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Graph-based pangenomics maximizes
genotyping density and reveals structural
impacts on fungal resistance in melon

Justin N. Vaughn 1,2 , Sandra E. Branham3, Brian Abernathy2,
Amanda M. Hulse-Kemp4,5, Adam R. Rivers 6, Amnon Levi7 &
William P. Wechter3,7

The genomic sequences segregating in experimental populations are often
highly divergent from the community reference and from one another. Such
divergence is problematic under various short-read-based genotyping strate-
gies. In addition, large structural differences are often invisible despite being
strong candidates for causal variation. These issues are exacerbated in speci-
alty crop breeding programs with fewer, lower-quality sequence resources.
Here, we examine the benefits of complete genomic information, based on
long-read assemblies, in a biparental mapping experiment segregating at
numerous disease resistance loci in the non-model crop, melon (Cucumis
melo). We find that a graph-based approach, which uses both parental gen-
omes, results in 19%more variants callable across the population and raw allele
calls with a 2 to 3-fold error-rate reduction, even relative to single reference
approaches using a parent genome. We show that structural variation has
played a substantial role in shaping two Fusarium wilt resistance loci with
known causal genes. We also report on the genetics of powdery mildew
resistance, where copy number variation and local recombination suppression
are directly interpretable via parental genome alignments. Benefits observed,
even in this low-resolution biparental experiment, will inevitably be amplified
in more complex populations.

Reference-quality genomes can now be generated on a study-
specific basis thanks to recent improvements in cost and quality of
long-read sequencing. In the simplest scenario, a geneticist may
want to have genomes available from both parents for genotyping a
biparental mapping population. For a conventional recombinant
inbred line (RIL) population, this approach will reveal all genetic
variants segregating in the population and create a complete

reference for founder haplotypes. Such data will inevitably aid
prioritization of candidate genes within an associated interval, par-
ticularly when presence/absence variation plays a role. Founder
assemblies will also increase the number of properly aligned reads
from progeny samples and improve the accuracy ofmapping quality
scores for downstream filtering1. Onemajor objective of this study is
to look at the degree to which these theoretical advantages are
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reflected in genotyping accuracy and, finally, genetic resolution and
interpretation.

With long-read assemblies of two parents in hand, ideally both
could be used as references for genotyping to avoid alignment bias
and to capture all variation. Some attempts have beenmade to address
this issue in a single-reference paradigm by using a consensus
approach that includes all relative insertions2. While the consensus
makes read alignmentmore robust, the approach is still susceptible to
breakpoint misinterpretation and does not take full advantage of
known small-scale differences—single-nucleotide polymorphisms and
indels—when aligning reads. Graph-based approaches have emerged
as a way to address all variation, particularly structural variants (SVs)
greater than 50bp and divergent repeats3. The method represents a
theoretically complete solution to reference bias but also a very dif-
ferent bioinformatic philosophy and toolkit. Hybrid methods, such as
Practical Haplotype Graphs4, align reads to a single reference, but then
use this information to impute the path through a graph of gene-
centric reference ranges. Ideally, full genomic information could be
used during the read alignment step such that imputation and visua-
lization are as accurate as possible.

Of bioinformatic programs built within the graph framework, the
vg-toolkit currently offers the most exhaustive end-to-end, open-
source solution for graph-enabled genetic analysis5. Nowpart of the vg
toolkit, the giraffe aligner has been shown to reduce positional align-
ment error in maximum map quality (MQ) reads from one mis-
mapping in 3333 (using bwa-mem) to one in 142,857whilemaintaining
total read alignment values comparable to the best single-reference
aligners1. Since these results were based on relatively homogenous
human genomes, we expect the technique, if scalable, to be evenmore
useful in structurally divergent crop genomes.

Reduced representation sequencing (RRS) and skim-sequencing
(skim-seq) are twomajor sequence-based genotyping approaches used
to characterize mapping populations6. As actual base-call sequencing
costs fall and library prep costs achieve parity, skim-seq has become a
more frequent choice due to its conceptual simplicity and unbiased
coverage. Heterozygous calls remain a challenge in skim-seq because
they cannot be called directly due to limited read depth. Imputation
offers a way to address heterozygosity, miscalls, and missing data
common to skim-seq (and RRS), although this depends on the accuracy
of variant identification. Imputation is usually supported by much
deeper read coverage of parents. In a conventional single-reference
paradigm, variant accuracy is a function of the divergence between the
reference and the parents. Suchdivergence often involves, for example,
tens of thousands of SVs in a rice breeding cross7 and hundreds of
thousands—if notmillions—in amaize experimental cross8. In this study,
we were interested in what comparable or contrasting benefits, if any,
graphs built with de novo assembled parental genomes would have
over these standard genotyping approaches.

Disease-resistance loci are frequent sites of rampant structural
variation across all kingdoms of life. In plants, nucleotide-binding site
leucine-rich repeat (NBS-LRR) genes have direct interaction with fun-
gal effectors, are often clustered within the genome, and have
undergone substantial phylogenetic divergence9,10. In addition, this
variation is often rare in the population because local factors critical
for disease manifestation result in local adaption of the pest and its
host. This combinationof factorsmakes disease resistance an ideal test
case to explore the benefits of a graph-based approach to genetic
analysis, particularly in the context of structured populations. Fusar-
ium oxysporum f. sp. melonis race-1 resistance has been fine mapped
using the population in this study to the fom-2 locus on chromosome
(Chr) 11, which contains an NBS-LRR protein (encoded by
MELO3C021831) characteristic of resistance across plant species11,12.
Similarly, resistance to race-2 of the same fungal disease has also been
traced to a distinct NBS-LRR gene (fom-1; MELO3C022146) on Chr
0913,14.

In this work, we develop a computational pipeline for graph-
enabled, low-coverage genotyping and genetic mapping. We also
contrast this approach with conventional methods, revealing a ~19%
increase in useful variants. We then focus these methods on two cri-
tical agronomic traits in melon—Fusarium and powdery mildew resis-
tance (see above). In many of these cases, association analysis and
comparative genomics indicates causal variation is likely related to
large, structural mutations that have previously been recalcitrant to
short-read assembly and single-reference genotyping.

Results
Parental chromosomes are highly collinear but reveal extensive,
fine-scale structural differences
AY and MR1 parental genomes were sequenced using highly accurate
circular consensus sequencing of long-reads on the PacBio Sequel IIe.
Resulting assemblies had contigs with an N50 of 9.9 and 9.1Mb for AY
and MR1, respectively (Table 1). Contigs of each sample were initially
scaffolded using the community reference, DHL92, as well as reci-
procally (see “Methods”) into pseudomolecules averaging 30Mb
(Table 1). Dotplots of pseudomolecules reveal high collinearity for all
chromosomes except Chr 06, which, though the majority of homo-
logous sequence is present, ordering is highly variable across all three
genomes. Our pangenomic pipeline is robust to large-scale chromo-
somal variation if major inter-chromosomal translocations are not
present, so we did not interrogate these inversion/translocations
further.

Chromosomes were annotated using an augmented BRAKER2
pipeline. Both Curcurbit protein homologs and previously published
RNA-seq data from various sources including MR1 and AY were com-
bined to create gene annotations. Genomes were annotated sepa-
rately. We observed that conventional repeat modeler approaches to
masking were overly aggressive and were disrupting accurate exon
annotation. As an alternative we used a k-mer based approach (see
“Methods”). Thus, our final gene sets likely harbor some low-copy
transposable element proteins. We also produced repeat annotations
such that they could be overlaid with the final gene set to assess this
possibility on a case-by-case basis.

The community reference genome for melon, based on variety
DHL92, has undergone numerous updates. Though a long-read
assembly was recently published15, we focus on version 3.6.1 in what
follows because it was used in cuGenDB (http://cucurbitgenomics.
org/) at the time of writing and illustrates issues related to short-read
assemblies. (Version 2 of cuGenDBwas released in February 2022 and
contains all genome versions.) Multi-sequence alignments of MR1,
AY, and DHL92 were generated on a per-chromosome basis. Across
all chromosomes, 287.0Mb (~75% of MR1 or AY, see below) is shared
by all three genomes. The large-scale collinearity of these three
genomes (Supplementary Figs. 1–12) tends to hide the substantial
degree of unique sequence being contributed by each sample (Fig. 1).
Such sequence is either non-orthologous or is too divergent to align

Table 1 | Assembly statistics for parental genomes and com-
munity reference DHL92 (v3.6.1)

AY MR1 DHL92

Total number of bases (bp) 20,084,631,307 25,786,193,521 NA

Mean read length (bp) 12,228 11,377 NA

Contig # 2301 3729 42,067

Contig total size (Mb) 453.64 488.058 337.33

Contig N50 (Mb) 9.885 9.072 0.262

Scaffold N50 (Mb) 30.46 29.52 34.32

BUSCO-complete-
embryophyta_odb10

1579 1579 1570

BUSCO-complete % 97.8% 97.8% 97.3%
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at single-nucleotide resolution. The original DHL92 genome was
generated from relatively short 454 reads and so is expected to be far
from complete. Indeed, relative to DHL92, AY and MR1 possess
84.6Mbof additional sequence on averagewhereas DHL92 only adds
21.8Mb on average (Fig. 1a and Supplementary Data 1). Relative to
one another, AY and MR1 add 60.4Mb on average not accounted for
in the other genome. In terms of total DNA content, 98% of the dif-
ferences between MR1 and AY are caused by SVs (>50 bp). That said,
short indels (<50 bp) occur ~14-fold more often (Supplementary
Data 1). As expected, the 2,106,962 single-nucleotide variants
between AY and MR1 comprise the majority (81%) of differentiating
variants, although they only affect a miniscule proportion of altered
bases (2%) due to the substantial size of many SVs. A three-way
analysis based on unique nodes in the graph (which does not dif-
ferentiate variant type) was complementary and reveals MR1 and AY
contribute ~55Mb of primary non-orthologous sequence on average
(Supplementary Fig. 13). Given the degree of unique sequence that
each genome brings to the alignment, we next contrasted genotyp-
ing quality between single-reference methods missing this informa-
tion and graph-based methods that include it.

Graph-enabled alignment increases genotype-able variants and
reduces error rate of allele calls
All chromosome alignments were merged and used to construct a
pangenomic graph (Fig. 2). All three genomes could be completely
reconstituted as continuous, acyclic paths through this graph. A
population of 149 RILs derived from the MR1xAY cross were skim
sequenced at ~1x coverage as 150 bp paired-end reads. To contrast
distinct library approaches, we also used pre-existing genotype-by-
sequencing (GBS) 100 bp single-end reads derived from the same DNA
extractions12. All reads were then aligned to the graph using giraffe.
This aligner implements a situational strategy that will use all

haplotype combinations implied by the graph in variant-sparse regions
but, to avoid combinatorial explosion, will revert to the foundational
paths in variant-dense regions. We contrasted this graph construction
and alignment approach, called PanPipes hereafter, with a conven-
tional single-reference strategy (see “Methods”) using two different
references: DHL92, the community reference, and MR1, the donor
parent for all major resistance alleles in the cross. We refer to these as
single-reference-DHL92 (SR-DHL92) and single-reference-MR1 (SR-
MR1) in what follows.

Given the divergence in sequence content seen above, it might be
expected that far more reads would align in the PanPipes case because
AY insertions (relative to MR1) were present to capture reads that
wouldotherwise not have a target.Weobserved theopposite (Table 2):
across samples, 3% fewer reads on averagewere aligned by giraffe than
by bwa-mem against MR1. Filtering out reads with MQ< 50 further
increased this difference to 8%.Wemanually examined reads that were
aligned by bwa-mem but not by giraffe and vice-versus. Two aspects
account for differing read content: (1) giraffe is far more stringent and
frequently rejects reads that have soft-clipping or are hyper-variable in
bwa-mem. Generally, this behavior is desired, particularly when all
variants should be present in the graph. (2) For efficiency, giraffe will
ignore a read if there are toomany seedmatches. Though problematic
for interpretation, the approach is, in effect, anMQ-filter built into the
alignment stage. BecauseweuseanexplicitMQfilter, this optimization
does not affect our results, but it could be an issue for researchers
attempting to genotype variants for which one allele is highly repeti-
tive. Taken together,muchof the non-orthologous sequenceobserved
above is clearly a product of >150bp repeats.

An additional striking and unintuitive result is that aligning to the
less complete DHL92 genome results in 9% and 17% more MQ> 50
alignments than using MR1 alone or both parents (PanPipes), respec-
tively (Table 2). This observationpoints to an under-explored aspectof

1 5,000 10,000 15,000 20,000 25,000 30,000 35,000 40,000 45,000 50,000 55,000 60,001

AY

AYDHL92MR1

Absent [Mb (% >50bp)]

AY MR1 DHL92

Present
[Mb (% 
>50bp)]

AY 58.2 (98%) 81.6 (98%)

MR1 60.6 (98%) 85.0 (98%)

DHL92 19.9 (94%) 20.8 (93%)

Pairwise differential 
sequence content 

MR1

DHL92
AY

MR1

DHL92

AY

Chr 1 (~38 MB) Orthologous 60 kb region @ 26.92 Mb (MR1) shown belowa b

c

Fig. 1 | Pangenomeof threemelon sequencesand sourcesofgenomic sequence.
a Relative presence/absence of genome sequence is depicted for pairwise compar-
ison (basedonmulti-sequence alignments). Only variants >50bpare shownbut their
percentage of the total is indicated parenthetically. b Chromosome-scale MSA of
Chr01. Sequences do not contain gaps and so are spatially offset. See mauve viewer
for details (https://darlinglab.org/mauve/user-guide/viewer.html). Colors reflect
locally collinear blocks. Rare, relative inversions appear below the forward strand

sequence. The orthologous region shown in c is highlighted in orange. c A 60kb
sample fromChr01MSAhighlighted inb is shownwith light gray indicating identical
columns and black representing variable columns. Dark gray regions in DHL92 are
“N”s. The lower panel is a dotplot representation of this region with AY along the Y-
axis of each. Red indicates an identical region and blue, a highly similar match. The
last plot is AY by self. Blue boxes highlight the tandemly repetitive nature of the AY
insertion. Note this repeat region falls over the long Ns tract in DHL92.

Article https://doi.org/10.1038/s41467-022-35621-7

Nature Communications |         (2022) 13:7897 3

https://darlinglab.org/mauve/user-guide/viewer.html


alignment to a divergent and/or incomplete reference: the inability to
accurately assess repetitiveness. Reads that are clearly derived from
duplicated loci are considered high quality in SR-DHL92. (The same
effect likely explains some of the difference between PanPipes and SR-
MR1, where duplicated loci in AY but notMR1 will not be filtered in the
single-reference approach.) Such reads are far more likely to trigger
false variants, as explored below.

The vg call function is a pre-existing tool for graph-based
genotyping5. We found that vg call had an excessively high false
positive rate because it is not designed for low-coverage data and has
not been extensively tested using giraffe alignments. Instead, we
incorporated a simple variant caller and genotyper directly into Pan-
Pipes (Fig. 2). Much like vg call and GATK’s HaplotypeCaller, the caller
identifies branchpoints in the graph and calls alleles by following the
path with the most coverage at these branchpoints (see “Methods”).

We rely on the giraffe alignment step to assess haplotype likelihoods
and, afterward, usemajority rule to call the allele, which is sufficient for
low-coverage RIL samples where imputation is expected to be used.
This approach also allowedus tomoreeasily trace possiblegenotyping
errors back to alignments.

Both SR-DHL92 and PanPipes initially contain variants unique to
DHL92 as well as those distinguishing AY from MR1. Thus, the initial
PanPipes variant set falls from 3,813,582 to 2,261,056 after filtering out
variants that are not segregating (<0.2 MAF) in the RIL population.

The SR approaches allow variants to be called from population
reads while the PanPipes approach establishes a pre-ascertained set
based solely on founder assemblies. This difference makes initial var-
iant numbers for SR-MR1 and SR-DHL92 more difficult to evaluate
because low-coverage data triggers numerous false variants from
sequencing errors. Therefore, we considered the starting set of var-
iants to be those present after segregation filtering (Fig. 3a).

We also removed variants that were multi-allelic or non-
polymorphic in parents (Fig. 3a). Missing calls in parents were toler-
ated because they exhibited segregation in the population and their
call was not in direct conflict. Removal of these variants had a small
impact on both PanPipes and SR-MR1 relative to SR-DHL92, where calls
appear much more error-prone given the divergence of the reference
from the material being genotyped.

False or poorly genotyped variants will typically exhibit segrega-
tion patterns distinct from the true variants with which they should be
in linkage based on the genome sequence. This aberrant pattern is
particularly distinctive in experimental populations.Using a 20-marker
wide window, we removed any focal variant that did not have a

Fig. 2 | PanPipes flow diagram. PanPipes incorporates pangenome alignment
information during short-read mapping. Files are shown as blocks and each step is
annotated on the right. Gray indicates that files originate fromoutside the pipeline.

“Surject” means to transform graph coordinates into coordinates of one of its
constituent paths.

Table 2 | Percent of aligned skim-seq reads across all RIL
samples using assorted methods

Properly-
paired + singletons

Properly-paired + singletons
w/ MQ>50

SR-DHL92
(bwa-mem)

89% 69%

SR-MR1
(bwa-mem)

98% 61%

PanPipes (giraffe) 95% 53%

Total reads = 776,180,980.
SR single reference,MQ mapping quality.
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pairwise D’ value >0.93 when averaged across its 19 neighbors. Like
other filtering steps, these errors were far-more frequent in SR-DHL92
and, to a lesser extent, SR-MR1 (Fig. 3a).

Comparable results are observed for GBS data (Fig. 3b). The loss
of specificity related to unpaired, shorter reads has amore detrimental
effect on both SR approaches relative to PanPipes. Because it is based
on a window of variants, linkage disequilibrium (LD) results will be
confounded with variant density, so it is likely that some valid variants
are being removed from genomic regions with low variant-density to
recombination ratio. Still, the sharp declines after polymorphic parent
removal suggest graph-based genotyping is even more valuable when
unpaired or short-reads are used and that repetitive structures larger
than 100bp are driving a sizeable fraction of false variants.

Low-coverage sequencing presents additional challenges that
cannot be easily detectedwith filters used above on a per-variant basis.
Sequence errors that coincidentally match the wrong allele will result

in a miscall. More problematic, tandem and local duplications are a
common feature of plant genomes7,16. When the reference sequence is
single-copy, variants within these duplications cannot be easily filtered
because they are physically proximal and will only present as three of
four possible haplotypes in terms of LD calculation. Graph-based
alignments should be more robust to these errors.

We used pedigree information to test the ability of each approach
to call individual alleles (Fig. 3c). Genomic regions in a structured
population are expected to partition into parental haplotypes. Error
rates can be determined by assigning these haplotypes to all samples
and cross-checking with the expected bases. Though theoretically
simple, low-coverage and experimental realities present complica-
tions. The parents used in large plant populations are often technically
multiple individuals from a family that has been genetically homo-
genized via inbreeding. Small regions that remain heterogenous across
these parents will segregate in the population as regions with more
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Fig. 3 | Genotyping efficacy of biparental population across methods. Three
methods used were (1) a graph-based approach using the pangenome—PanPipes,
(2) single-reference approach using newly developed MR1 assembly—SR-MR1, and
(3) a single-reference approach using currently available DHL92 assembly—SR-
DHL92. a For skim-seq chemistry, the three methods are compared in terms of
starting variants and variants remaining after various filtering criteria described in
text.bComparable to a but for GBS chemistry. c Error rate assessment is illustrated

in a toy example. Green Xs indicate missing calls. Purple boxes indicate post-
imputation assessment of miscalled alleles. Yellow highlighting indicates a likely
contaminant haplotype not found in either parent. d Box plots depict relative error
rates. Adjacent table shows grand totals for effective allele calls across chemistries
andmethods, where GGBS, S Skim-seq.n values are total explicit allele calls (see c).
Source data are provided as a Source Data file.
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than two parental alleles. With skim-seq, heterozygosity is difficult to
differentiate from this parental heterogeneity. FSFHap can assess
heterozygosity and non-parental haplotypes by using an explicitly
suppliedpedigreemodel andby considering the entirepopulation, not
just parents, in initial haplotype definition steps17. Only regions that
were explicitly called and polymorphic in parents, after imputation,
were considered; thus, regions that were recalcitrant to imputation
were not considered in assessing error rate.

For skim-seq, the PanPipes approach improved allele call error
rates compared with a conventional single-reference approach by 3.3-
fold and 5.3-fold relative to SR-MR1 and SR-DHL92, respectively
(Fig. 3d). Comparable gains are seenwhen usingGBSdata, although, as
seen in earlier filtering steps, the error rate is much higher for the
shorter, unpaired reads. We observed that, in some cases, FSFHap
imputed non-parental haplotypes as heterozygotes in PanPipes but as
explicit non-parental haplotypes in SR approaches, possibly due to
different variant densities. Concerned this difference might bias error
rate calculations, we also developed a simple window-based imputer
that leaves such regions unimputed if the heterozygosity for that
region exceeds expectation. For these F6-11 RILs, we used a 4% cross-
population heterozygosity threshold. While this approach ignores
highly problematic regions, it still showed substantial improvements
of 3.2-fold and 4.5-fold reduction in PanPipes errors relative to SR-MR1
and SR-DHL92, respectively, for skim-seq.

For skim-seq, after major filtering steps and adjustments for
error rate, the PanPipes approach calls 16% and 31%more alleles than
SR-MR1 and SR-DHL92, respectively (Fig. 3d). These values are dri-
ven by the number of filtered variants in PanPipes (Fig. 3a), not by
the average number of allele calls per variant: both SR-MR1 and
PanPipes call, on average, ~80 out of 147 RILs (when counted as
haploid).

Variant density difference between PanPipes and SR-MR1 shows
an evenly distributed bias toward PanPipes across the genome and, on
average, results in 5.9 more variants per 5 kb in this RIL population
(Supplementary Fig. 14). The few windows for which variant density is
biased toward SR-MR1 involve variants being called within a large MR1
insertion (relative to AY). Frequently, as discussed above and below,
these calls involve large tandem duplications, which are difficult to
identify via LD and segregation behavior. Manual curation indicates
that PanPipes-biased windows are generally the result of more effec-
tive calling around highly polymorphic regions interspersed with large
indels, which disrupt bwa-mem alignments but can be aligned to the
graph because all variants are present.

Pangenomic perspective reveals full variant profile of Fusarium
race-1 wilt resistance gene
Using known causal genes as a benchmark, we examined the impact of
increased variant resolution and genotyping accuracy on genetic
resolution. A basic calculation of expected recombination bin size in
our population would predict that, particularly for skim-seq, coverage
far exceeds that which is theoretically required to resolve all recom-
bination blocks. We hoped exploration in this simplified biparental
context would give insight into how themethods would behave across
much more complex populations, where higher density variant infor-
mation would be critical. To that end, for genetic mapping, we
employed a mixed-effects, linear modeling approach commonly used
in genome-wide association scans. This approach would be proble-
matic with lowmarker density, but, in our case, a physical sequence of
both parents and thus effectively all variants are available.

All association profiles around fom2 reveal a peak anchored on
the NBS-LRR gene (MELO3C021831) previously implicated in Fusar-
ium wilt race-1 resistance (Fig. 4 and Introduction). Imputation has a
dramatic effect on clarifying the associations across all techniques.
At higher resolution, the beneficial impact of higher density skim-seq
(relative to GBS) becomes evident in the interpretation of causal

recombination bins. Imputation also clarifies the high-resolution
perspective as well. Imputation proved problematic when using
DHL92 as a reference with skim-seq, so we could not compare utility
of a single parent reference (MR1) relative to DHL92 in this case. GBS
profiles for raw genotypes are quite distinct in SR-DHL92 but become
much more similar across techniques after imputations. When
comparing skim-seq profiles, many regions problematic for SR-MR1
have an association signal in PanPipesmore in keepingwith expected
recombination patterns.

A major benefit of using high-quality parent references is that
trait-associated regions can be rapidly assessed in terms of their true
variation, not just those implied by short-reads. Moreover, these
genomes can be reannotated with confidence that all variation is fac-
tored into gene models. The genomes of MR1 and AY exhibited very
similar versions of theNBS-LRR thought tounderlie resistance (Fig. 5a).
In fact, our re-annotations suggested that this gene is a single, con-
tinuous open reading frame (ORF), yet still exhibits little variation to
warrant such dramatically different disease responses: AY, death; MR-
1, no visible symptoms. We tracked the difference in exon annotations
to the use of inappropriate repeat models of conventional pipelines,
which frequentlymasked exonic space that was then interpreted as an
intron. We resolve over-masking by instead employing k-mer masking
based on raw reads and single-copy coverage estimates (see
“Methods”).

We also adopted recent advances in protein structure prediction
to explore the validity of our single-exon models as well as any struc-
tural difference implied by linear sequence divergence. Six distinct
isoforms of the NBS-LRR were compared: both continuous and three-
exon models across MR1, AY, and DHL92 sequences. (In addition, we
both randomly shuffled and reversed sequences to assure that the
folding algorithm produced disorganized structures in those cases.)
Both three-exon and continuousORFmodels produced expectedNBS-
LRR structures (Fig. 5b). We cannot rule out that both isoforms are
produced, but pre-existingRNA-seq data supports the continuousORF
as the primary protein product.

We then compared AY and MR1 continuous ORF proteins from a
structural perspective (Fig. 5c). Major structural aberrations are non-
existent, as expected for such similar primary sequences. The LRR
region does contain numerous site substitutions, some of which are
biochemically distinct. Site substitutions are known to have loss-of-
function effects in NBS-LRR and could explain the resistance response
of MR118. Indeed, the regions ranging from 836-841aa contains multi-
ple, chemically distinct residues. An alternative explanation to protein
functional variation is novel or enhanced regulation. (Although both
explanations are mutually inclusive.) A 6.1 kb insertion resides 1.5 kb
upstreamofMR1’sNBS-LRR start codon. Such large structural events in
enhancer regions are known to be a major driver of phenotypic
variation19.

We confirmed that the community reference genome strain,
DHL92, is also resistant (Supplementary Fig. 15). Based on genomic
sequences described in this study, the DHL92 serves as a natural
recombinant between the fom2 ORF of MR1 and the insertion-null
promoter of AY (Fig. 5). We confirmed these haplotypes with PCR
across MR1, AY, and DHL92 (Supplementary Fig. 16). Therefore, it is
very likely that the causal variation does reside in the N-terminal tail of
the NBS-LRR protein, given that it is substantially altered from AY
(Supplementary Fig. 17).

Concerned that FSFHap tends to overpredict parental homo-
geneity, we also used our more conservative in-house windowing
imputer (described above) to examine all variation across this interval.
Variant-level inspection of the region reveals how SR-MR1 and Pan-
Pipes will have divergent signals around SVs like the one observed in
the NBS-LRR promoter (Fig. 5d). AY (susceptible) reads are unable to
properly align to this region, resulting in a decline in AY calls. If this
insertion was in fact the causal variant, peak association would be
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mis-located and its effect underestimated in a low-LDpopulationusing
an SR-MR1-like approach.

Gene duplication is the probable mode of Fusarium wilt race-2
resistance acquisition
Resistance to Fusarium race-2 wilt has been previously fine-mapped
to Chr 1113. In fact, a bacterial artificial chromosome (BAC) of this
region specifically fromMR1 was previously published as part of that
study. As with fom2 above, the locus contains an NBS-LRR thought to
mediate resistance. Interestingly, susceptible lineswere also found to
possess this NBS-LRR and contain few obvious causal substitutions.
In our population, peak association co-localizes with the same NBS-
LRR. Detailed examination of the locus suggested that genotype
calling in this region was more problematic than the fom2 locus
above. Indeed, there appears to be at least one non-parental

haplotype segregating in two samples. With this in mind, we also
explored the window imputed genotypes, which retains all variants
but does not impute non-obvious haplotypes (see above). The pat-
tern for association in all cases is centered on a very large 30 kb
insertion in MR1 relative to AY (Fig. 6a). The insertion exists in an
otherwise highly collinear region of genic space. Dotplots between
MR1 and AY indicate this region is the product of an extensive tan-
dem duplication event that has created a second copy of the pre-
viously implicated NBS-LRR (Fig. 6b) as well as duplicating four
additional viral resistance genes. Protein alignments of the NB and
LRR regions of the fom1A orthologs and the fom1B paralog indicated
that the LRR domain has divergedmore than any other region in this
highly conserved protein (Fig. 6c). LRR domains are thought to be
critical in pathogen recognition. We hypothesize that this extensive
divergence, in conjunction with natural selection, may have resulted
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Fig. 4 | Genetic resolution of the fom2 locus using assorted methods. Both
panels show association statistic for all variants across the fom2 interval (see
“Methods”). The chemical and analytical genotyping factor combinations are
indicated at the far right. Because PanPipes uses both references simultaneously,
this factor is shown as a dotted line. “Raw” indicates initial set of filtered variants

and FSFHap is the result of imputing the Raw variants. The left panel presents an
expanded view of the interval, while the right shows the 700kb bounding the
previously fine-mapped NBS-LRR protein, shown as a vertical black bar in all plots.
The combination skim-seq/SR-DHL92 could not be properly imputed and so only
“Raw” is shown.
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from error prone repair often observed at tandem duplication
boundaries (Fig. 6a).

The originally published BAC does not contain the tandem
duplication observed in this study (Supplementary Fig. 18). Manual
curation of aligned PacBio reads shows uniform coverage of our MR1
assembly and no aberrant or consistent splits at critical junctures of
the repeated sequence (Supplementary Fig. 19). Paralogous sequence
divergence is enough to expect >10 kb high fidelity reads to span
unique anchor points thereby inferring proper configuration. In con-
trast, the original BAC was sequenced with 454 technology, which
produced ~500 bp reads. Indeed, this BAC sequence is only 70 kb in
length comparedwith larger 172 kb BAC sequenced from a susceptible
strain. Although true BAC lengths can vary substantially, it appears
more likely that the assembler used in that study choose a path
through the conserved region of fom1 that excludes the duplication
entirely. An alternative, though remote, possibility is that the insertion
is simply polymorphic in the MR1 strain, and both sequences are
correct.

Powdery mildew resistance loci frequently exhibit recombina-
tion suppression and include NBS-LRR hotspots
The MR1xAY population segregates for three powdery mildew
resistance genes (Fig. 7a). Marginally significant peaks on Chr 07 and
11 are related to mild pan-chromosomal LD with these three regions
and disappear when multi-locus mixed models are used. The
strongest association on Chr 05 presents a mesa-like peak when
examined in detail (Fig. 7b). Both imputation methods exhibit
comparable profiles, but FSFHap suggests that a small number of
recombinants at the 5’ end of the peak are more tightly linked with
the trait. The lack of variants in the center of the profile indicates
large structural differences between the parentsmay be suppressing
recombination in this region. We examined orthologous regions as a

dotplot of both parents. In addition, we overlaid NBS-LRR positional
annotations for both genomes (Fig. 7c). Of note, across all three
chromosomes harboring strong quantitative trait loci (QTL), only
this region of Chr 05 contained evident NBS-LRRs, excepting a single
annotation at the 3’ end of Chr 04.

Interestingly, in the case of Chr 05 QTL, the susceptible parent,
AY, has retained more NBS-LRR copies than MR1 (Fig. 7c). Most
copies are quite divergent, although one NBS-LRR near the largest
indel is tandemly duplicated in AY. Two other NBS-LRR clusters
within this super-cluster indicate more ancestral tandem duplica-
tions/triplications, and these are conserved across AY and MR1. The
first cluster, which overlays the highest-effect portion of the peak,
has one major SV. This appears to have affected an NBS-LRR exon
structure in the first annotation of that cluster, but it is unclear if this
is a viable gene in either parent. Other NBS-LRR genes in this cluster
are highly similar although rare, biochemically significant substitu-
tions do exist.

Other strong associationswith powderymildew resistance did not
contain NBS-LRRs, although Chr 12 QTL has strong precedent in the
literature and is proposed to be the gene MELO3C002434, an ankyrin
repeat-containing protein20. The most strongly associated recombi-
nationbinwithin this interval overlapsMELO3C002434 exactly. Still, in
the coding sequence of this gene, there are only 4 nucleotide sub-
stitutions between MR1 and AY, and none of these has a substantial
impact on the protein product.

The remaining association, on Chr 04, is particularly interesting in
that it reflects a very large region of recombination suppression. There
are no obvious chromosome-level differences that would drive sup-
pression; in fact, a large portion of this region is far more similar
between AY and MR1 than most of the genome. Regardless, such
patterns have clear implications for further fine-mapping or intro-
gression of this region into other germplasm.
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of the NBS-LRR protein is shown in yellow; our single-exon annotations are shown
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iant columns. b AlphaFold2 predictions of continuous open reading frame (ORF)
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continuous model transposed as closely as possible. d Allelic effect estimate for
variants in the fom2 region with FSFHap imputation (also depicted in Fig. 4) as well
as explicit window-based imputation (winImp) for both PanPipes and SR-MR1 (see
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Data file.
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Discussion
Low-error, long-read sequencing has given individual researchers the
capacity to create their own reference genomes for use in genetic
analysis. In this study, we examined what experimental gains might be
achieved even in the simplest type of genetic experiment: an advanced
generation RIL population formed from a biparental cross. Any gains
observed in such a simple case should be amplified in more complex
experiments, such as MAGIC crosses and unstructured diversity
panels. Recent work in a complex tomato population support this
assumption,where theuse of a variation graph enabled the assignment
of 25%more phenotypic variation to genetic loci than single-reference
approaches21. The simple pedigree in our study allowed us to further
characterize genotyping efficacy under various molecular and bioin-
formatic scenarios.

Many communities studying non-model organisms, such as
cucurbit species, continue to use reference sequences produced pri-
marily from short-read technologies. Numerous observations in this
study reveal the inevitable errors and limitations of such sequences.
The original short-read assembly of the melon reference strain DHL92
is clearly useful for low-resolution mapping but its divergence from
parents and incompleteness can blur the full genetic resolution of an
experiment, even with the modestly scaled population used in this
study (Fig. 4). Under fine-grained analysis, the capacity to accurately
assess large SVs, particularly tandem duplications, requires long-read
data (Fig. 1). A long-read assembly of DHL92 was recently reported,
supporting this result as well15.

Beyond improvements in pre-existing references, the capacity to
compare multiple references is useful in interpreting genetic
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associations. SVs will certainly not always be causal mutations under-
lying a phenotype, but they do appear to bemuchmore likely to cause
both major and minor effects7,19,22. The parent sequences used here
allowed us, in effect, to completely impute high-quality genome
sequences of all individuals in the population. Our fom1 results illus-
trate the significant gains achieved with a comparative genomics
perspective on association results: if only MR1 or only AY had been
sequenced, the fom1 region would have been very challenging to
interpret (Fig. 6a). Indeed, in the AY-only case, most markers would
have been filtered out due to excessive heterozygous calls commonly
triggered by tandem duplications. While graph-based approaches,
such a PanPipes, have the capacity to encode such information as
cyclic loops in a graph, we found such loops very difficult to interpret
during the genotyping phase. To that end, PanPipes treats such
duplications as indels. As such, after-the-fact dotplot analysis is clearly
vital to base-level interpretation (Figs. 1c, 6 and 7).

Graph-based techniques have been shown here and elsewhere to
improve proper readplacement, but they represent a substantial break
from the standard bioinformatic ecosystem. Many of the formats and
methods used are rapidly changing and lack downstream analytical
and visualization support. We explored possible benefits in gene and
causal variant discovery relative to these costs. As expected, all
methods were able to discover single, large-effect loci (Fig. 4).
Although PanPipes offered the clearest interpretation of these peaks,
SR-MR1 approachwas comparable. PanPipe’smajor advantage is in the
sheer number of variants it can discover and genotype (Fig. 3). Manual
curation around SVs suggests that these variants and, more impor-
tantly, their surroundings are hotspots for differential performance, as
expected of graph-enabled alignment1. Indeed, in a GWAS context
where an SV is the causal variant, the two methods can produce
opposing patterns of association if imputation fails. In such cases,
reference bias will skew apparent allele frequencies and weaken sig-
nificance relative to adjacent variants. In experiments where imputa-
tion is not possible at all, such as QTL-seq, these issues will be
inevitable and graph-base approaches will be more accurate.

Whereas bwa-mem aligns to quite divergent sequence, giraffe has
a much higher stringency because most variants are expected to be in
the reference graph. In fact, the stringency goes beyond variant spe-
cific alignment: giraffe makes graph-alignment feasible by relying on
haplotype informationwhen areas of the dense variantswould result in
combinational explosion. Manual inspection of evident SR-MR1 gen-
otyping errors often indicated that the read triggering the call had an
MQ=60 and a full-length alignment. Such calls are in fact sequencing
error that are coincidental on the incorrect allele. Given 1x coverage
and an error rate between 1:100 and 1:1000, this will equate to ~6
miscalls per 10,000 calls. In some cases, giraffe penalizes such reads
because they fail to phasewith the haplotype and, thus, such reads are
thrown out. Though this does not completely account for the differ-
ence in error rate, it could comprise a sizeable fraction. Many such
errors will be flipped to the proper base during imputation and thus,
for operational purposes, the SR-MR1 error rate will be closer to Pan-
Pipes. Yet, the imputation accuracy itself will inevitably benefit from
higher stringency as haplotypes become more diverse and LD blocks
become narrower in more complex populations.

We have chosen a fully graph-based pipeline to contrast with
conventional SR approaches (Fig. 2), but numerous hybrid approaches
could be imagined2. For a low-resolution, biparental mapping, stan-
dard SR genotyping and association using the community reference
could be paired with case-by-case examination of orthologous regions
across parental assemblies. In this study, such an approach, particu-
larly if using skim-seq, would have produced insights comparable to
the full, graph-based analysis. Still, the dense genotyping afforded by
the graph helps to assure that complex variants are legitimate.
Otherwise, such confirmation would require more extensive follow-up
molecular analysis.

Though models of NBS-LRR biochemistry are being actively
refined, many lines of evidence point to the LRR region of these pro-
teins as direct-effector binding sites in fungal resistance pathways23,24.
Our results related to fom1 support a sub-functionalization model in
which tandem duplication has generated an NBS-LRR paralog (inMR1)
that, either via the duplication process or subsequent mutations,
underwent radical alteration to achieve resistance to novel strains of
Fusarium. In contrast, adaptive mutations in the MR1 fom2 allele did
not require duplication but appear to be the result of a suite of
mutations in the LRR domain—as with fom1. Interestingly, the pro-
moter region (~1.5 kbupstream)of the gene appears to be robust to the
introduction of a large insertion in MR1. Since fungal responsive NBS-
LRRs are typically constitutive “front-line” sensors, simple enhancer/
promoter structures may be robust to such major mutations25.

Our results also give perspective on the role of in silico structure
prediction in variant analysis. AY andMR1 NBS-LRRs were predicted to
be effectively identical within the bounds of variation generated from
recurrent rounds of prediction (Fig. 5). This similarity occurs despite a
striking switch in hydrophobicity in numerous LRR-domain residues
(Supplementary Fig. 17). It remains unclear if these in silico structures
are legitimate, or if distinct behavior is solely a product of side-chain
reactivity.

We observed extreme enrichment in NBS-LRR genes in the largest
effect association with powdery mildew resistance. This region exhi-
bits a low recombination rate, whichmay be a product of the structural
divergence between these two parents (Fig. 7). Interestingly, the
quantity of NBS-LRRs in this region is not correlated with resistance,
since AY has ~30%more thanMR1. The strongest association lies in the
first cluster of NBS-LRRs, in which both parents have 4 genes but MR1
has a 7 kb insertion.

To conclude, the availability of all variation in this population has
proven extremely useful in interpreting causal loci, particularly struc-
turally divergent disease loci. This comparative-genomics perspective
does not necessarily require the implementation of graph-based
methods, but the enrichment of informative variants benefits even
low-resolution biparental mapping. Such benefits will be amplified in
populations with far more complex patterns of LD. However, the full
implementation of graph-based methods remains a bioinformatic
challenge. As part of this manuscript, we propose our PanPipes strat-
egy, focused on a skim-seq approach (Fig. 2). We have released all
relevant software free to the public26. Effort has also been made by
other groups toward visualization and annotation of variation
graphs27.While these tools are centeredonhumangenetics and remain
challenging to implement, they encourage further development in
agricultural and non-model contexts.

Methods
Plant materials
MR-1 (MR1 hereafter), a multi-disease resistant melon (Cucumis melo
subsp. melo) line was derived from an Indian landrace melon, USDA PI
12411128. Ananas Yoqne’am (AY) is an heirloom Israeli melon cultivar
(Cucumis melo subsp. melo) that is highly susceptible to numerous
plant pathogens29. A RIL population (N = 149) was developed by mak-
ing an initial cross of a female MR-1 by a male AY. The resulting F1 was
self-pollinated. Individual F2 plants were carried to the RIL stage
(F6–F11) through single seed descent bymanual self-pollination. A total
of 149 RILs were used in this study.

Sequencing and assembly of MR1 and AY
Highmolecular weight gDNAwas isolated through fee-for-service with
Polar Genomics LLC (Ithaca, NY). The gDNA was sheared with a gTube
to an average fragment lengthof 13 kb. ShearedgDNAswere converted
to a library with the SMRTBell Express Template Prep kit 2.0. The
library was sequenced on 1 SMRTcell 8M on a PacBio Sequel II using
the circular consensus sequencing mode and a 30h movie time. CCS
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analysis was done using SMRTLink V8.0 with default parameters.
Reads were assembled using HifiASM (v0.5) using inbred flag (-l0)30.
Resultant contigs were initially scaffolded using RagTag (v1.0.1)
(https://github.com/malonge/RagTag) and the community reference,
DHL92_v3.6.131. An additional round of scaffolding was performed
using RagTag and the other parent: AY using MR1 and MR1 using AY.
Assembly results (Table 1) were also cross-checked with the Canu
assembler (v2.0)32 and final statistics determined with BBTools
(v38.87)33 and BUSCO(v4) with embryrophyta_obd10 dataset. SVs
associatedwith fom2were confirmed via PCRusing standard protocols
(Supplementary Data 2).

Gene annotation
For each parental genome separately, k-mer counts were extracted
from Illumina 150bp reads (see below) using Jellyfish (v2.2.10)34. The
k-mer counts were provided to GenomeScope v2.0 to determine the
haploid “kcov” value35, whichwas doubled to represent the diploid kcov
value. Repetitive k-mers were masked using Kmasker v1.1.1 rc231015
with a repeat frequency threshold of 5x the diploid kcov value36. A soft-
masked genome was produced using bedtools v2.27.1 and the Kmasker
repeat gff. The soft-masked genomes were annotated using Braker
v2.1.6 separatelywith species proteins andRNA-Seq reads37. The species
protein database was constructed from cucurbit peptides (ftp://
cucurbitgenomics.org/pub/cucurbit/genome/). The RNA-seq reads
used are available at NCBI, BioProject accessions PRJNA358655 (MR1)
and PRJNA358674 (Top Mark/AY). The RNA-seq reads were mapped
using HISAT2 v2.2.1. The BRAKER annotations obtained using proteins
and RNA-Seq were combined using TSEBRA v1.0.238. Additional k-mer-
masked annotation details are available at Github (https://github.com/
brianabernathy/kmer_masked_annotation).

Pangenome graph generation with MR1, AY, and DHL92
Dotplots of resulting pseudomolecule scaffolds (Supplementary
Figs. 1–12) were examined to validate that all chromosomes were col-
linear and did not contain inter-chromosomal translocations, although
intra-chromosomal translocations were permitted. All homologous
pseudomolecules from each of the three genomes were aligned in a
chromosome-wise fashion using progressiveMauve algorithm (2015-
02-13 linux release)39. Default parameters were used except seed
weight was altered to 27 based on manual evaluation of parameter
sweeps across seedweight (-seed-weight) 17 to 31 andweight (-weight)
default to 10,000. progressiveMauve infrequently produces false gap
openings that are easily identified by adjacent gaps of equal size. All
such gaps were removed using xmfa_tools, published as part of the
PanPipes suite (see “Code availability” section). Chromosome align-
ments were converted to a graph format (GFA) using xmfa_tools and
vgtools. These graphs were used in conjunction with vg giraffe for all
downstream read mapping and genotyping5.

Skim-sequencing MR1xAY population
The shotgun genomic libraries for each individual in the population
were prepared with the Nextera Flex sample prep kit from Illumina.
The libraries were pooled, quantitated by qPCR and sequenced on two
SP lanes for 151 cycles from both ends of the fragments on a NovaSeq
6000. Fastq files were generated and demultiplexedwith the bcl2fastq
v2.20 Conversion Software (Illumina). bbtools (v38.87) was used to
assess quality and trim adapter reads.

Graph-based genotyping
Both skim-seq reads and GBS reads12 for the RIL population were
aligned to the graph generated above using giraffe1, available in
vgtools (v1.37.0), following the pipeline based on index construction
from a GFA file with embedded path information, which were in this
case MR1, AY, and DHL92. Genotyping was performed by first identi-
fying all bifurcating branchpoints in the graph, read in the forward

direction. Hyper-variable regions were defined as 100bp windows
(relative to linear MR1 sequence) with >15 variants; these regions were
masked in subsequent analysis. Only reads with Mapping Quality
(MQ) = 60 were retained. Alleles were then called based on the read
coverage of the two alternative edges—in effect, two possible alleles—
as assessed by vg pack’s resultant edge table. Calls were made based
solely on the allele with the most coverage, since, for RILs, hetero-
zygosity should be lowandwouldbe evaluatedmoreeffectivelyduring
imputation.

Single-reference genotyping
Trimmed reads described above were aligned to reference genomes
using bwa-mem (bwa v0.7.17-r1188) with default parameters40. Resul-
tant BAM files were jointly supplied to mpileup (bcftools v1.14)41 and
allele calls were reduced to haploid calls using allelic depth field and
majority rule, as above, to coincide with PanPipes methodology as
closely as possible.

Imputation
Imputation was done in two ways: (1) FSFHap17 (TASSEL v5.0)42 was
used directly on GBS data and skim-seq data down-sampled to less
than 1 variants per 700 bp and all GBS calls. (2) For the full (not down-
sampled) skim-seq dataset, a customalgorithm (see “Code availability”
section) was implemented such that, for a window size of 31 variants,
the central allele was called as its consensus haplotype if 92% of the
haplotype matched one parent and 30% of the alleles were explicitly
called. Central alleles in cross-over haplotypes were called by majority
rule. Otherwise, a haplotype was considered un-imputable. If less than
4% of samples had un-imputable flags for a region, un-imputable
sampleswere called heterozygous.Otherwise, the affected samplewas
left unimputed.

Comparison with single-reference MR1 and DHL92 approaches
It was evident from initial analysis of GBS data that lines RIL194 and
RIL37 had highly aberrant genotyping patterns and were therefore
excluded from genotyping comparison. For the remaining samples,
genotyping accuracy was assessed using the parental assignments for
each individual made during imputation. The explicitly called allele
was comparedwith the imputed allele. Only variants that haddiffering,
explicit calls betweenparentswereused and thenonly if the call for the
individual sample was also explicitly defined, i.e., no variants imputed
to be heterozygous or poorly called parental regions were included.
The percentage of mismatch was reported relative the total compar-
isons passing these criteria.

Genetic association
Phenotypic data for Fusarium (race 1) and powdery mildew resistance
was drawn from previously described work12,43. Fusarium (race 2)
experiments were performed according to those protocols12. In brief,
propagation trays were filled with trimix that was saturated in spore
suspensions. Unsaturated control trays were also prepared. Five seeds
per RIL per tray well were replicated twice. Twenty-eight days post-
inoculation, RILs were scored from 1 to 5 on severity, where 1 was
asymptomatic and 5 was dead. For association, we used post-imputed
genotypes to test each variant’s estimated effect using a generalized
linearmodelwith additive variance since few if anyheterozygoteswere
present to estimate dominance. To control for possible cryptic/ biased
relatedness or multi-locus effects, we also confirmed resultant peaks
using both a standard mixed-effects model as well as FarmCPU44. All
algorithms were implemented in R (v3.4.1) using GAPIT3
(v2020.10.24)45 with default parameters. This approach allowed us to
include lines RIL194 and RIL37 for mapping. Both lines did have
informative parental segregation for at least half of the genome; the
remainder of sites were either treated as heterozygous or left unim-
puted. Association profiles are based on raw p-values or absolute
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effects using the generalized linear model. Unless thresholds are
shown (e.g., Fig. 7), all points in association profiles exceed both false
discovery rate and Bonferroni thresholds as calculated by GAPIT3.

In silico protein prediction
The protein structure of eight sequences was predicted computa-
tionally using Alphafold v2.0.046. The four test sequences for fom2
were: (1) the spliced isoform from DHL92, (2) the continuous isoform
from DHL92, (3) the continuous isoform from MR1, and (4) the con-
tinuous isoform from AY. The four negative control sequences were
also included as shuffled or reversed proteins in both DHL92 con-
tinuous and spliced versions. The databases used for structure con-
struction were the Uniref 90 database from August 2018 (https://ftp.
uniprot.org/pub/databases/uniprot/previous_major_releases/release-
2018_08/), the Mgnify database from December 2018 (ftp://ftp.ebi.ac.
uk/pub/databases/metagenomics/peptide_database/2018_12/mgy_
clusters.fa.gz), the Uniclust 30 database from August 2018 (https://
wwwuser.gwdg.de/~compbiol/uniclust/2018_08/), and the BFD data-
base “bfd_metaclust_id30_c90” fromMarch 2019 (https://bfd.mmseqs.
com/). The preset search setting “full_dbs” was used for homology
search and folding.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Raw data and genome assemblies have been deposited to NCBI under
Bioproject accession PRJNA844271. Source data are provided with
this paper.

Code availability
Computational tools developed in-house to support this analysis have
been published under a creative commons license at Github (https://
github.com/USDA-ARS-GBRU/PanPipes)26.
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