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Abstract: Travel mode choice (TMC) prediction is crucial for transportation planning. Most pre-
vious studies have focused on TMC in adults, whereas predicting TMC in children has received
less attention. On the other hand, previous children’s TMC prediction studies have generally fo-
cused on home-to-school TMC. Hence, LIGHT GRADIENT BOOSTING MACHINE (LGBM), as a
robust machine learning method, is applied to predict children’s TMC and detect its determinants
since it can present the relative influence of variables on children’s TMC. Nonetheless, the use of
machine learning introduces its own challenges. First, these methods and their performance are
highly dependent on the choice of “hyperparameters”. To solve this issue, a novel technique, called
multi-objective hyperparameter tuning (MOHPT), is proposed to select hyperparameters using a
multi-objective metaheuristic optimization framework. The performance of the proposed technique
is compared with conventional hyperparameters tuning methods, including random search, grid
search, and “Hyperopt”. Second, machine learning methods are black-box tools and hard to interpret.
To overcome this deficiency, the most influential parameters on children’s TMC are determined by
LGBM, and logistic regression is employed to investigate how these parameters influence children’s
TMC. The results suggest that MOHPT outperforms conventional methods in tuning hyperparam-
eters on the basis of prediction accuracy and computational cost. Trip distance, “walkability” and
“bikeability” of the origin location, age, and household income are principal determinants of child
mode choice. Furthermore, older children, those who live in walkable and bikeable areas, those
belonging low-income groups, and short-distance travelers are more likely to travel by sustainable
transportation modes.

Keywords: children’s travel mode choice; multi-objective hyperparameter tuning; metaheuristic
optimization; light gradient boosting machine

1. Introduction

Predicting travel mode choice is essential for transportation planning. However, most
previous travel mode choice studies have focused on adults, whereas analyzing TMC in
children has received less attention. Possibly, as a result, most transport planning is based
on adults’ needs, and children are more and more reliant on adults for their transport
needs [1]. Children are members of society, and travel mode choice has been found to
relate to their overall wellbeing. Children travels can influence parents’ travel behavior [2].
Furthermore, children become adults, and their childhood behaviors can impact their
adult behaviors. Therefore, it is important to examine children’s TMC and how different
parameters impact healthier and more sustainable mode choices.

In real-life travel behavior, individuals choose between different transportation modes.
Therefore, the features of different transportation modes (e.g., travel time, travel cost, and
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availability of different modes), as well as respondent characteristics, are used as factors
influencing the choice between available alternatives [3]. Traditionally, different statistical
methods, such as structural equation modeling [4], multivariate regression [5], bivariate
analysis [6], and fuzzy logic [7], have been used to determine the factors influencing
child travel behavior. For TMC, discrete choice models have been considered appropriate
methods to analyze these kinds of datasets; hence, they have been widely employed [8–10].

Multinomial logit has been the most used discrete choice model to analyze travel
behavior due to its simplicity and straightforward interpretation [11]. To this end, multino-
mial logit has been applied in many settings, such as daily TMC modeling [12], modeling
the influence of new public transportation infrastructures on TMC [13], modeling shopping
trips [8], and home-to-work/school commute modeling [9]. The use of the multinomial
logit requires assuming error terms to be identically and independently distributed (IID),
which can reduce prediction accuracy. Therefore, researchers have applied other discrete
choice models to relax the IID assumption and obtain still more accurate results. In this
regard, heteroscedastic extreme value, nested logit, mixed multinomial logit, multinom-
inal probit [10,14,15], joint models, hybrid choice [16], and latent class discrete choice
models [17] have been used to model individual travel mode choice.

Recently, due to the widespread application of machine learning techniques in vari-
ous fields, these learning techniques have received growing attention for travel behavior
modeling [18]. Machine learning techniques generally outperform discrete choice models
when comparing the prediction accuracy [19–22]. Various machine learning techniques
have been employed to predict TMC, such as support vector machines [23], random for-
est [24], naïve Bayes [25], extreme gradient boosting [26], kernel logistic regression [27],
softmax regression [28], adaptive-neuro-fuzzy classification [29], k-nearest neighbor [30],
and gradient boosting [20]. Although machine learning techniques have been found to
be accurate techniques for prediction problems (e.g., TMC prediction), two challenges are
associated with these techniques:

(a) Machine learning techniques require the determination of hyperparameters [31].
(b) Most of the powerful machine learning techniques are “black-box”, and, as a result,

their results are not easily interpretable [32].

While ML techniques require the determination of hyperparameters, their determina-
tion is typically performed ad hoc. Table 1 provides a summary of recent studies on TMC
prediction using machine learning techniques and the methods applied to tune hyperpa-
rameters. As can be seen, over 30% of those studies did not tune hyperparameters at all,
and, as a result, their models might suffer from over- or underfitting. When hyperparameter
tuning is undertaken, it is normally applied by breaking datasets into training, validation,
and sometimes even testing datasets. Furthermore, the existence of excessive outliers on
validation data can lead to selecting nonoptimal values for hyperparameters. To overcome
these deficiencies, the application of k-fold cross-validation is recommended [31]. However,
only 42.4% of studies shown in Table 1 employed the k-fold cross-validation process to
tune hyperparameters.

The application of a robust method to tune hyperparameters is vital to develop an
accurate prediction model. As shown in Table 1, trial and error is the most commonly
used method in TMC prediction studies. However, the trial-and-error method has two
major problems; it is a time-consuming technique and depends on modeler experience [53].
Accordingly, other researchers have applied systematic methods, including grid search,
random search, and Hyperopt. Grid search is a brute force method, and it is not compu-
tationally efficient. Random search does not guarantee that optimal hyperparameters are
found [54]. Moreover, all of these methods (i.e., trial and error, grid search, random search,
and Hyperopt) only apply a single performance indicator (e.g., prediction accuracy) to tune
hyperparameters. However, in many real-life prediction problems (e.g., TMC), datasets are
not balanced. For instance, there tend to be many more car than bicycle trips (e.g., [52]).
The promotion of such active modes may be a policy objective, but models using only
overall accuracy might not adequately predict low-frequency modes. Thus, rather than
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simply using accuracy as a single performance indicator, multiple performance indicators
(such as accuracy and F1-score together) should be applied to solve the problem of the
imbalanced distribution of transportation modes. Hence, developing a new method that
can consider multiple performance indicators in hyperparameter tuning is important, but
currently overlooked.

Table 1. A summary of recent studies on the application of machine learning to travel mode choice prediction.

Reference Optimizing
Hyperparameters

Considering k-Fold
Cross-Validation

Method for Tunning
Hyperparameters

Children Mode
Choice

Pham et al. [21] X X(Tenfold) Trial and error ×
Pineda-Jaramillo and
Arbeláez-Arenas [20] X X Random search ×

Kashifi et al. [33] × X(Tenfold) - ×
Salas et al. [22] X X(Fivefold) Hyperopt X

Chao [25] × × - ×
Brenner et al. [34] × X(Fivefold) - ×

Mohd Ali et al. [35] X × - ×
Li et al. [36] × × - ×

Tariq and Shakeel [37] X × Trial and error X

Aschwanden et al. [38] × × - ×
Buijs et al. [39] X × Random search ×
Liu et al. [26] X X(Fivefold) Grid search ×
Lu et al. [40] X × Trial and error ×

Sun and Wandelt [41] X × Trial and error ×
Kim [11] X × Grid search ×

Martín-Baos et al. [27] X X(Twofold) Random search ×
Gao et al. [42] X X(Tenfold) Trial and error ×
Qian et al. [43] X X(Tenfold) ? ×
Mi et al. [28] X X(Fivefold) Grid search ×

Liang et al. [44] × × - ×
Mohd Ali et al. [30] × × - ×
Nam and Cho [45] X × Trial and error ×
Thanh et al. [46] × × - ×
Zhou et al. [47] X X(Threefold) Grid search ×

Chang et al. [24] X X(Fivefold) Grid search X

Yang and Ma [48] × × - ×
Pirra and Diana [49] X X(Fivefold) ? ×

Richards and Zill [50] X X(Tenfold) Grid search X

Cheng et al. [51] X × Trial and error ×
Chapleau et al. [52] X × Trial and error X

Minal et al. [29] X × Trial and error ×
Assi et al. [23] X × Trial and error X

X: yes; ×: no; ?: could not find the in the manuscript.

As mentioned, the second problem with machine learning techniques is their black-box
nature. To address this, many white-box prediction techniques have been developed, such
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as programming techniques (e.g., soccer league competition [55], water cycle program-
ming [56], coyote optimization programming [32], and marine predator programming [57])
and M5tree [58]. Programming techniques cannot be applied to classification problems.
Additionally, M5tree cannot represent the influence of variables on the response variable
considering all respondents. In this regard, researchers have begun using ensemble ma-
chine learning techniques (e.g., gradient boosting) for TMC prediction problems since
these methods can present the relative influence of each input variable on the response
variable [20,24,26,52]. Although ensemble techniques can determine the influence of each
variable, they can represent the direction of those influences.

Accordingly, after detecting the input variables with the highest relative influence on
the response variable, different methods, such as accumulated local effects [59], Shapley ad-
ditive explanations (SHAP) [60], partial dependence plot (PDP) [61], and local interpretable
model agnostic explanations (LIME) [62], can be applied to represent in which the direction
(positively, negatively, linearly, quadratically, etc.) of the top input variables impacts the
response variable. However, LIME cannot indicate the influence direction of variables
for all respondents, and it is a disaggregated technique. Although SHAP, PDP, and ALE
can illustrate the influence direction of variables considering all data samples, they cannot
represent whether the behavior of different groups is significantly different or not. Hence,
multinomial logistic regression [63] is often used to determine the influence direction of
variables and detect which groups significantly behave differently.

As can be seen from Table 1, although research has been conducted on adult TMC,
child TMC has not received enough attention, and this group has been excluded in most
studies. To address this issue, this study developed a model to predict the TMC of children
and determine which variables significantly influence child mode choice for all trips (i.e.,
not only school-related trips) using an ensemble learning approach. Since conventional
techniques to tune hyperparameters may not be highly efficient, and they can only optimize
a single indicator during the tuning process, a new technique is proposed in this study
that can optimize multiple indicators. The proposed technique can be highly effective
for imbalanced datasets (e.g., Montreal TMC data), as the F1-score and accuracy can be
maximized simultaneously. After detecting the most important variables on children’s TMC,
multinomial logistic regression is applied to make the results of the black-box prediction
technique interpretable. In other words, multinomial logistic regression is used to represent
in which direction top-ranked variables can influence child TMC and how these variables
can support sustainable transportation.

In the next section, the datasets used in this study is initially explained. Then, the
developed technique and the conventional techniques applied for tuning hyperparameters
are described. Afterward, the results are presented and discussed.

2. Methods

The main objectives of this studies are as follows:

• To develop a new method to tune hyperparameters;
• To predict child mode choices accurately;
• To determine which variables influence the child travel mode choice.

The flowchart of the methodology is shown in Figure 1. As can be seen, initially,
different datasets are merged to develop a comprehensive dataset including many variables.
Then, a new method is developed to tune hyperparameters. The developed method is
compared with conventional regularisation techniques based on prediction accuracy and
running time. The most accurate hyperparameter tuning technique is then used to run the
final model. Subsequently, the machine learning technique is run, and the relative influence
of variables is determined. Lastly, multiple logistic regression is used to interpret the results
of the machine learning technique.
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2.1. Datasets and Variables

To the best of the authors’ knowledge, most previous studies used trip details, indi-
vidual and household characteristics to model TMC. However, in this study, additional
variables, such as accessibility, geographic, and land-use variables, are added to the men-
tioned variables to help explain TMC. To this end, three datasets are taken into account, the
2018 Montreal OD survey, Walk Score, and Montreal proximity measure data.

The Montreal OD survey was conducted in the fall of 2018, and roughly 400,000 trips
were recorded for “an average fall” day. From this survey, 14 variables are considered,
including age, gender, availability of a monthly transit pass, disability status, interview
language, household income, the presence of people in the household with restrictions in
movement, number of members in the household, number of cars in the household, trip
distance, start time of the trip, reason for trip, region of origin, and region of destination.
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From the Walk Score dataset [64], walk score, transit score, and bike score variables
were collected. Walk score measures the walkability of a location according to the distance
to different amenities, including schools, parks, restaurants, grocery stores, and coffee
shops. Transit score represents how well a location is served by public transit. The bike
score indicates how a location is good for biking based on the availability of bike lanes,
road connectivity, hilliness, and nearby amenities. These indices quantify the quality of
walking, transit, and biking trips from 0 (worst) to 100 (excellent).

The built environment data were further enriched by using proximity data for Mon-
treal. Ten variables were added, including accessibility level to primary school, secondary
school, childcare facility, park, library, grocery store, health facility, pharmacy, employment
source, and public transit. These indices measure the closeness of a dissemination block to
the mentioned services using a gravity-based accessibility measure. Dissemination blocks
are the smallest geographic area bounded on all sides by streets or boundaries of Statistics
Canada’s standard geographic areas [65]. For more information about the mentioned
accessibility indices, please visit Statistics Canada [66]. In contrast to walk score, which
provides an overall score, these values are destination-specific.

Altogether, 27 variables were applied to explain TMC. The attributes of selected
variables are shown in Table 2. Since this investigation focused on children’s TMC, the
trips of individuals aged from 5 to 17 were taken into consideration (5 is the minimum age
for trips to be collected on an individual level in Montreal; 18 is considered an adult in
Canada). The trips where the origin is home were considered because the first trip’s mode
restricts the following TMC [52], and built environment data were collected according to
the individual’s residential location. In the final dataset, the number of relevant trips was
9597. These observations were randomly divided into training (80% of total samples) and
testing data (20% of total samples). Six transportation modes were used for the mentioned
trips: school bus (18.6%), car as a passenger (33.6%), bus (10.9%), rail transit (6.7%), cycling
(2.4%), and walking (27.8%). The share of these modes in the dataset was 18.6%, 33.6%,
10.9%, 6.7%, 2.4%, and 27.8%, respectively. Hence, the share of transportation modes was
imbalanced, and it was more appropriate to develop a model that can maximize F1-score,
as well as accuracy, in the hyperparameter tuning process.

2.2. Modeling

For modeling TMC, an ensemble learning approach was applied for two reasons.
First, the results of recent studies showed that ensemble prediction techniques generally
outperform other modeling techniques, such as naïve Bayes, logistic regression, k-nearest
neighbor, support vector machine, artificial neural network, nested logit, and multinomial
logit, in explaining TMC in terms of prediction accuracy [11,30,50,52]. Second, ensemble
techniques can prioritize variables on the basis of their relative influence on the response
variable [67].

In this study, light gradient boosting machine (LGBM), a powerful and fast ensemble
technique, was employed for the prediction process. LGBM is an updated version of
tree-based gradient boosting developed by Microsoft. Like other ensemble techniques,
LGBM combines different weak learners (i.e., decision trees) to form a powerful and
robust prediction algorithm [68]. LGBM is a quick method, and it is highly efficient for
large-scale prediction problems. Parallel learning is supported by LGBM, and, as a result,
memory usage is significantly reduced. A leaf-wise leaf growth strategy is used in LGBM
modeling that can limit the depth growth in the splitting process. The mentioned leaf-wise
leaf growth strategy splits the same layer of leaves simultaneously. Therefore, LGBM
can implement multithreaded optimization. To this end, the complexity of the model is
controlled automatically, and the probability of overfitting is considerably reduced [69].
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Table 2. Attribute of selected variables.

Variable Frequency Percentage Variable Frequency Percentage

Gender Household income (CAD)

Male 4989 51.98 Less than 30,000 543 5.66

Female 4608 48.02 30,000 to 59,999 1189 12.39

Availability of a monthly transit pass 60,000 to 89,999 1654 17.23

Yes 2118 22.07 90,000 to 119,999 1856 19.34

No 7479 77.93 120,000 to 149,999 1042 10.86

Disability status 150,000 to 179,999 603 6.28

Yes 84 0.88 180,000 to 209,999 376 3.92

No 9513 99.12 210,000 and more 713 7.43

Number of cars in the household Refusal 1185 12.35

1 3669 38.23 Unknown 436 4.54

2 4532 47.22 Number of members in the household

3 686 7.15 1 4 0.04

4 129 1.34 2 299 3.12

5 31 0.32 3 1484 15.46

6 5 0.05 4 4543 47.34

7 0 0.00 5 2412 25.13

8 1 0.01 6 604 6.29

9 0 0.00 7 170 1.77

10 0 0.00 8 50 0.52

11 0 0.00 9 16 0.17

12 0 0.00 10 and more 15 0.16

13 3 0.03 Interview language

14 and more 0 0.00 French 8988 93.65

Other 609 6.35

2.3. Tuning Hyperparameters

A new technique is proposed to optimize hyperparameters of machine learning tech-
niques considering multiple performance indicators. That is, a new multi-objective hyperpa-
rameter tuning (MOHT) approach is developed in this study. In this regard, non-dominated
sorting genetic algorithm III (NSGA-III), a multi-objective metaheuristic algorithm, was
used as the optimization tool. Genetic algorithms have been widely used to optimize sev-
eral engineering problems [70–72]. NSGA-III was used for the optimization process since it
is a multi-objective metaheuristic optimization technique, and metaheuristic techniques can
sync with machine learning techniques [73]. In this technique, the hyperparameter values
are optimized using an optimization framework. In each iteration of the optimization
process, NSGA-III assigns different values to hyperparameters. Then, the machine learning
technique is run to evaluate the performance indicators (i.e., accuracy and F1-score) for
each of the assigned hyperparameters. Then, the model tries to improve the performance
indicators by optimizing the hyperparameters. The optimization modeling of the proposed
method is presented in Equations (1)–(5).

Z1= maximize AccuracyK−CV , (1)

Z2= maximize FK−CV
1 , (2)
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HPInt
i ∈ Seti ∀i ∈ I, (3)

HPCon
j ≥ HPmin

j ∀j ∈ J, (4)

HPCon
j ≤ HPmax

j ∀j ∈ J, (5)

where Z1 and Z2 are the objective functions of the proposed optimization model. AccuracyK−CV

and FK−CV
1 imply the accuracy and F1-score of validation data calculated using the k-fold

cross-validation technique. In this study, a fivefold cross-validation was used for the tuning
process (K = 5). HPInt

i and HPCon
j denote integer and continuous-ranged hyperparameters.

Seti is the defined set of integer hyperparameter i. HPmin
j and HPmax

j are the minimum
and maximum defined values for continuous-ranged hyperparameters j. I and J represent
the number of integer and continuous-ranged hyperparameters, respectively.

Equations (1) and (2) are the objective function of the proposed technique. That is, in
the hyperparameter tuning process, accuracy and F1-score are maximized simultaneously.
Equation (3) guarantees that the optimal value of integer hyperparameters is selected from
their defined set. Equations (4) and (5) are the constraints that force the model to select the
optimal value of continuous-ranged hyperparameters from their allowed range.

As mentioned, NSGA-III was employed to solve the multi-objective optimization
problem. NSGA-III is a metaheuristic optimization algorithm that is used for solving
multi-objective optimization problems. This algorithm aims to find non-dominated sorting
optimal solutions integrating all objective functions rather than converting all objective
functions into a single objective function. As a result, NSGA-III presents a Pareto front
in which the optimal solutions cannot dominate each other on the basis of all objective
functions [74]. The pseudo-code of MOHT is shown in Figure 2.
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Three conventional hyperparameter tuning techniques, namely, grid search, random
search, and Hyperopt, were used to evaluate the effectiveness of the proposed hyperpa-
rameter tuning approach (i.e., MOHT). Grid search checks all the possible combinations
of hyperparameters to find their optimal values. That is, a possible set for each hyperpa-
rameter should be defined. Then, all the possible combinations of hyperparameters in the
possible set are used to run the model. Lastly, the combination that leads to the highest
accuracy is considered the optimal value of hyperparameters. Random search only checks
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some random possible combinations of hyperparameters and tunes hyperparameters on
the basis of a limited number of random combinations. Hyperopt is an efficient hyperpa-
rameter tuning method that applies parallel and serial optimization to efficiently optimize
hyperparameters [75].

Grid search is a brute force technique, and it only assigns a limited number of possible
hyperparameter values to the hyperparameters’ initial set. That is, for hyperparameters
with a continuous range, only a few values can be checked, and the optimal value of
hyperparameters may not be found. However, grid search is an exact algorithm, and
its optimal solution is not changed in different runs. Random search may not find the
optimal values for hyperparameters because it assigns random values to hyperparame-
ters. Nonetheless, random search is a quick technique, and it is computationally efficient
when the number of hyperparameters is significant. Hyperopt is computationally more
efficient than grid search, while its running time is generally higher than random search.
Furthermore, all these techniques apply a single performance indicator (e.g., accuracy) to
tune hyperparameters. To address this issue, this study developed the MOHT.

The defined set for hyperparameters is presented in Table 3. As can be seen, grid
search cannot cover the entire range, and a set with a few possible options should be
considered in this technique since it is a comprehensive search method.

Table 3. Set of hyperparameters for various hyperparameter tuning techniques.

MOHT Random Search Hyperopt Grid Search

Number of estimators {10, 11, 12, . . . , 510} {10, 11, 12, . . . , 510} {10, 11, 12, . . . , 510} {10, 50, 100, 200, 300, 400, 500, 600}
Maximum depth {1, 2, 3, . . . , 11} {1, 2, 3, . . . , 11} {1, 2, 3, . . . , 11} {1, 3, 5, 7, 9, 11}

Minimum data in leaf {5, 6, 7, . . . , 105} {5, 6, 7, . . . , 105} {5, 6, 7, . . . , 105} {10, 20, 30, 40, 50, 60, 70}
Learning rate (0, 1] (0, 1] (0, 1] {0.0001, 0.001, 0.01, 0.1, 1}

2.4. Results Interpretation

Although LGBM can rank variables on the basis of their relative influence on the
response variable (i.e., children’s TMC), it cannot interpret how each variable (e.g., trip
distance) impacts the children’s TMC. To solve this issue, after detecting the variables
with the highest relative influence on children’s TMC, multinomial logistic regression
was applied to determine how these top-ranked variables influence the children’s TMC.
Since multinomial logistic regression cannot converge when the number of variables is
significant, the top variables on child TMC were detected using the relative influence
presented by LGBM. Then, those top variables were applied for modeling multinomial
logistic regression.

Multinomial logistic regression is a robust statistical modeling technique that can
be used for classification and interpretation. A set of explanatory variables are used in
multinomial logistic regression for assessing the probability of dichotomous outcome
events. Dichotomous variables mainly represent whether some events occur or not. In
this technique, it is assumed that the relation between the explanatory variables is linear.
Therefore, multinomial logistic regression uses linear decision boundaries, but it is a
nonlinear technique [67]. From a sustainable transport perspective, the car as a passenger
is considered the reference in the multinomial logistic regression to determine how top
variables can attract children to use more sustainable transportation modes.

3. Results and Discussion

In this section, the results of hyperparameter tuning techniques are initially presented,
and the best technique is determined. Then, the ranking of variables based on their relative
influence on children’ TMC is presented using the most accurate hyperparameter technique
and LGBM. Ultimately, the results of a multinomial logistic regression model are presented.
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3.1. The Performance of Hyperparameter Tuning Techniques

The optimal values of hyperparameters using different techniques are shown in
Table 4. Although MOHT is a multi-objective algorithm and generally provides the users
with multiple non-dominated optimal solutions (i.e., a Pareto front), it presents a single
optimal solution for the applied case study. If MOHT presents over one optimal solution, it
is recommended to apply gray relational analysis to find the best optimal solution according
to the details provided by Naseri et al. [76].

Table 4. The optimal values of hyperparameters.

Number of Estimators Maximum Depth Minimum Data in Leaf Learning Rate

Definition of
Hyperparameters

The Number of
Decision Trees

The Maximum Depth
of the Tree

The Minimum Data
Required to Be at a

Leaf Node

Convergence
Magnitiude

MOHT 172 10 29 0.319
Random search 50 9 60 0.481

Hyperopt 429 10 54 0.028
Grid search 500 11 10 0.1

The testing data accuracy and testing data F1-score of different hyperparameter tuning
techniques are shown in Figures 3 and 4. As can be seen, the proposed technique in
this study (MOHT) obtained the highest testing data accuracy, followed by grid search,
Hyperopt, and random search. That is, applying MOHT could increase the prediction
accuracy by 1.25%, 2.81%, and 3.59%, respectively, compared to grid search, Hyperopt, and
random search. Similarly, MOHT outperformed other techniques in terms of testing data
F1-score. The testing data F1-score of MOHT was 1.74%, 3.61%, and 4.89% greater than
that of grid search, Hyperopt, and random search, respectively. Therefore, the testing data
F1-score improvement of MOHT was more than its prediction accuracy, which is related to
considering both accuracy and F1-score in the objective function of MOHT. Hence, it can be
postulated that considering multiple performance indicators in the tuning hyperparameter
techniques can improve the overall performance of the model. However, techniques
including a single performance indicator can only improve the prediction accuracy and not
all vital performance indicators.
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Figure 4. The testing data F1-score of hyperparameter tuning techniques.

The receiver operating characteristic (ROC) curves of different hyperparameter tuning
techniques are indicated in Figure 5. Drawing on the results, the highest area under the
curve (AUC) of the ROC curves was related to MOHT, followed by grid search, Hyperopt,
and random search, with values of 0.81, 0.80, 0.79, and 0.78, respectively. Accordingly,
MOHT was the best technique. MOHT obtained the highest AUC of the ROC curve for
the least frequent mode (cycling) with a value of 0.62, which was 2%, 4%, and 6% more
than that of grid search, Hyperopt, and random search. This improvement resulted from
considering prediction accuracy and F1-score in MOHT, proving that MOHT was highly
efficient for modeling this imbalanced TMC dataset. Therefore, considering an optimization
framework to tune hyperparameters can even improve the performance indicators not
considered in the objective function of the optimization model.

The running time of the hyperparameter tuning techniques is presented in Figure 6.
MOHT could reduce the computational time by 68% and 71% compared to Hyperopt
and grid search, indicating that MOHT was a highly efficient technique regarding the
computational cost. However, the MOHT running time was 2.5 times more than that of
the random search. As mentioned, random search checks a limited number of random
combinations; hence, it was the fastest technique. On the other hand, random search is less
likely to find optimal values of hyperparameters, and the testing data accuracy and F1-score
obtained by the random search were significantly lower compared to MOHT. Therefore, it
can be postulated that MOHT outperformed other techniques when considering the testing
data accuracy, testing data F1-score, and running time.

Liashchynskyi and Liashchynskyi [54] compared the performance of grid search and
random search regarding the prediction accuracy and running time. The results suggested
that, although random search was a faster technique, grid search could obtain higher
prediction accuracy. Hence, their results are in line with the findings of this study.
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3.2. The Relative Influence of Variables on Children’s TMC

Since MOHT led to the highest prediction accuracy, the LGBM was performed using
the optimal hyperparameter values found by MOHT. Then, the relative influence of vari-
ables was extracted to determine which variables impact the children’s TMC the most. The
relative influence is illustrated in Figure 7. As can be seen, trip distance had by far the
highest impact on children’s TMC, with a relative influence of 15.5%. Walk score, age, bike
score, household income, and accessibility to secondary school were the next best variables.
The relative influence of other variables was less than 5%. Among accessibility parameters,
accessibility to secondary school, accessibility to libraries, and accessibility to grocery stores
had the greatest influence on children’s TMC.
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Wang and Ross [77] investigated the relative influence of different variables on adults’
TMC, and the results suggested that the relative influence of trip distance was significantly
higher than the number of vehicles per capita, population density, and the number of
people in the household. Accordingly, their results are in line with the results of the current
study. In the Kim [11] study, age had a considerably higher influence than gender in terms
of relative influence on TMC, which is consistent with the results shown in Table 5.
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Table 5. Results of multiple logistic regression (variables are organized by relative influence from
most to least).

School Bus Bus Rail Transit Cycling Walking

Estimate SL Estimate SL Estimate SL Estimate SL Estimate SL

Constant −1.121 *** 0.489 *** 1.509 *** −1.899 *** −2.269 ***

Trip distance
(km)

0–0.8 −0.918 *** −1.693 *** −4.928 *** 2.246 *** 5.214 ***

0.8–1.6 −0.195 * −0.585 *** −2.610 *** 1.942 *** 3.548 ***

1.6–3.2 0.042 0.033 −1.309 *** 1.187 *** 1.549 ***

>3.2 (ref) 0 0 0 0 0

Walk Score

0–46 1.031 *** −1.240 *** −1.768 *** −0.028 −0.773 ***

46–70 0.580 *** −0.685 *** −1.341 *** −0.731 ** −0.603 ***

70–85 0.184 + −0.247 * −0.716 *** −0.693 *** −0.412 ***

86–100 0 0 0 0 0

Age

5–8 −0.800 *** −3.432 *** −3.358 *** −2.147 *** −1.683 ***

9–11 −0.482 *** −2.621 *** −2.107 *** −1.359 *** −1.008 ***

12–15 (ref.) 0 0 0 0 0

16–17 −0.503 *** 0.570 *** 0.913 *** 0.662 *** 0.415 **

Bike Score

0–59 0.115 + −0.625 *** −1.310 *** −1.503 *** −0.718 ***

60–71 −0.100 + −0.349 * −1.137 *** −1.321 *** −0.726 ***

72–84 0.101 + −0.179 + −0.870 *** −0.631 ** −0.614 ***

85–100 (ref) 0 0 0 0 0

Household
income

(thousand
CAD)

<60 0.771 *** 0.623 *** 0.487 ** 0.170 + 0.073 +

60–120 0.315 *** 0.032 0.129 + −0.030 −0.003

>120 (ref) 0 0 0 0 0

Prefer not
to answer 0.432 *** 0.140 + 0.506 *** −0.224 + −0.102 +

Accessibility
to secondary

school

<0.048 0.286 ** 0.144 + −0.685 *** −0.255 + 0.103 +

0.048–0.072 0.222 * 0.140 + −0.919 *** −0.577 ** 0.002

0.072–0.114 0.170 + 0.091 + −0.307 * −0.160 + 0.136 +

>0.114 (ref) 0 0 0 0 0

Nore: SL= significance level; +, *, **, and *** imply a significance difference at the levels of 0.1, 0.05, 0.01, and
0.001, respectively.

3.3. Analyzing the Influence Direction of Top Variables

Although LGBM can rank the variables on the basis of their relative influence on the
response variable, it cannot determine how changing variables affect the response variable.
In this regard, multinomial logistic regression was performed to examine the direction
influence of top-ranked variables, and the results are shown in Table 5. In the mentioned
analysis, the car as a passenger was considered the reference. According to the results,
most of the variables were statistically significant in terms of impact on children’s TMC,
which may be related to considering the top-ranked variables of LGBM in the multinomial
logistic regression.

Children are more likely in Montreal to travel by public transit (i.e., rail transit and bus)
than by car as a passenger. Nonetheless, they are less likely to travel by school bus or active
transportation (i.e., cycling and walking) then by car as a passenger. By reducing the trip
distance, children are more likely to walk or cycle to their destination, while the probability
of traveling by public transit or school bus is reduced. In regions with a lower walk score,
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children are more likely to travel by school bus, and public and active transportation are
less used than cars as a passenger. Children aged under 12 years are more likely to travel
by car as a passenger. For those aged over 15, rail transit was their preference, followed by
cycling, bus, and walking. However, they were not likely to prefer the school bus over a car
as a passenger. A reduction in bike score led to a reduction in the probability of choosing
bus, rail transit, cycling, and walking over a car as a passenger. Furthermore, a statistically
significant difference was not found between the car as a passenger and the school bus if
bike score was changed.

As compared to high-income households, children in the low-income group (<60 thou-
sand CAD annually) preferred the school bus, bus, rail transit, cycling, and walking over
a car as a passenger. The middle-income group (60–120 thousand CAD annually) was
more likely to travel by school bus as compared to the high-income group, but a significant
difference could not be seen between a car as a passenger and other transportation modes.
A reduction in the accessibility to secondary school resulted in an increment in the intention
to choose school bus, bus, and walking over a car as a passenger. On the other hand,
reducing the accessibility to secondary school decreased the probability of choosing rail
transit and cycling over a car as a passenger.

3.4. Managerial Implications

Individuals over 15, those who live in regions with higher walk score, bike score, and
accessibility to secondary schools, the low-income group, and short-distance travelers are
more likely to travel by active transportation. Moreover, older children (aged over 15),
long-distance travelers, residents of regions with higher walk score and bike score, and the
low-income group generally use public transit more than a car as a passenger. children
aged 12 to 15, residents of regions with the lowest level of walk score, bike score, and
accessibility to secondary schools, long-distance travelers, and low- and middle-income
groups are more likely to travel by school bus than by car as a passenger.

Therefore, improving the walk score can increase the share of active and public
transportation in child trips. Similarly, the bike score needs to be increased if the goal is to
promote active transportation in children. Accessibility to schools should be improved if
the governments tend to attract children to travel by active transport.

One of the limitations of this study is that it only applied the NSGA-III algorithm to
develop a multi-objective hyperparameter tuning technique. It is recommended to consider
other multi-objective optimization algorithms to develop new hyperparameter tuning
techniques and compare their accuracy with the method proposed in this study.

4. Conclusions

In this study, the travel mode choice of children aged 5 to 17 was investigated using
a robust ensemble learning technique, LGBM. To maximize the model’s performance, a
new multi-objective approach (MOHT) was proposed to tune machine learning techniques
hyperparameters. The performance of the proposed technique was compared with the
conventional tuning methods. MOHT was demonstrated to be an appropriate technique
for tuning hyperparameters of imbalanced datasets (such as travel mode choice) since
it can consider multiple machine learning performance indicators in the tuning process.
MOHT outperformed other hyperparameter tuning techniques in terms of machine learning
performance indicators (e.g., prediction accuracy, F1-score, and AUC). Moreover, this
technique could significantly reduce the computational cost compared to grid search and
Hyperopt. However, the running time of MOHT was considerably higher than the random
search, but it could present more accurate solutions.

The independent variables were ranked on the basis of their relative influence on
children’s TMC, and trip distance, walk score, age, bike score, household income, and
accessibility to secondary schools were the top-ranked variables. Since LGBM could
not represent how these top-ranked variables influence children’s TMC, multiple logistic
regression was applied to better understand the influence of these variables on children’s
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TMC. With reference to trips by car, the results suggested that, as trip distance decreases,
active modes are more likely. The built environment, as measured by walk score, was
positively associated with all sustainable and independent modes as was bike score to a
lesser degree. As age increased, children used more sustainable and independent modes.
Finally, the highest household income was associated with more car as passenger trips, but
the relationship with active modes was less strong. The results suggest that policies for a
mixed-use development with high-quality public transport networks, such as Singapore’s
20 min towns and 45 min city [78], can facilitate both local travel and the use of public
transport by children.
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