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Abstract

Background: Ischemic ECG changes are subtle and transient in patients with suspected non-ST-

segment elevation acute coronary syndrome (NSTE-ACS), yet the prehospital (PH)-ECG is not 

routinely used during subsequent evaluation at the emergency department (ED). We sought to 

compare the diagnostic performance of PH- and ED-ECG and evaluate the incremental gain of 

artificial intelligence (AI)-augmented ECG analysis.

Methods: This prospective observational cohort study recruited patients with prehospital chest 

pain. We retrieved PH-ECG obtained by paramedics in the field and first ED-ECG obtained by 

nurses during in-hospital evaluation. Two independent and blinded reviewers interpreted ECG 

dyads in mixed order as per practice recommendations. Using 179 morphological ECG features, 

we trained, cross-validated, and tested a random forest classifier to augment NSTE-ACS diagnosis.

Results: Our sample included 2,122 patients (age 59 (16); 53% females; 44% Black, 13.5% 

confirmed ACS). The rate of diagnostic ST elevation and ST depression were 5.9% and 16.2% on 

PH-ECG and 6.1% and 12.4% on ED-ECG, with ~40% of changes seen on PH-ECG persisting 

and ~60% resolving. Using PH-ECG alone gave poor baseline performance with AUROC, 

sensitivity, and negative predictive value of 0.69, 0.50, and 0.92. Using serial ECG changes 

enhanced this performance (0.80, 0.61, and 0.93). Interestingly, augmenting the PH-ECG alone 
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with AI algorithms boosted its performance (0.83, 0.75, 0.95), yielding NRI of 29.5% against 

expert ECG interpretation.

Conclusion: In this study, sixty percent of diagnostic ST changes resolved prior to hospital 

arrival, making the ED-ECG suboptimal for in-hospital evaluation of NSTE-ACS. Using serial 

ECG changes or incorporating AI-augmented analyses would allow correctly reclassifying one in 

four patients with suspected NSTE-ACS.

Keywords

prehospital ECG; acute coronary syndrome; dynamic ECG changes; machine learning; artificial 
intelligence

INTRODUCTION

The 12-lead electrocardiogram (ECG) remains the initial diagnostic test for evaluating the 

7 million Americans presenting annually to an emergency department (ED) for a chief 

complain of non-traumatic chest pain.1 With the goal of expeditiously identifying acute 

coronary syndrome (ACS), guidelines now recommend the acquisition of a 12-lead ECG 

in the prehospital (PH) setting (i.e., during transport by emergency medical services) and 

transmitting it to the receiving hospital.2 The practice of acquiring and transmitting a PH-

ECG in patients with the high pretest probability of disease has been shown to dramatically 

improve outcomes in patients with ST-elevation ACS (STE-ACS).3–5 However, the clinical 

impact of this practice is mostly confined to reducing first medical contact-to-intervention 

time via early catheterization laboratory (CATH) activation for those with STE-ACS.6,7 

In the absence of ST-segment elevation, prehospital personnel frequently do not transmit 

the PH-ECG, and ED clinicians primarily rely on initial findings seen on ED-ECG in 

conjunction with guideline-recommended biomarker-driven evaluations. Thus, the PH-ECG 

is not routinely used as an informative data point in the comprehensive in-hospital evaluation 

of all patients with suspected ACS. While the practice of PH-ECG implementation and 

integration into systems originated over a decade ago, a lack of systematic inclusion of 

PH-ECG into the diagnostic workup beyond STE-ACS still remains8. This lack of inclusion 

is further aggravated by the variability of PH ECG acquisition practices and the poor 

integration of prehospital and in-hospital electronic health records, which often leaves the 

PH-ECG unavailable to ED clinicians during the initial patient evaluation.9,10

Nearly two thirds of ACS cases are considered non-ST elevation ACS (NSTE-ACS).11 Due 

to the heterogeneity of findings when compared to STE-ACS,12 the diagnostic workup of 

NSTE-ACS often involves a lengthy monitoring and assessment process, including frequent 

examinations, serial cardiac biomarker assays, and repeated ECG evaluation during their 

ED and hospital stay.2 This is further complicated by the fact that the STEMI vs not-a-

STEMI diagnostic paradigm has its own limitations when deciding the optimal treatment 

strategy.13 Nearly 40% of STEMI-ECGs having no total coronary occlusions and 25% of 

those with not-a-STEMI-ECG having a total coronary occlusions requiring intervention.14 

Integrating the PH-ECG into this paradigm of in-hospital evaluation of NSTE-ACS is not yet 

established due to the dearth of data regarding its potential incremental value in identifying 

NSTE-ACS. However, it is known that around 20% of diagnostic ST-segment elevations 
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seen on PH-ECG resolve by the time the first ED-ECG is acquired, which has important 

implications in STE-ACS detection.15–17 The pathogenesis of NSTE-ACS suggests that 

coronary occlusions are more likely to be transient and/or unstable, especially when first-

line anti-ischemic therapies (e.g., aspirin, nitroglycerin) are administered by PH personnel, 

hence it is plausible that the PH-ECG might play an even bigger role in NSTE-ACS 

detection18. Unfortunately, data on such a diagnostic potential are scarce.

Another challenge posed by ECG detection of NSTE-ACS is that 12-lead ECG changes are 

subtle and are highly multi-dimensional, hence requiring advanced algorithms to identify 

changes that cannot be detected otherwise.19 Subtle ECG changes are also dynamic over 

time and their evolution prior to hospital arrival might provide further diagnostic value 

for detecting NSTE-ACS. Harvesting subtle and significant ischemia ECG patterns other 

than ST amplitude has been shown to significantly improve the diagnosis of occlusion MI 

(OMI), especially when initial ECG findings do not meet STEMI criteria.20 Thus, the recent 

incorporation of explainable artificial intelligence (AI) algorithms for cardiac ischemia 

detection from 12-lead ECG data can provide a powerful tool to help identify cases of 

NSTE-ACS that can otherwise be missed by clinicians.21 The role of AI-augmented ECG 

diagnosis of NSTE-ACS is yet to be explored.

Herein, we report findings from a large PH-ECG database of patients calling 9-1-1 for 

chest pain in the United States. The specific aims of this analysis were to (1) examine 

whether incorporating the PH-ECG in serial ECG analysis (i.e., classical interpretation of 

ST amplitude) results in any increase in diagnostic gain of NSTE-ACS; and (2) given 

the PH-ECG is more likely to capture transient subtle ischemic patterns, does the use of 

AI-ECG (i.e., mining for important ischemic patterns other than ST amplitude) improve the 

diagnostic gain of NSTE-ACS.

METHODS

Design, Setting and Sample

Subjects for this sub-analysis were obtained from the EMPIRE study (ECG Methods for 

the Prompt Identification of Coronary Events)19. Study methods are described in detail 

elsewhere and are published on ClinicalTrials.gov (NCT04237688). Briefly, the study 

was a prospective, observational study of non-traumatic chest pain patients that called 

9-1-1 for a chief complaint of chest pain or other atypical, suspicious symptoms (e.g., 

shortness of breath, epigastric pain, and syncope) requiring ECG evaluation. Between 

2013 to 2018, we prospectively enrolled consecutive patients who called 9-1-1 in the City 

of Pittsburgh and were transported by Pittsburgh Emergency Medical Services to three 

separate University of Pittsburgh Medical Center (UPMC) hospitals: UPMC Shadyside, 

UPMC Presbyterian, and UPMC Mercy. As part of routine care for patients with symptoms 

suspicious for ACS, all enrolled patients had their 12-lead ECG transmitted to the UPMC 

Medical Command Center for further evaluation by a physician. For this sub analysis, 

we included patients who had both a PH ECG and an ED ECG. We excluded patients 

with PH CATH laboratory activation for suspected STE-ACS identified in the field by 

paramedics, ventricular fibrillation/tachycardia, or with secondary repolarization changes 

confounding ischemia evaluation (e.g., ventricular pacing, bundle branch block, or left 
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ventricular hypertrophy with strain pattern). The patients were recruited for the study under 

a waiver of informed consent, and the University of Pittsburgh Institutional Review Board 

approved this study.

Clinical Data and Outcome Adjudication

Independent reviewers manually abstracted the key in-hospital data elements from the 

electronic health records as recommended by the American College of Cardiology for 

measuring the management and outcomes of patients with ACS, including22: demographics, 

past medical history, home medications, clinical presentation and course of hospitalization, 

laboratory tests, imaging studies, cardiac catheterization, treatments, and in-hospital 

complications.

The primary outcome of the study was the diagnosis of ACS any time during the indexed 

admission, which included unstable angina, NSTE-ACS, and STE-ACS. Two independent 

physician reviewers adjudicated the primary outcome of ACS as per the following Universal 

Definition of Myocardial Infarction criteria:12 (1) rise and fall in cardiac troponin I (≥99th 

percentile according to location criteria); (2) diagnostic ST elevation or ST depression 

in two contiguous ECG leads;12 (3) echocardiographic evidence of new loss of viable 

myocardium or new regional wall motion abnormalities; or (4) coronary angiographic or 

nuclear imaging demonstrating greater than 70% stenosis of a major coronary artery with 

or without treatment.23 Patients were considered to have a confirmed ACS diagnosis if they 

displayed any or all of these criteria.

ECG Signal Processing

All ECGs were obtained as part of routine medical care. The PH ECG were obtained by 

paramedics in the field using HeartStart MRX monitors (Philips Healthcare, Cambridge, 

MA). We obtained the digital raw XML files transmitted to our medical command center 

and stored them for offline analysis. The ED ECG was obtained by ED staff using MAC 

VUE360 Resting ECG devices (GE Healthcare, Milwaukee, WI). We obtained the digital 

vectorized PDF files stored in the in-hospital electronic health record system and stored 

them for offline analysis. For the purpose of serial ECG analyses, we selected the patients’ 

first PH ECG and first ED ECG as the corresponding study ECGs.

PH ECGs were processed by manufacturer-specific software (Advanced Algorithm Research 

Center, Philips Healthcare, Andover, MA), whereas ED ECGs were processed by CALECG 

software (AMPS LLC, New York, NY). Noise, artifact, and ectopic beats were removed, and 

time-synchronized median beats were calculated per ECG lead. Next, a total of 179 ECG 

features were calculated from each ECG, including: (1) multi-lead global ECG intervals 

(k=8); (2) frontal-plane axes (k=3); (3) lead-specific amplitude, duration, and/or area of P 

wave, Q wave, R / R` wave, S / S` wave, QRS complex, ST80 segment, and T wave (k=144); 

and (4) lead-specific PR interval and QT interval (k=24).

Expert ECG Interpretation

Each ECG was reviewed by two independent physicians who were blinded to the study 

outcome. The aim of expert interpretation was to capture the performance of physicians 
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in reviewing ECG and adjudicating for cardiac ischemia when patients are presenting 

with symptoms suggestive of ACS. The performance of these independent reviewers was 

given the title “reference standard”. The independent physicians adjudicated the presence of 

diagnostic territorial ST-segment elevation (STE) or depression (STD) as per the Universal 

Definition of Myocardial Infarction recommendation as two contiguous leads with:12 (1) 

STE ≥ 2 mm in V2–V3 in men ≥ 40 years, ≥ 2.5 mm in men < 40 years, or ≥ 1.5 mm 

in women; or STE ≥ 1 mm in other leads; or (2) new horizontal or downsloping STD ≥ 

0.5 mm in any lead with or without T-wave inversion > 1 mm in leads with prominent R 

wave or R/S ratio > 1. Any disagreements between the reviewers were resolved by review 

by a board-certified cardiologist. ST changes on the PH-ECG or ED-ECG were documented 

per patient in the anterior, lateral, or inferior myocardial walls as either no changes (0), ST 

depression (1), or ST-elevation (2). This coding scheme yielded an ordinal scale variable 

with range 0 to 6, which was used in a logistic regression model to generate predicted 

probability of ACS and for AUC analysis. Next, temporal changes between PH-ECG and 

ED-ECG were also documented in the anterior, lateral, and inferior myocardial walls as 

either no changes (0); resolution of changes seen on PH-ECG (1); evolution of new changes 

not seen on PH-ECG (2); and persistence of changes at the ED as seen on the PH-ECG 

(3). This coding scheme yielded an ordinal scale variable with range 0 to 9, which was also 

used in a logistic regression model to generate predicted probability of ACS and for AUC 

analysis.

AI-Augmented ECG Analysis—We divided our dataset of PH-ECG and ED-ECG 

dyads into 80% training and 20% testing subsets. The training and testing subsets 

were each preprocessed using imputation of missing values with the mean or mode 

of the corresponding feature for continuous or categorical variables, respectively, and 

normalization with the L2 norm. We ran a 10-fold cross-validation to obtain results for 

the training subset, then used the remaining unseen data set for testing.

Next, we used a Random Forest classifier to build our AI models for predicting confirmed 

ACS cases. Beside its robustness to outliers, data skewness, missingness, and unbalanced 

outcome distribution,24 we have previously shown that the random forest classifier is well 

suited to handle the multidimensionality observed in 12-lead ECG data. The Random Forest 

(RF) classifier was implemented with 1000 trees with fixed criterion to measure the quality 

of a split using ‘entropy’ (for information gain). The ‘balanced subsample’ mode was 

selected where weights were computed for the output values automatically and inversely 

proportional to class frequencies in the bootstrap sample for every tree. These parameters 

were tuned during the 10-fold cross-validation training stage. An unseen hold-out set of 

patients was then used to assess the generalizability of the model during the testing stage. 

For model explainability, we used algorithm agonist approach based on feature importance. 

The traditional feature importance based on mean decrease in impurity shows bias towards 

high cardinality features, even if they are random and unrelated to the outcome, so it tends 

to overfit using these features. Therefore, we used the permutation importance method and 

plotted the importance ranking using the test set, which would reflect the usefulness of the 

features in making generalizable predictions instead of reflecting an overfitting model.
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Using the modeling approach described above, we built four random forest classifiers: 

(1) AI-PH-ECG, (2) AI-ED-ECG, (3) AI-Serial-ECG, and (4) AI-ECG-Clinical. We used 

the 179 features from the PH ECG to build the first classifier and used the 179 features 

from the ED ECG to build the second classifier. For the third classifier, we used the 179 

features from PH ECG (baseline) and the delta change in each value between the PH ECG 

and the ED ECG dyads. The final classifier included the 179 features from PH ECG, the 

179 corresponding delta changes in features between the two ECG dyad, and the clinical 

data available at triage. The clinical data elements from the latter included age, sex, race, 

comorbidities (hypertension, diabetes, smoking, dyslipidemia, heart failure, known CAD, 

old MI, COPD, prior catheterization), and prehospital interventions (morphine, oxygen, 

nitroglycerin, aspirin).

Statistical Analysis

Variables were reported as mean (standard deviation) or count (%). Groups were compared 

using chi-square for categorical variables or independent samples t-test for continuous 

variables. Trend evolution between PH- and ED-ECG were compared between groups 

using repeated-measures ANOVA. The diagnostic performance of STE and STD seen on 

PH-ECG, ED-ECG, or their dynamic changes between the two timepoints were evaluated 

for predicting confirmed ACS using multivariate logistic regression. Predicted probabilities 

were used to evaluated classification performance using the area under the receiver operating 

characteristic (AUROC) curve. The presence of at least one wall with diagnostic STE or 

STD were used to build the confusion matrix and calculate sensitivity, specificity, positive 

predictive value, and negative predictive value. We used McNemar’s test to compare the 

reclassification performance between different classifiers.

For AI algorithms, the training results of RF classifier on 10-fold cross validation were 

reported as mean (standard error). We generated binary predictions using Youden index on 

the ROC curves. The mean of thresholds resulting from training was used to produce the 

confusion matrices for the testing sets. We then computed the performance metrics described 

above along with F1 score and net reclassification improvement (NRI) index as compared 

to a reference standard. In addition, the comparison between the performance of the models 

was rigorously tested using the Wilcoxon signed-rank test on the two groups of AUROC 

values formed, each, by the results of the ten folds. Each group corresponds to the model 

having one of these sets of input variables: PH-ECG and ED-ECG variables. To compare 

the two paired groups of values, this method was chosen because it is the non-parametric 

alternative of the paired t-test since we are dealing with data that does not necessarily 

satisfy the assumptions of the t-test. For testing, we used bootstrapping on the test set to 

generate a group of ten AUROC values for each model and compared them using Wilcoxon 

signed-rank test as well. Statistical analyses were completed using SPSS v. 24.0 and AI 

models were implemented using Python v. 3.7. The level of significance was set at α = 0.05 

for two-tailed hypothesis testing.
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RESULTS

The study enrolled 2,400 patients in total. For the purposes of this study, we excluded 

89 patients with PH CATH laboratory activation for STE-ACS identified in the field by 

paramedics, 22 patients with ventricular fibrillation/tachycardia, and 154 patients with 

secondary repolarization changes confounding ischemia evaluation, and 13 patients with 

either missing in-hospital or prehospital ECG. The final population for this study included 

2,122 patients with suspected NSTE-ACS (age 59 (16); 53% females; 44% Black). 

Approximately 69% of our population had hypertension, 38% had a known history of 

coronary artery disease (CAD), and 28% had diabetes mellitus. Demographic and clinical 

characteristics of the population are summarized in Table 1. There were 288 (13.6%) cases 

of confirmed ACS during in-hospital evaluation. Among those with confirmed in-hospital 

ACS, 37% had subsequent evolution of STE-ACS that was not apparent during initial 

evaluation. The inter-rater agreement between the reviewers ranged from Kappa 0.86 to 

0.91.

Most patients (89.4%) were in normal sinus rhythm and 10.6% were in atrial fibrillation. 

Figure 1 shows the initial ischemic findings on PH- and ED-ECGs for the entire cohort (n 

= 2,122 patients). On PH-ECG, 125 patients (5.9%) had diagnostic STE and 343 (16.2%) 

had diagnostic STD, with rate of confirmed ACS in these subgroups of 62% and 32%, 

respectively (Figure 1A). Similarly, there were 129 (6.1%) and 263 (12.4%) diagnostic STE 

and STD on ED-ECG, with rate of confirmed ACS of 64% and 39% respectively (Figure 

1B). These ischemic findings on the PH- and ED-ECG had poor classification performance 

of ACS events with AUROC of 0.692 (0.65–0.73) and 0.693 (0.66–0.73), sensitivity of 

0.50 (0.44–0.56) and 0.479 (0.42–0.54), and specificity of 0.845 (0.83–0.86) and 0.864 

(0.84–0.88), respectively. More interestingly, considering both ECGs together shows that 

only 49% and 37% of diagnostic STE and STD seen on PH-ECG persisted until ED-ECG, 

with 51% and 63% of PH diagnostic changes resolving prior to ED arrival. Figure 1C shows 

the rate of confirmed ACS in those who had resolving, new, or persistent diagnostic STE 

or STD. An approach based on the presence of dynamic ECG changes between PH and 

ED timepoints achieved a very good classification performance of confirmed ACS (AUROC 

0.798 [0.77–0.83]).

Next, we explored the value of AI-augmenting analysis of PH- and ED-ECG. Figure 2 

shows the results of algorithm performance on training subset (n=1699, 14% confirmed 

ACS) and testing subset (n=423, 13% confirmed ACS) as compared to the baseline 

classification performance of diagnostic findings on ED-ECG. During algorithm testing, 

both AI-PH-ECG and AI-ED-ECG algorithms had significantly higher performance 

compared to the reference standard (AUROC 0.83 [0.77–0.90] and 0.79 [0.73–0.86] vs. 0.62 

[0.53–0.70], respectively). The AI-PH-ECG algorithm outperformed the reference standard 

with sensitivity, specificity, positive and negative predictive values of 0.75 (0.62–0.86), 0.76 

(0.71–0.80), 0.32 (0.29–0.39), and 0.95 (0.92–0.97) versus 0.36 (0.23–0.50), 0.86 (0.82–

0.89), 0.28 (0.21–0.39), and 0.90 (0.87–0.90) for expert ECG interpretation, respectively. 

This significant gain in performance translates into NRI index of 29.5% (p<0.001). We 

then investigated the incremental gain in classification performance of AI-PH-ECG when 

supplemented by serial temporal ECG changes (model 3: AI-serial-ECG) and the addition 
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of clinical data elements available during triage (model 4: AI-ECG-clinical). Figure 3 shows 

there was no significant gain in AUROC for either of the two latter models during both 

training and testing, with peak classification performance achieved by PH-ECG alone, 

plateauing at AUROC of 0.82 (0.76–0.88).

Finally, we used RF permutation importance ranking to add explainability to the observed 

gain in NRI index using AI-PH-ECG model. Among the 179 features used in that model, 

the most important classical features were ST amplitude in leads aVL, I, III, V2, aVR, V4, 

V3, and V6; T amplitude in leads aVL, V2, III, V3 and I; and T area in leads aVL, III, 

V2, and I. The most important novel features were global Tpeak−Tend interval (rank #3), 

mean QRS−T angle (rank #8); spatial T axis (rank #15), and relative T to R amplitude 

ratio on RMS signal (Root Mean Square) (rank #12). Figure 4A shows the mean group 

differences in global Tpeak−Tend interval and QRS−T angle on PH- and ED-ECGs. Patients 

with confirmed ACS had significantly longer global Tpeak−Tend interval and wider QRS−T 

angle compared to their counterparts, with more pronounced dispersion on PH-ECG. To 

understand the multidimensional complexity of the 12 lead ECG, Figure 4B shows the 3-D 

scatterplot of the three most important features in RF classification delineating a non-linear 

hyperplane of ACS cases characterized by prolonged global Tpeak−Tend interval, STE in lead 

III, and distorted ST-segment in lead aVL (STE or STD).

LIMITATIONS

Our study has a few limitations that should be considered when interpreting our findings. 

First, patients with secondary repolarization abnormalities (i.e., pacing, bundle branch 

block, left ventricular hypertrophy, or ventricular rhythm) were excluded from the study. 

These patients have a different course and are usually sicker, therefore our results are not 

generalizable to this population. Second, the findings of our study are based on a single 

healthcare system, therefore, it is difficult to generalize our results to different system. 

Testing our AI models on an independent system in necessary before establishing clinical 

utility. Finally, the PH-ECG and the ED-ECG were processed by different manufacturer-

specific software. A classical review paper previously looked at the systematic differences 

among automated ECG interval measurements by seven widely used computer-based ECG 

interpretation algorithms, including AMPS and Philips (the two we used). The paper 

indicated the differences in measurement are clinically negligible (e.g., difference in QRS 

duration between AMPS and Philips is 4 milliseconds on average).25 Thus, the differences 

captured in the delta values are likely physiological rather than technical in nature.

DISCUSSION

In this study, we compared the diagnostic value of PH- and ED-ECG for classifying patients 

with suspected ACS and evaluated the diagnostic gain of using AI-augmented analysis of 

12-lead ECG data. We found that more than one half of diagnostic STE and STD resolve 

prior to ED arrival. We demonstrated that using these temporal dynamic changes between 

PH-and ED-ECG yields very good classification performance (AUROC ~ 0.80), which 

far exceeds the diagnostic value of the ECG at each timepoint separately. However, using 

AI-augmented analysis of the 12-lead ECG yields a NRI index of ~24%−30% compared 

Bouzid et al. Page 8

Ann Emerg Med. Author manuscript; available in PMC 2024 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



to current expert overread of ECG data during ED evaluation, a gain that can be achieved 

by using only the PH-ECG without the need for serial ECG changes or other clinical data 

elements. This gain in performance is based on subtle multi-dimensional changes in STT 

waveform and other novel markers of ventricular repolarization dispersion. These findings 

support the notion that the PH-ECG should be systematically considered as an important 

predictive data point in the diagnostic workup of suspected NSTE-ACS, especially when 

augmented by powerful AI tools.

This study demonstrates that exclusively relying on the ED-ECG during in-hospital 

evaluation comes with poor classification performance (AUROC < 0.70), significantly 

limiting providers’ ability to rule in or out ACS. It is known that ischemic ECG changes 

are often transient in nature. Acquiring an ECG during acute symptoms when patients are 

undergoing ischemic distress is more likely to elicit important prognostic information. We 

show that more than half the ischemic changes seen on PH-ECG resolve prior to ED arrival. 

The reason for this possibly reflects the timing the PH-ECG is acquired in the continuum 

of care, including the acquisition prior to initiation of any anti-ischemic therapies. Such 

interventions could transiently improve the underlying cardiac ischemia and blunt ECG 

findings by the time the ECG is acquired in the ED.26,27 It is also well established that ACS 

has an unstable course, meaning ischemic ECG findings could spontaneously resolve by the 

time patients are evaluated in the ED.16

Clinical practice guidelines emphasize the importance of PH-ECG use for clinical decision-

making and advocates for its systematic incorporation in systems of care as a class I 

recommendation.4,28 Moreover, it is well established that detecting transient ischemic ECG 

changes in ACS, including those detected in the prehospital setting, can help identify 

patients with higher risk for adverse events.29,30 Yet, in clinical practice, the primary 

emphasis remains focused on identifying STE requiring catheterization lab activation, and 

few studies have previously analyzed the diagnostic value of PH-ECG in suspected NSTE-

ACS. Some studies report that subtle changes on PH-ECG are associated with adverse 

outcomes in this population, demonstrating a positive impact on processes of care, including 

early disposition, timely interventions, and improved survival rate.31–33 Our study supports 

the notion that significant information gets lost by excluding the PH-ECG during in-hospital 

decision-making when evaluating NSTE-ACS. This has important clinical implications, as 

often no permanent record is kept of PH-ECGs in the in-hospital electronic health records, 

hence losing a valuable diagnostic data point in the lengthy process of patient evaluation. We 

demonstrate that using temporal dynamic patterns of STE and STD between PH- and ED-

ECG yields very good classification performance compared to using either one separately, 

which aligns well with current literature.34–36

It is well established that ECG findings in NSTE-ACS are not always grossly evident 

and often require novel methods for identification.19 There are numerous reasons for these 

shortcomings; the infarct might be relatively small, the location of the infarct might be 

in a location only weakly sensed by the lead fields of the standard 12-lead ECG, or the 

infarct is slowly developing.37 Intriguingly, myocardial ischemia affects the configuration of 

both the QRS complex and ST-T waveform. Thus, an evolving infarct would translate into 

progressive regional changes in ST amplitude and slope, T wave amplitude and morphology, 
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and QRS duration and configuration. These subtle and interrelated changes in ECG features 

as measured from the different 12 leads of the ECG open an important opportunity for 

AI-augmented analysis of ECG data to learn multi-dimensional patterns in these features 

that would otherwise be missed by humans. This explains the superior performance of 

AI-augmented analysis of ECG when compared to expert ECG interpretation; allowing 

clinicians to correctly reclassifying at least one in four patients with suspected ACS in 

our study. Interestingly, such AI-based pattern recognition of subtle ECG changes achieved 

the maximum gain in diagnostic performance using only the PH-ECG, without serial ECG 

changes or other clinical data elements. This again emphasizes the value of systematically 

incorporating the PH-ECG into systems of care while evaluating patients with suspected 

NSTE-ACS. This still does not undermine the value of serial ECG in NSTE-ACS given the 

complexity of temporality and the specific characteristics of these subtle changes.35,36

It is worth noting that many novel ECG features can globally quantify the subtle changes 

in QRS and ST-T waveform morphologies, greatly improving the sensitivity of the ECG 

for ischemia as well as drastically reducing the time required to diagnose NSTE-ACS.37 

For instance, Tpeak−Tend interval is indicative of global repolarization dispersion and QRS-T 

angle is a general toolkit for identifying abnormalities in conduction and repolarization.38 

Enriching our AI models with such features might have played a significant role in the 

observed diagnostic gain as compared to expert ECG interpretation based on practice 

recommendations. Nevertheless, elucidating novel ECG feature beyond STE vs. NSTE 

clinical practice paradigm can dramatically change care at the bedside.

This study has important clinical implications. First, in the absence of STE on presenting 

ECG, ED providers still need to consider abnormalities seen on the PH-ECG and their 

dynamic changes in the overall diagnostic workup of patients with suspected NSTE-ACS. 

This requires hospitals and systems of care to develop new tools or adopt existing ones to 

systematically incorporate the PH-ECG into the in-hospital electronic health record. Second, 

deploying AI-based automated ECG interpretation algorithms on PH-ECG can provide 

real-time decision support for PH and ED providers, which has important implications 

for improving patient safety (infarct size, adverse events), nursing surveillance and care 

(frequency of monitoring, caseload mixture, staff allocation), and care delivery systems 

(ED overcrowding, regionalization of care, resource utilization, admission unit availability, 

higher cost vs. lower cost bed allocation, catheterization lab activation). Moreover, the 

implementation of an AI-based automated ECG interpretation can offer a way to identify 

ACS cases that do not display criteria fulfilling STEMI criteria, such as occlusion MI 

(OMI).20 This can help identify OMI patients early, particularly since they often display inly 

subtle changes and consequently face treatment delays.

CONCLUSIONS

In this study, in three hospitals with coordinated EMS care, we found that more than 

one half of diagnostic STE and STD changes on a PH ECG resolve prior to ED arrival. 

Exclusively relying on ED-ECG during in-hospital evaluation of NSTE-ACS comes with 

poor classification performance, which can be overcome by evaluating the temporal dynamic 

changes between PH- and ED-ECG in response to prehospital interventions. These findings 
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come with a number of clear takeaways: (1) serial negative ECGs do not significantly 

increase the negative predictive value of ECG, (2) serial positive ECGs do increase positive 

predictive value, and (3) a single positive ECG (i.e., positive PH-ECG and negative ED-

ECG, or vice versa) has an intermediate predictive value. This pattern seems to hold 

true for both STE and STD on the 12-lead ECG. Moreover, this study demonstrates that 

AI-based analytics on a single ECG obtained during ongoing ischemia (i.e., PH-ECG) 

can capture subtle patterns indicative of NSTE-ACS without the need for serial ECG, 

which has important and immediate clinical implications for ED practice. This enhanced 

interpretability may lead to reclassification of one in four patients with suspected NSTE-

ACS. This suggests a need for hospitals to develop tools to incorporate PH-ECG into 

systems of care as informative data points in the in-hospital evaluation of patients with 

suspected ACS. These findings require future validation in other EMS systems.

Funding:

National Institute of Health grant # R01HL137761

References

1. Niska R, Bhuiya F, Xu J. National Hospital Ambulatory Medical Care Survey: 2007 emergency 
department summary. Natl Health Stat Report. 2010(26):1–31.

2. Gulati M, Levy PD, Mukherjee D, et al. 2021 AHA/ACC/ASE/CHEST/SAEM/SCCT/SCMR 
Guideline for the Evaluation and Diagnosis of Chest Pain: A Report of the American College 
of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. 
Circulation. 2021;144(22):e368–e454.

3. O’Gara PT, Kushner FG, Ascheim DD, et al. 2013 ACCF/AHA guideline for the management 
of ST-elevation myocardial infarction: a report of the American College of Cardiology Foundation/
American Heart Association Task Force on Practice Guidelines. Circulation. 2013;127(4):e362–
425. [PubMed: 23247304] 

4. Ibanez B, James S, Agewall S, et al. 2017 ESC Guidelines for the management of acute myocardial 
infarction in patients presenting with ST-segment elevation: The Task Force for the management 
of acute myocardial infarction in patients presenting with ST-segment elevation of the European 
Society of Cardiology (ESC). Eur Heart J. 2018;39(2):119–177. [PubMed: 28886621] 

5. Bradley EH, Herrin J, Wang Y, et al. Strategies for reducing the door-to-balloon time in acute 
myocardial infarction. N Engl J Med. 2006;355(22):2308–2320. [PubMed: 17101617] 

6. Adams GL, Campbell PT, Adams JM, et al. Effectiveness of prehospital wireless transmission 
of electrocardiograms to a cardiologist via hand-held device for patients with acute myocardial 
infarction (from the Timely Intervention in Myocardial Emergency, NorthEast Experience [TIME-
NE]). Am J Cardiol. 2006;98(9):1160–1164. [PubMed: 17056318] 

7. Diercks DB, Kontos MC, Chen AY, et al. Utilization and impact of pre-hospital electrocardiograms 
for patients with acute ST-segment elevation myocardial infarction: data from the NCDR (National 
Cardiovascular Data Registry) ACTION (Acute Coronary Treatment and Intervention Outcomes 
Network) Registry. J Am Coll Cardiol. 2009;53(2):161–166. [PubMed: 19130984] 

8. Ting HH, Krumholz HM, Bradley EH, et al. Implementation and integration of prehospital ECGs 
into systems of care for acute coronary syndrome: a scientific statement from the American Heart 
Association Interdisciplinary Council on Quality of Care and Outcomes Research, Emergency 
Cardiovascular Care Committee, Council on Cardiovascular Nursing, and Council on Clinical 
Cardiology. Circulation. 2008;118(10):1066–1079. [PubMed: 18703464] 

9. Al-Zaiti S, Shusterman V, Carey MG. Novel Technical Solutions for Wireless ECG Transmission 
& Analysis in the Age of the Internet Cloud. Journal of Electrocardiology. 2013;46(6):540–545. 
[PubMed: 23992916] 

Bouzid et al. Page 11

Ann Emerg Med. Author manuscript; available in PMC 2024 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



10. Zègre-Hemsey JK, Asafu-Adjei J, Fernandez A, Brice J. Characteristics of Prehospital 
Electrocardiogram Use in North Carolina Using a Novel Linkage of Emergency Medical Services 
and Emergency Department Data. Prehospital Emergency Care. 2019;23(6):772–779. [PubMed: 
30885071] 

11. Meyers HP, Bracey A, Lee D, et al. Comparison of the ST-elevation myocardial infarction 
(STEMI) vs. NSTEMI and occlusion MI (OMI) vs. NOMI paradigms of acute MI. The Journal of 
emergency medicine. 2021;60(3):273–284. [PubMed: 33308915] 

12. Thygesen K, Alpert JS, Jaffe AS, et al. Fourth Universal Definition of Myocardial Infarction 
(2018). J Am Coll Cardiol. 2018;72(18):2231–2264. [PubMed: 30153967] 

13. Birnbaum Y, de Luna AB, Fiol M, et al. Common pitfalls in the interpretation of 
electrocardiograms from patients with acute coronary syndromes with narrow QRS: a consensus 
report. Journal of Electrocardiology. 2012;45(5):463–475. [PubMed: 22920785] 

14. Al-Zaiti S, Macleod MR, Van Dam PM, Smith SW, Birnbaum Y. Emerging ECG Methods 
for Acute Coronary Syndrome Detection: Recommendations & Future Opportunities. Journal of 
Electrocardiology. 2022;75.

15. Bouwmeester S, van Hellemond IE, Maynard C, et al. The stability of the ST segment estimation 
of myocardial area at risk between the prehospital and hospital electrocardiograms in patients with 
ST elevation myocardial infarction. Journal of electrocardiology. 2011;44(3):363–369. [PubMed: 
21295313] 

16. Ownbey M, Suffoletto B, Frisch A, Guyette FX, Martin-Gill C. Prevalence and interventional 
outcomes of patients with resolution of ST-segment elevation between prehospital and in-hospital 
ECG. Prehosp Emerg Care. 2014;18(2):174–179. [PubMed: 24400994] 

17. Badings EA, Remkes WS, The SH, et al. Early or late intervention in patients with transient 
ST-segment elevation acute coronary syndrome: Subgroup analysis of the ELISA-3 trial. Catheter 
Cardiovasc Interv. 2016;88(5):755–764. [PubMed: 27567144] 

18. Al-Zaiti SS, Callaway CW, Kozik TM, Carey MG, Pelter MM. Clinical Utility of Ventricular 
Repolarization Dispersion for Real-Time Detection of Non-ST Elevation Myocardial Infarction in 
Emergency Departments. J Am Heart Assoc. 2015;4(7).

19. Al-Zaiti SS, Martin-Gill C, Sejdic E, Alrawashdeh M, Callaway C. Rationale, development, 
and implementation of the Electrocardiographic Methods for the Prehospital Identification of 
Non-ST Elevation Myocardial Infarction Events (EMPIRE). J Electrocardiol. 2015;48(6):921–926. 
[PubMed: 26346296] 

20. Meyers HP, Bracey A, Lee D, et al. Accuracy of OMI ECG findings versus STEMI criteria 
for diagnosis of acute coronary occlusion myocardial infarction. IJC Heart & Vasculature. 
2021;33:100767. [PubMed: 33912650] 

21. Al-Zaiti S, Besomi L, Bouzid Z, et al. Machine learning-based prediction of acute coronary 
syndrome using only the pre-hospital 12-lead electrocardiogram. Nat Commun. 2020;11(1):3966. 
[PubMed: 32769990] 

22. Cannon CP, Brindis RG, Chaitman BR, et al. 2013 ACCF/AHA key data elements and definitions 
for measuring the clinical management and outcomes of patients with acute coronary syndromes 
and coronary artery disease. J Am Coll Cardiol. 2013;61(9):992–1025. [PubMed: 23369353] 

23. Lawton JS, Tamis-Holland JE, Bangalore S, et al. 2021 ACC/AHA/SCAI Guideline 
for Coronary Artery Revascularization: A Report of the American College of Cardiology/
American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation. 
2021:CIR0000000000001038.

24. Hastie T, Tibshirani R, Friedman J. Random forests. In: The elements of statistical learning. 
Springer; 2009:587–604.

25. Kligfield P, Badilini F, Denjoy I, et al. Comparison of automated interval measurements by widely 
used algorithms in digital electrocardiographs. American heart journal. 2018;200:1–10. [PubMed: 
29898835] 

26. Awan NA, Amsterdam EA, Vera Z, DeMaria AN, Miller RR, Mason DT. Reduction of ischemic 
injury by sublingual nitroglycerin in patients with acute myocardial infarction. Circulation. 
1976;54(5):761–765. [PubMed: 824064] 

Bouzid et al. Page 12

Ann Emerg Med. Author manuscript; available in PMC 2024 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



27. Beltrame JF, Stewart S, Leslie S, Poropat S, Horowitz JD. Resolution of ST-segment 
elevation following intravenous administration of nitroglycerin and verapamil. Am J Cardiol. 
2002;89(4):452–455. [PubMed: 11835928] 

28. Gulati M, Levy PD, Mukherjee D, et al. 2021 AHA/ACC/ASE/CHEST/SAEM/SCCT/SCMR 
Guideline for the Evaluation and Diagnosis of Chest Pain: Executive Summary. Journal of the 
American College of Cardiology. 2021;0(0).

29. Pelter MM, Adams MG, Drew BJ. Transient myocardial ischemia is an independent predictor of 
adverse in-hospital outcomes in patients with acute coronary syndromes treated in the telemetry 
unit. Heart Lung. 2003;32(2):71–78. [PubMed: 12734529] 

30. Zègre Hemsey JK, Dracup K, Fleischmann KE, Sommargren CE, Paul SM, Drew BJ. Prehospital 
electrocardiographic manifestations of acute myocardial ischemia independently predict adverse 
hospital outcomes. J Emerg Med. 2013;44(5):955–961. [PubMed: 23357378] 

31. Quinn T, Johnsen S, Gale CP, et al. Effects of prehospital 12-lead ECG on processes of care 
and mortality in acute coronary syndrome: a linked cohort study from the Myocardial Ischaemia 
National Audit Project. Heart. 2014;100(12):944–950. [PubMed: 24732676] 

32. Ravn-Fischer A, Karlsson T, Johanson P, Herlitz J. Prehospital ECG signs of acute coronary 
occlusion are associated with reduced one-year mortality. Int J Cardiol. 2013;168(4):3594–3598. 
[PubMed: 23727105] 

33. Hemsey JKZ, Drew BJ. Prehospital electrocardiography: a review of the literature. Journal of 
emergency nursing. 2012;38(1):9–14. [PubMed: 22137883] 

34. Roffi M, Patrono C, Collet JP, et al. 2015 ESC Guidelines for the management of acute coronary 
syndromes in patients presenting without persistent ST-segment elevation: Task Force for the 
Management of Acute Coronary Syndromes in Patients Presenting without Persistent ST-Segment 
Elevation of the European Society of Cardiology (ESC). Eur Heart J. 2016;37(3):267–315. 
[PubMed: 26320110] 

35. Lehmacher J, Neumann JT, Sorensen NA, et al. Predictive Value of Serial ECGs in Patients with 
Suspected Myocardial Infarction. J Clin Med. 2020;9(7).

36. Sarak B, Goodman SG, Yan RT, et al. Prognostic value of dynamic electrocardiographic T wave 
changes in non-ST elevation acute coronary syndrome. Heart. 2016;102(17):1396–1402. [PubMed: 
27112175] 

37. Lux RL. Non-ST-Segment Elevation Myocardial Infarction: A Novel and Robust Approach 
for Early Detection of Patients at Risk. Journal of the American Heart Association. 
2015;4(7):e002279. [PubMed: 26209693] 

38. Lux RL. Basis and ECG measurement of global ventricular repolarization. Journal of 
Electrocardiology. 2017;50(6):792–797. [PubMed: 28803619] 

Bouzid et al. Page 13

Ann Emerg Med. Author manuscript; available in PMC 2024 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1: The relationship between ischemic ECG findings and acute coronary syndrome
This figure shows how diagnostic ST changes correlated with acute coronary syndrome 

(ACS) on the prehospital (PH)-ECG (A), emergency department (ED)-ECG (B), and serial 

dynamic changes between both ECGs (C). ECG changes included diagnostic ST elevation or 

ST depression interpreted retrospectively by independent reviewers as per the 4th universal 

definition of MI guidelines.12 We excluded from this analysis patients with prehospital 

CATH laboratory activation for suspected STE-ACS identified in the field by paramedics. 

Area under ROC (AUROC) curves are based on a logistic regression classifier using the ST 

changes seen on each ECGs or their dynamic patterns. SEN: sensitivity, SPE: specificity. 

AUROC, SEN, and SPE are reported as value (95% CI).
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Figure 2: Classification performance of NSTE-ACS using AI-augmented ECG analysis
This figure shows random forest classification performance using features from prehospital 

ECG (AI-PH-ECG) or the emergency department (AI-ED-ECG) as compared to clinical 

practice based on ED evaluation (CP-ED-ECG) on both training subset (left) and testing 

subset (right). The tables show the diagnostic accuracy measures and the net reclassification 

performance (NRI) index as compared to CP-ED-ECG as a reference standard (Ref).
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Figure 3: Classification performance of AI-augmented ECG analysis supplemented by serial 
ECG and clinical data
This figure shows the baseline classification performance of random forest model using 

features from prehospital ECG (AI-PH-ECG), both prehospital and ED ECGs (AI-serial-

ECG), and serial ECG plus clinical data typically available during triage (AI-ECG-Clinical) 

on both training subset (left) and testing subset (right). This figure demonstrates that AI 

augmented ECG analysis reaches its classification performance plateau with PH-ECG alone, 

with no additional gain in performance when adding serial ECG or any other clinical data 

elements. In the training set, the lighter lines correspond to the results obtained for the 

individual folds during the 10-fold cross-validation, whereas the thicker lines correspond to 

the mean results for each model. The shaded areas highlight the space englobing all curves 

within 2 standard error around the mean curves.
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Figure 4: Correlation between the most important ECG features in the diagnosis of acute 
coronary syndrome
Plot A shows mean group differences in Tpeak−Tend interval (left) and QRS−T angle 

(right) on prehospital (PH)-ECG and emergency department (ED)-ECG in those with or 

without acute coronary syndrome (ACS). Plot B shows the 3-D scatterplot of the three most 

important features in the random forest delineating a non-linear hyperplane of ACS cases 

characterized by prolonged global Tpeak−Tend interval, ST elevation in lead III, and distorted 

ST-segment (elevation or depression) in lead aVL.
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Table 1:

Demographics and Clinical Characteristics

Clinical Characteristics All Patients (n=2122)

Demographic 

 Age (years) 58 (16)

 Female Sex 1001 (47%)

 Race

  White 1216 (58%)

  Black 859 (40%)

  Other 47 (2%)

 Ethnicity

  Hispanic or Latino 15 (0.7%)

  Not Hispanic or Latino 1973 (93%)

  Unspecified 134 (6.3%)

Past Medical History 

 Hypertension 1469 (69%)

 Ever Smoked 1293 (68%)

 Hyperlipidemia 833 (39%)

 Known CAD 715 (38%)

 Previous PCI or CABG 668 (31%)

 Diabetes Mellitus 593 (28%)

 Heart Failure 337 (16%)

Diagnostics

 Positive initial troponin 166 (8%)

 Positive serial troponin 253 (12%)

 Stress test with SPECT scan 278 (13.1%)

  Focal evidence of ischemia 29 (1.4%)

Outcomes & Course of Hospitalization 

 Confirmed ACS 288 (13.6%)

  Final Discharge Diagnosis of NSTE-ACS 179 (8%)

  Subsequent In-Hospital Evolution of STE-ACS 109 (5%)

 Treatment with PCI or CABG 197 (9%)

 30-Day Complication or Adverse Events 256 (12%)
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