein exhibited a weaker effect on holoen-
zymes compared to free catalytic subunits and caused an increase in the catalytic activity
of the CK2α subunit in vitro, which may indicate various possibilities for the regulatory
mechanisms of these isoforms. Results of the interaction between Asf1 and CK2 seemed to
confirm the structural and functional diversity of different molecular forms of this protein
kinase.

The different effects of Asf1 towards CKα and CK2α’ correlate with data obtained from
inhibitory studies using halogenated 1H-benzimidazole and flavonoid derivatives. During
the past few years, we have already described several compounds possessing different
inhibitory activity towards CK2 subunits [44–47,59]. Such compounds may help to improve
the understanding of differences in the regulation and functions of both catalytic subunits.
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52. Kubiński, K.; Domańska, K.; Sajnaga, E.; Mazur, E.; Zieliński, R.; Szyszka, R. Yeast holoenzyme of protein kinase CK2 requires
both β and β’ regulatory subunits for its activity. Mol. Cell. Biochem. 2007, 295, 229–236. [CrossRef] [PubMed]
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