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Surgical gestures as a method to quantify surgical performance
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How well a surgery is performed impacts a patient’s outcomes; however, objective quantification of performance remains an
unsolved challenge. Deconstructing a procedure into discrete instrument-tissue “gestures” is a emerging way to understand
surgery. To establish this paradigm in a procedure where performance is the most important factor for patient outcomes, we
identify 34,323 individual gestures performed in 80 nerve-sparing robot-assisted radical prostatectomies from two international
medical centers. Gestures are classified into nine distinct dissection gestures (e.g., hot cut) and four supporting gestures (e.g.,
retraction). Our primary outcome is to identify factors impacting a patient’s 1-year erectile function (EF) recovery after radical
prostatectomy. We find that less use of hot cut and more use of peel/push are statistically associated with better chance of 1-year
EF recovery. Our results also show interactions between surgeon experience and gesture types—similar gesture selection resulted
in different EF recovery rates dependent on surgeon experience. To further validate this framework, two teams independently
constructe distinct machine learning models using gesture sequences vs. traditional clinical features to predict 1-year EF. In both
models, gesture sequences are able to better predict 1-year EF (Team 1: AUC 0.77, 95% Cl 0.73-0.81; Team 2: AUC 0.68, 95% ClI
0.66-0.70) than traditional clinical features (Team 1: AUC 0.69, 95% Cl 0.65-0.73; Team 2: AUC 0.65, 95% Cl 0.62—0.68). Our results
suggest that gestures provide a granular method to objectively indicate surgical performance and outcomes. Application of this
methodology to other surgeries may lead to discoveries on methods to improve surgery.
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INTRODUCTION

In the past decade, mounting evidence has demonstrated that
surgical performance significantly impacts surgical outcomes'?.
For example, lower operative skill in laparoscopic gastric bypass is
associated with higher complication rates, higher mortality rates,
longer operations, and higher rates of reoperation and read-
mission’. To enhance surgical outcomes, one must first quantify
surgical performance®. However, it still remains challenging to
objectively achieve so.

Surgical gestures, defined as the smallest meaningful interac-
tion of a surgical instrument with human tissue*®, are a novel
approach to deconstruct surgery. They have the potential to
objectively quantify surgery meanwhile provide actionable feed-
back for trainees. Previously, we developed a dissection surgical
gesture classification system consisting of nine distinct dissection
gestures (e.g., cold cut) and four supporting gestures (eg.,
retraction) (Fig. 1a)°. We found that different selections of surgical
gestures during the hilar dissection step of robot-assisted partial
nephrectomy can distinguish the expertise of surgeons®. However,
it is still unclear whether different surgical gestures are associated
with patient outcomes after surgery.

Robot-assisted radical prostatectomy (RARP), the most common
treatment for prostate cancer, is an ideal test case to evaluate
whether surgical gestures relate to a patient’s outcomes because
it has a concrete, easily measured functional outcome that is
highly associated with surgical performance®. Erectile dysfunction
after RARP has a profound impact on a man'’s quality of life and

over 60% of men experience this long-term complication due to
injury of the nerves that run alongside the prostate’. During nerve
spare (NS), surgeons gently peel these nerves off from the
prostate. Minute changes in a surgeon’s dissection technique can
have a major impact on a patient’s potency recovery®. Ample
evidence suggests that a surgeon’s performance matters: while
patients of the top-tier surgeons have a nearly 50% chance of
recovering potency, patients of the bottom-tier surgeons have less
than a 20% chance®.

Given the association between the quality of nerve sparing and
risk of postoperative erectile dysfunction, we primarily aim to
examine whether the gestures used during the NS step of RARP
can predict rates of ED after surgery. The secondary objective is to
study surgical gesture selection by surgeons of varying experience
levels to deepen our understanding of different dissection
techniques of nerve sparing. We hypothesize that surgical
gestures can be used as an effective tool to quantify technical
skills and potentially indicate surgical outcomes.

In this international bi-center study, we find that less use of hot
cut and more use of peel/push during NS are associated with a
better chance of 1-year EF recovery. Moreover, using dissection
gesture sequences during NS, ML models can be constructed to
accurately predict EF recovery. In addition, we find surgeons with
different experience levels use different surgical gestures during
NS. These results suggest that breaking down surgery to the level
of surgical gestures can serve as a novel method to measure
surgical performance, which may have wider applications to
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Nerve Sparing Gesture Sequences
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Fig.1 Dissection gestures and the study design. a Gesture classification, including 9 dissection gestures and 4 supporting gestures. b Color-
coded nerve-sparing gesture sequences (showing only the first 100 gestures). Colors represented corresponding gestures in a. ¢ One-year EF
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Fig. 2 Flowchart of patient enrollment. Enrollment of 80
RARP cases.

different surgical specialties to predict surgical outcomes and give
actionable feedback.

RESULTS
Baseline cohort data
Six hundred nineteen consecutive RARP cases were candidates for
this study, and eventually 80 cases from 21 surgeons from 2
international surgical centers fulfilled our inclusion/exclusion
criteria (Fig. 2). Most patients were excluded because they did
not have baseline erectile function to be preserved during surgery.
The median prior robotic surgical caseload of these 21 practicing
surgeons was 450 (range 100-5800) cases. There was a gap in
robotic surgical experience between a group of 6 super-experts
(median 3000 cases, range 2000-5800) and a group of 15 experts
(median 275 cases, range 100-750) (Supplementary Table 1).
Overall, 1-year postoperative EF recovery rate was 34/80 (43%).
Patients who recovered EF were significantly younger (p =0.02,
Chi-square test) and had better American Society of Anesthesiol-
ogy (ASA) physical status (p=0.03, Chi-square test) (Table 1).
Patients who recovered EF had a greater proportion of full nerve
sparing (76.5% vs 69.6%), although this was not statistically
significant (p = 0.49, Chi-square test).
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Identify surgical gestures utilized in NS

A median of 438 discrete gestures (IQR 254-559) was identified
per NS case. Active dissection gestures consisted 65.7% of all
gestures, and supporting gestures consisted of the other 34.3%
(Table 2).

Dissection gesture sequences and 1-year EF recovery

To assess whether a gesture type was significantly related to
1-year EF recovery, the proportion of each type of gesture within a
case between EF-recovered and non-recovered patients was
compared. Patients who recovered EF had less hot cut (median
1.4% vs 1.9%, p = 0.016, generalized linear mixed model [GLMM])
but more peel/push (median 33.4% vs 29.7%, p <0.001, GLMM)
(Fig. 3a). To confirm the results, we did subgroup analyses in the
expert (Fig. 3b) and super-expert group (Fig. 3¢), respectively. In
both groups, patients who recovered EF had more peel/push
(p <0.001, GLMM). Hot cut usage was only significant in the expert
group, where patients who recovered EF had more hot cut
(p =0.001, GLMM). In addition, patients who recovered 1-year EF
had less cold cut, more spread, more hook, less retraction, and less
coagulation in the expert group (all p <0.05, GLMM). In the super-
expert group, patient who recovered 1-year EF had less spread,
less hook, and more coagulation (all p < 0.05, GLMM).

Gesture sequences and clinical features were then used by two
teams to independently construct machine learning (ML) predic-
tion models for 1-year EF recovery, to ensure the reproducibility of
the outcomes. When including surgical gesture sequences alone,
both models achieved a moderately-high ability to predict 1-year
EF recovery (AUC: Team 1: 0.77, 95% Cl 0.73-0.81; Team 2: 0.68,
95% ClI 0.66-0.70), which surpassed clinical features alone (AUC,
Team 1: 0.69, 95% Cl 0.65-0.73; Team 2: 0.65, 95% Cl 0.62-0.68).
When models included both surgical gestures and clinical features
(AUC, Team 1: 0.75, 95% ClI 0.72-0.77; Team 2: 0.67, 95% ClI
0.65-0.70), the models performed similarly to those that included
surgical gestures alone (Fig. 4).

To understand how these models make predictions, we picked
Team 1's model due to its better performance and ranked the
important clinical features for 1-year EF prediction (Fig. 5a), which
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were Gleason score, age, BMI, PSA, and prostate volume. We also
outputted important gesture sequences positively or negatively
associated with 1-year EF recovery (Fig. 5b).

To rule out the possibility that the ML models simply learned
the prediction of 1-year EF recovery by the number of gestures
used during NS rather than truly learned from the gesture
sequences themselves, we ranked 80 cases based on the number
of gestures and categorize cases into four quartiles. We found
similar 1-year EF recovery rate across quartiles (p=0.66, Chi-
square test, Supplementary Table 2).

Gesture selections between surgeons of different experience
levels

Super-experts used fewer gestures than experts (median 317 vs
530, p =0.014, Mann-Whitney U test) during the NS step. This
trend was present for both the active dissection gestures (i.e,
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Table 1. Comparison of clinical features between the EF recovery Table 2. Breakdown of different gestures used in the nerve-
group and the no EF recovery group at 1 year after RARP. sparing step.
Features No EF recovered EF recovered at 1 p-value Gesture Number Proportion
at 1 year year
Median (IQR) / Median (IQR) / Dissection 22,566 65.7%
Count (%) (N=46)  Count (%) (N=34) Peel/push 11,881 34.6%
Patient factors Cold cut 6823 19.9%
Age, year 65 (61-69) 61 (58-65) 0.02 Spread 711 5.0%
BMI, kg/m? 27.4 (25.9-29.0) 28.7 (25.3-30.1) 0.69 Hook 963 2.8%
Pre-op 24 (21-25) 24 (22-25) 036 Hot cut 599 1.7%
SHIM score Pedicalize 211 0.6%
PSA, ng/mL 6.8 (5.4-11.2) 7.7 (5.2-9.8) 0.74 Two-hand spread 207 0.6%
ASA 0.03 Burn 105 0.3%
| 3 (6.5%) 8 (23.5%) Coagulation then cut 66 0.2%
2|l 43 (93.5%) 26 (76.5%) Supporting 11,757 34.3%
Pre-op 0.22 Camera move 5204 15.2%
Gleason score Retraction 4639 13.5%
6 (ISUP 1) 12 (26.1%) 8 (23.5%) Coagulation 1196 350
7 (SUP 2/3) 22 (47.8%) 22 (64.7%) Clip 718 2.1%
>8 (ISUP 4/5) 12 (26.1%) 4 (11.8%)
2?;:;‘; score 0.19 peel/push) and supporting gestures (i.e., camera move, retraction)
(Table 3).
6 (ISUP 1) 4 (8,7%) 6 (17.6%) When comparing gesture proportions utilized in the NS, we
7 (ISUP 2/3) 32 (69.6%) 25 (73.5%) found that super-experts utilized more cold cut (median 18.0% vs
>8 (ISUP 4/5) 10 (21.7%) 3 (8.8%) 13.0%, p = 0.001, GLMM), more coagulation (median 3.5% vs 2.0%,
Pathological 0.65 p=0.005, GLMM), but less peel/push (median 27.0% vs 34.0%,
tumor stage p =0.024, GLMM) and less retraction adjustments (median 10.5%
pT2 22 (47.8%) 18 (52.9%) VS 16.0%, p= 0.001, GLMM) o
>pT3 24 (52.2%) 16 (47.1%) Notably, the reported EF recovery rate was similar among
p patients operated by super-experts (23/53, 43.4%) compared to
vg?j;aqtee 48 (34-54) 39 32-56) 0.35 patients operated by experts (11/27, 40.7%, p = 0.82, Chi-square
"9 test). The clinical features of these two groups of patients were
Treatment factors also similar (Supplementary Table 3).
Nerve- 0.49
sparing extent
Partial 14 (30.4%) 8 (23.5%) DISCUSSION
Full 32 (69.6%) 26 (76.5%) In this international bi-center study, we demonstrated (a) less use
- - - of hot cut and more use of peel/push were associated with a
Continuous variables were compared by Mann-Whitney U test and better chance of 1-year EF recovery; (b) surgical gesture sequences
reported as median (IQR). Categorical variables were compared by Chi- .
) L can successfully predict 1-year EF recovery after RARP; and (c)
square test or Fisher exact test as indicated. . . ) . .
ASA American Society of Anesthesiology physical status classification surgical gesture Se'eSt'_O”S were associated with SL}rgeon experi-
system, BMI body mass index, IQR interquartile range, SHIM Sexual Health ence levels. In addition, we had two teams independently
Inventory for Men, ISUP International Society of Urological Pathology, PSA confirmed the relationship between surgical gesture sequences
prostate specific antigen. and surgical outcomes. This dual-effort method has been rarely

conducted in the clinical literature, although it has been widely
advocated by the ML research community, for the purpose of
increasing robustness and confirming reproducibility of ML
findings'®'". These findings suggest that surgical gestures can
serve as a novel method to quantify surgical performance and
predict functional outcomes after RARP.

In this study we demonstrate an association between surgical
gestures and surgical outcomes. Our results indicate that less hot
cut in NS is associated with better potency recovery, especially in
the expert group (rather than super-experts). This is consistent
with prior studies which have reported that extensive energy use
in NS has a detrimental effect on the nearby neurovascular
bundles, thus impacting EF recovery®'?. More peel/push was
associated with better potency recovery, which was confirmed in
both the expert and super-expert groups. We believe peel/push is
the appropriate gesture for finding the correct dissection plane
during NS, which in turn can result in better outcomes. Of note,
the results also showed interactions between surgeon expertise
and gesture types—the same types of gestures utilized by
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Fig. 3 Comparison of surgical gestures in the nerve-sparing step between patients who recovered erectile function (EF) at 1 year and
patients who did not recover EF at 1 year (*p < 0.05, generalized linear mixed model). a The whole cohort; b expert group; ¢ super-
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surgeons with different experience levels can have different
impact on EF recovery. For example, in the expert group, more
spread, more hook, and less coagulation were associated with a
higher chance of EF recovery, while in the super-expert group, less
spread, less hook, and more coagulation were associated with a
higher chance of EF recovery. These findings indicate that not only
the types of gestures matter for outcomes, but also likely the
execution and context of gestures. In a recent study we found that
the efficacy and error rates of the same type of gestures were
different between novices, intermediates, and experts in the dry
lab setting’. Our next step will explore how these differences
impact surgical outcomes in live surgeries.

The same concept should be applicable to other surgical
procedures—by deconstructing surgery into gestures, the impact
of different gestures on surgical outcomes can be studied
quantifiably and objectively. Objectively assessing and quantifying
surgery has conventionally been challenging. A common solution
is to use objective assessment tools such as GEARS or DART to
evaluate surgical skills'*'°. Unfortunately, these tools suffer from
subjectivity and do not capture surgical data at its most granular
level'”. An alternative method of quantifying surgical performance
is by using automated performance metrics (APMs), such as the
kinematic data of instruments'®, APMs have been able to
distinguish expertise and predict patient outcomes'®?°. But one
drawback of APMs, which are largely measures of surgeon
efficiency, is that they are difficult to translate to actionable
feedback'®192, Surgical gestures have the potential to objectively
quantify surgery meanwhile provide actionable feedback for
trainees. These metrics evaluate surgeon performance differently
and contain related yet different information. Gestures compre-
hensively deconstruct surgical action in the context of instrument-
tissue interaction based on surgical videos; kinematics provide
summarized information about instrument movement based on
their coordinates, which may reflect instrument efficiency more.
These different assessment methods should complement each
other to draw a fuller picture of surgical performance.

Incorporating surgical gestures into ML models effectively
predicted postoperative 1-year EF recovery. To confirm the
reproducibility of our findings, two ML teams independently
constructed and evaluated two prediction models. Both teams
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confirmed that there were informative signals within the sequence
of surgical gestures that could predict EF recovery with moderate-
strong AUCs. Different surgical gesture types used in NS (e.g., the
proportion of hot cut) can partly explain how the models made the
predictions. In addition, ML models can also utilize the temporal
(sequential) information of surgical gestures (i.e, the order of
surgical gestures) which is difficult to capture by traditional
statistical methods. Of note, Team 1, who used a transformer-
based model, which exploited full-range temporal (sequence)
information (the entire sequence), achieved higher AUCs than
Team 2, who used a logistic regression, which exploited short-range
temporal information (splitting the entire sequence into nonover-
lapping segments of 20 gestures). This may indicate that not only
the type of gestures, but also the combination and ordering of
gestures together plays a role in determining patient outcomes.
Our previous study found that super-experts took a shorter time to
complete NS and had better bimanual dexterity compared to experts
during NS?2. Here, using the dissection gesture classification system,
we confirmed that super-experts were faster and more efficient (i.e,
utilized fewer gestures). When comparing the dissection gesture
proportion utilized by super-experts and experts, we found that
super-experts chose different gestures compared to experts. This
implies the potential use of surgical gestures to distinguish expertise.
As for clinical features, we found that EF-recovered patients
were younger and had better overall conditions, which are
consistent with previous publications?>?*, Using clinical features
alone to predict 1-year EF recovery achieved modest AUCs. Prior
publications suggested that the baseline potency status of
patients is a critical factor for EF recovery after RARP%2%, It is
worth noting that all cases included in this study had intact
preoperative EF and very high sexual health inventory for men
(SHIM) scores (median 24, on a scale of 25), which may have
mitigated the impact of patient factors on EF recovery prediction.
The findings in this study have important clinical implications. In
the absence of an ML-based predictive system, surgeons can only
receive feedback on patient outcomes such as erectile function
months to years postoperatively. This temporal misalignment
(between surgery to outcome) makes it difficult to assess how
their actions today will impact the patient down the line. With the
trained ML model presented in our paper, there is the possibility
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Fig. 4 Prediction model performance. Violin plots showing the performance of 1-year EF recovery prediction models.

for the provision of feedback immediately after surgery—which
may enable surgeons to quickly incorporate improvements into
their subsequent surgeries. In addition, our group has recently
constructed an ML algorithm to automate the task of gesture
recognition and classification®>. Combining with the ML model in
the current study, there is the potential to fully automate the
whole process—from surgical video annotation to patient out-
come prediction—directly predicting patient outcomes in real-
time. Our future work will be devoted to the interpretability of the
model, in order to pinpoint specific dissection gesture sequences
important for patient outcomes, so that more actionable feedback
can be provided for training surgeons.

The present study has a few limitations. First, the sample size was
relatively small, which can be expanded in the future. Nonetheless,
we included data from two institutions to address generalizability.
Second, we did not consider the context of the surgical gestures
exerted during NS. Future studies can attribute gestures to specific
anatomy (e.g., pedicles, lateral fascia, etc)) and study if the effects are
similar. Third, this study only used one type of surgical procedure (i.e.,
NS) and the findings remain to be validated in multiple procedures
across specialties. Finally, case complexity was not adjusted in the
current study due to the lack of an objective measurement of case
complexity. It remains to be a confounding factor for the associations
between surgical gestures and surgical outcomes.

In summary, we find that dissection gestures executed during
NS were predictive of EF recovery after RARP. Less use of hot cut
and more use of peel/push are associated with better chance of EF
recovery. ML models are constructed to accurately predict EF
recovery. In addition, we correlate surgical gestures with surgeon
experience. These findings implicate that deconstructing surgery
to the granularity of surgical gestures can serve as a novel method
to quantify surgical performance, which may potentially have a
wider application to various surgical specialties to predict surgical
outcomes and provide actionable feedback.

METHODS
Study cohort and design

Under institutional review boards approval from the University of
Southern California and St. Antonius-Hospital, men who
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underwent primary RARP from July 2016 to November 2018 from
these two international institutions were prospectively collected
and included in this study if the following were present: (a) an
intact baseline EF; (b) complete NS surgical video footage; and (c)
> 1-year postoperative follow-up. Bilateral non-nerve-sparing
cases were excluded. Written consents were obtained from all
patients included in this study. The primary outcome was 1-year
EF recovery after RARP. Intact baseline EF and 1-year EF recovery
were both defined as achieving erections firm enough for sexual
intercourse in >50% of attempts (score of >4 on the 2nd questions
of the SHIM) with or without phosphodiesterase type 5
inhibitors2®,

NS of included cases were performed by advanced surgical
fellows and faculty surgeons. Surgeons were separated into two
surgical experience levels based on previous publications: experts
who had performed 100-1999 robotic cases and super-experts
who had performed 2000 robotic cases?>?’.

Clinical data was obtained by chart review, consisting of both
patient and treatment factors, such as age, preoperative SHIM
score?®, ASA physical status?®, NS extent, etc. (Table 1). Follow-up
data at 12 months were obtained by chart review or telephone by
an independent research coordinator utilizing patient-reported
outcomes.

Video annotation

Bilateral NS video footage was manually reviewed. A total of 7
annotators (RM, IR, GD, AD, SC, MO, SR) received standardized
training and then independently labeled gesture sequences of
three training videos (365 gestures in total). The gesture
classification agreement rate among seven annotators was
evaluated by calculating the proportion of gesture labels agreed
upon among all 7 annotators in the total number of gestures. A
high inter-rater agreement rate was achieved (328/365, 89.9%),
and then 80 formal NS videos were split and annotated amongst
annotators.

Every discrete surgical movement in the video was labeled as a
certain gesture according to our classification system, which
includes nine active dissection gestures and 4 supporting gestures
(i.e, gestures intended to facilitate dissection gestures, e.g.,
retraction) (Fig. 1)°. When more than one instrument moved
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simultaneously, the movement of the dominant-hand instrument
of the console surgeon was annotated as the primary gesture.

Traditional statistical analysis

Mann-Whitney U- and chi-square tests were used to compare
continuous and categorical patient demographic data, respec-
tively. A multi-level mixed-effects model was used to evaluate the
relationship between 1-year EF recovery status (independent
variable) and the proportion of each type of gesture within a case
(dependent variable), while accounting for data clustering given
that multiple cases were done by the same surgeon. The
relationship between surgeon experience (independent variable)
and the proportion of each type of gesture within a case
(dependent variable) was also evaluated by the multi-level mixed-
effects model to identify dissection technique differences.
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Statistical analysis was conducted using IBM® SPSS v24, with
p < 0.05 (two-sided) considered as statistically significant.

Machine learning model construction

Gesture sequences (i.e., all gestures used in NS in the order of
time) and clinical features (i.e., all variables shown in Table 1) were
both used to construct prediction models for 1-year EF recovery.
To confirm the reproducibility of results, two ML teams
independently constructed prediction models using ML algo-
rithms and tested model performance.

ML Team 1 (JX, LT, LY) trained a multi-modal prediction model,
consisting of two subnetworks used to handle the entire gesture
sequences (a transformer-based network, i.e., IMV-LSTM3) and
clinical features (an FT Transformer, i.e., tabular network for the
clinical features®'). The networks were chosen due to their
attention mechanisms, which are modules that learn to calculate
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Table 3. Gesture number comparison between super-experts and
experts in nerve sparing.
Super-experts cases Experts cases p-value
N=53 N=27
Total gesture/case 317 (237-525) 530 (439-722) 0.01
Peel/push 86 (61-137) 162 (117-278) 0.03
Cold cut 64 (33-101) 100 (43-122) 0.20
Spread 13 (6-23) 18 (6-35) 0.75
Hook 9 (4-18) 13 (6-24) 0.70
Hot cut 1 (0-5) 1(0-11) 0.17
Two- 1(0-2) 1 (0-4) 0.37
hand spread
Coagulation 0 (0-0) 0 (0-0) 0.45
then cut
Pediclize 1 (0-4) 0 (0-5) 0.94
Burn 0 (0-0) 0 (0-0) 0.35
Camera move 45 (37-59) 92 (62-106) 0.02
Retraction 36 (25-52) 83 (64-110) <0.01
Coagulation 9 (3-29) 11 (7-22) 0.85
Clip 7 (5-11) 8 (6-16) 0.38
Variables were compared by Mann-Whitney U test and reported as median
(interquartile range).

the weighted sum of all encoded gesture representation vectors,
allowing the model to flexibly capture long-term dependencies
and focus its attention on the most relevant parts of the entire
dissection sequence. In the first phase of training, both subnet-
works were trained until convergence with stochastic gradient
descent. In the second phase, the representations extracted from
each network were concatenated and fed into a fully connected
layer to yield a single EF recovery prediction. The model was then
evaluated by a Monte-Carlo method with a total of 100 iterations.
In each iteration, we randomly selected 70 cases as the training
data and the remaining 10 cases as the hold-out set to
independently test the model performance. We report the area-
under-the-ROC-curve (AUC) and 95% confidence interval (Cl) of
the test set across the 100 iterations. To illustrate important
sequences for EF prediction, Team 1 extracted attention scores for
each gesture within a sequence and occlusion techniques were
used to extract directionality as an indicator for gesture sequences
that correlated positively or negatively with EF recovery.

ML Team 2 (DK, AA) constructed a logistic regression prediction
model for 1-year EF recovery. This model was chosen due to its
simplicity and to avoid memorizing the data (i.e., overfitting). When
considering the clinical features alone, the logistic regression model
directly mapped such features to 1-year EF recovery outcome.
When considering the gesture sequence alone, Team 2 employed a
weakly-supervised approach. This involved splitting the entire
gesture sequence into nonoverlapping, equally-sized segments
comprising 20 gestures (the number of gestures per segment was
empirically determined on a held-out set). During the training
phase of the model, each segment was mapped onto the
corresponding case-specific 1-year EF recovery outcome. For
example, if a case has 440 gestures, this would result in 440/
20 =22 subsequences of gestures. Each subsequence can equiva-
lently be thought of as a distinct sample in a database. With these
subsequences belonging to the same surgical case and a surgical
case being associated with a single target (i.e, EF recovery), we
used the case’s target for all such subsequences. This would result
in 22 input-output pairs consisting of input gesture subsequences
and output EF recovery values. We repeated this strategy for all
surgical cases in order to generate the complete database on which
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the logistic regression would be trained on. Such a setup is referred
to as ‘weakly-supervised learning’ and is often adopted in order to
expand the size of the dataset on which a model is trained. Note
that for gesture sequences whose length was not divisible by 20,
the tail-end of the sequence of gestures was dropped and thus not
presented to the model. This is because a logistic regression model
expects inputs of a consistent dimension. The model was trained
on the aforementioned database of gesture subsequences and EF
recovery values. Given a gesture subsequence (comprising 20
gestures), the model returned a single prediction reflecting
whether or not the patient will recover EF at 1 year. These 20
gestures do not capture the entire action performed by the
surgeon during the NS step. To capture all such action during
inference, as is common with weakly-supervised learning, we
aggregate all model predictions for subsequences that belong to
the same surgical case. We implemented a majority rule where the
most likely prediction across all case-specific samples was
considered as the final prediction for that particular surgical case.
For example, if 15/22 samples are associated with an EF recovery
prediction, then the model predicts this case will recover EF at 1
year. When considering both the dissection gesture sequence and
the clinical features, this team continued to employ the aforemen-
tioned weakly-supervised approach. Team 2 implemented the
same evaluation setup as Team 1 and reported AUC with 95% Cl
across the 100 iterations.

Reporting summary

Further information on research design is available in the Nature
Research Reporting Summary linked to this article.
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