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Abstract

In cap-dependent translation, the eukaryotic translation initiation factor 4A (eIF4A1)

is an mRNA helicase is involved in unwinding of the secondary structure, such as the

stem-loops, at the 50-leader regions of the key oncogenic mRNAs. This facilitates

ribosomal scanning and translation of the oncogenic mRNAs. eIF4A1 has a regulatory

role in translating many oncoproteins that have vital roles in several steps of metasta-

ses. Sridharan et. al. have discovered and provide a novel insight into how eIF4A1

can play a regulatory role in drug resistance by influencing the levels of pluripotent

Yamanaka transcription factors and ATP-binding cassette (ABC) transporters in

triple-negative breast cancer (TNBC) stem-like cells. These findings may help us

understand the molecular underpinnings of chemoresistance, especially in established

metastases in TNBC. Importantly, eIF4A1 may form a novel clinical target in meta-

static TNBC and the drug eFT226 from Effector Therapeutics targeting eIF4A1 is

already in phase1-2 clinical trial.
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Triple-negative breast cancer (TNBC), defined by the lack of estrogen

(ER) and progesterone receptors (PR), and the absence of human epi-

dermal growth factor receptor 2 (HER2) overexpression, often leads to

high-grade invasive ductal carcinoma (IDC) in the patients accounting

for one-fourth of all breast cancer deaths.1,2 Although the prevalence

of TNBC is only around 15%, the metastatic nature of TNBC results in

poor clinical outcome in majority of TNBC patients. Furthermore, the

median overall survival (OS) in metastatic TNBC (mTNBC) is around

18 months, whereas in the luminal breast cancer cases, expressing

ER/PR or HER2, it exceed 5 years. It affects more of the

premenopausal and young African American women. Following stan-

dard platinum/taxane/anthracycline neoadjuvant chemotherapy

(NACT) in TNBC patients, there is an initial response but followed by an

increased rate of relapse frequently accompanied by distant metastases

(TNBC paradox). The pathological complete response (pCR) to FDA-

approved targeted therapy against poly ADP ribose polymerase (PARP)

in TNBC patients is unsatisfactory with the development of resistance.

Relapse due to drug resistance or chemoresistance is a serious clinical

problem frequently encountered in the TNBC patients. One of the main

reasons for the relapse is attributed to the presence of a small subset of

cells in the tumor called breast cancer stem-like cells (BCSCs) or tumor-

initiating cells (TICs). BCSCs play a paramount role in tumor initiation,

progression, and metastasis.1-3 In terms of resistance to therapy, BCSCs

impart either constitutive or acquired resistance to chemotherapeutics

or radiotherapy, which leads to poor prognosis.4 After the administra-

tion of the standard-of-care NACT against TNBC, which relies on

actively dividing cells, the BCSCs survive the therapy along with some

stromal cells that constitutes the minimal residual disease (MRD).4,5

MRD is usually not detected by routine, clinical imaging techniques as

those rely on certain minimum number of cells to be detected. After
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cessation of the cytotoxic or radiotherapy, the BCSCs from MRD, under

appropriate stimulatory conditions, proliferate and undergo multi-

lineage differentiation program, replenishing the whole heterogeneous

tumor. Such relapsed tumors are highly aggressive and are usually less

responsive to the previously employed chemotherapy. They also likely

become cross-resistant to structurally and functionally unrelated che-

motherapeutics, resulting in multidrug-resistant (MDR) tumor cells. The

unresponsive or chemoresistant MDR tumors present a grave prognosis

as they are highly metastatic in nature. The intrinsic or acquired drug

resistance and tolerance by BCSCs may arise due to many virtues in

BCSCs. One of them is their ability to express a family of enzymes, such

as aldehyde dehydrogenases (ALDHs). ALDHs can detoxify the drugs

through metabolic conversion to less harmful or harmless products.

Energetic BCSCs, which are a subset of BCSCs, display a high ALDH

expression and demonstrate an upregulated capacity to proliferate and

grow in an anchorage-independent manner.6,7 The other virtue by

which the BCSCs display chemoresistance is through their expression

of the ATP-binding cassette (ABC) drug transporters on their plasma

membrane. ABC transporters are integral membrane proteins that bind

to the chemotherapeutic drugs in the cytoplasm of the tumor cells and

pump them out to the cell exterior. Indeed, the BCSCs constitutively

express ABCG2 or breast cancer resistance protein (BCRP) and serve as

one of the key markers that are employed to identify BCSCs.8 The

other two frequently encountered drug transporters in BCSCs are

ABCB1 or P-glycoprotein and ABCC1. These ABC transporters and

possibly other influx and efflux transporters that are co-expressed, co-

localized, and have a substantial overlap in their functions may impart

the ability to BCSCs to withstand inimical exposure to xenobiotics

including chemotherapeutic drugs. This points a compelling need to

develop more effective treatments for mTNBC patients and provides a

strong rationale to target the BCSC compartment of the tumor or co-

target BCSCs and bulk tumor cells (non-BCSCs) to overcome drug resis-

tance in mTNBC.

A recent comprehensive review discusses various molecular tar-

gets in BCSCs that could be potentially targeted in combination with

standard NACT. In particular, targeting various signaling receptors and

their downstream mediators or effectors that would reduce stemness

and overcome chemoresistance of BCSCs were described.1 Ideally, an

effective strategy would be to target the BCSCs that reduce their can-

cer stemness or plasticity. Targeting such mechanisms underlying can-

cer stemness or plasticity may lead to a durable therapy response.

Sridharan et al, have discovered a key vulnerable node in triple-

negative BCSCs; in that, they are dependent on eukaryotic translation

initiation factors (eIFs), especially eIF4A1.9 They implicated a possible

role for eIF4A1 in mediating drug resistance in their paclitaxel-

resistant TNBC model in vitro. eIF4A1 is an mRNA helicase that

unwinds the classical secondary structures located at the 50-leader

sequence of selected, vital oncogenic mRNAs10 (Figure 1). The

eIF4A1-facilitated translation of oncogenic mRNA repertoire leads to

the synthesis of many oncoproteins, such as survivin or BIRC5, mye-

loid cell leukemia 1(MCL1), cyclin D1, cyclin D3, mucin-1C (MUC-1C),

Rho kinase 1 (ROCK1), ADP ribosylation factor 6 (ARF6), and murine

double minute 2/human double minute 2 (MDM2/HDM2) and ADP

ribosylation factor 6 (AFR6), which are vital for tumor cell survival

both at primary and metastatic sites, proliferation, migration, local

invasion, metastasis, and chemoresistance.11-16

Survivin plays a key role as a functional checkpoint for both mito-

sis and apoptosis in cancer cells; survivin and MCL1 are involved in

chemoresistance as well.17 Cyclin D1 and cyclin D3 are also vital for

clonogenicity and chemoresistance of the BCSCs..10,18 Although

nuclear cyclin D1 is known for its role in cell proliferation,19 the cyto-

plasmic cyclin D1 has a novel, non-canonical role in cell migration.20,21

Cyclin D1 activates CDK4/6, a current target in the clinics with pal-

bociclib for chemoresistant forms of BC.22 ARF6 is one of the key pro-

teins required for cell adhesion, migration, and invasion of cancer

cells.23 ROCK1 promotes cell polarization and persistent directional

migration (chemotaxis).24,25 MDM2/HDM2, being an E3 ligase, can

ubiquitinate wild-type p53 and target it for degradation.26 In addition,

perturbation of the chemokine GPCR, CXCR4, signaling promotes BC

cell migration by regulating tumor cell adhesion events through provi-

sion of an optimal level of ROCK1 activity for effective cell migra-

tion.27 The chemokine receptor, CXCR4, has been demonstrated to

activate Gαi/mTORC1 axis, which is upstream of eIF4A to promote

spontaneous metastasis.28 Signaling from CXCR4 can also activate

ribosomal S6 kinases—p90 ribosomal S6 kinase (p90rsk - via ERK path-

way)29 and p70-S6 kinase (p70rsk - via mTORC1 pathway) (Figure 2).28

These two major kinases feed into eFF4A by phosphorylating its

endogenous inhibitor programmed cell death 4 (PDCD4) and targets it

for degradation. This frees up some eIF4A from the PDCD4-bound

pool, which now can be incorporated into the eIF4F complex to initi-

ate the cap-dependent translation of oncogenic mRNAs.30 Interest-

ingly, high level of expression of the chemokine receptor, CXCR4, in

TNBC specimens predicts poor clinical outcome.31

Through targeting this single mRNA helicase molecule, eIF4A1,

it seems, the translation of a whole gamut of aforementioned onco-

genic mRNAs can be inhibited. Sridharan et al, have demonstrated

that some of the Yamanaka factors or transcription factors that regu-

late pluripotency or stemness or plasticity, such as OCT4, SOX2, and

NANOG, were significantly downregulated when eIF4A1 was

F IGURE 1 Unwinding of 50-leader sequence of oncogenic mRNAs
by eIF4A1. eIF4A1 bound to the cap structure of the oncogenic
mRNAs will unwind the classical secondary stem-loop structures at
the 50-leader sequence of oncogenic mRNAs. This will facilitate the
facile scanning of the ribosome for the first AUG codon
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genetically ablated. These pluripotent transcription factors also

cause drug resisatnce. A similar outcome was obtained when eIF4A1

was pharmacologically targeted with the natural, small molecule

inhibitor, Rocaglamide A. This was the first report that highlights that

targeting of eIF4A could downregulate all three pluripotency tran-

scription factors that regulate BC stemness.9 Furthermore, the land-

mark finding is that when eIF4A1 is targeted by Rocaglamide A, the

protein level of ABCB1 or P-glycoprotein was significantly reduced.

This was without any direct targeting of any of the ABC drug trans-

porters. The mechanistic details as to how the targeting of eIF4A1

would reduce the BC stemness or diminish the protein levels of drug

transporters remains to be elucidated. The interesting feature with

targeting of eIF4A1 was equally effective in both therapy-naïve and

paclitaxel-resistant TNBC cells. Furthermore, knocking out of the

eIF4A1 in paclitaxel-resistant TNBC cells reduced the pre-existing

resistance to paclitaxel dramatically. Overall, this brings a salient fea-

ture in that targeting eIF4A1 controls both BC stemness as well as

drug resistance. Moreover, the stemness and chemoresistance are

highly related to each other.8,9 Importantly, the protein level of

eIF4A1 is present in similar amounts between BCSCs and non-

BCSCs (bulk tumor cells). So, when eIF4A1 is targeted, both cellular

populations will perish at the same time with less chance for MRD

and tumor relapse. Thus, eIF4A1 is an actionable novel molecular

target in the BCSC compartment, and controlling the helicase activ-

ity of eIF4A1 may lead to a favorable outcome in clinical

chemoresistant cases of TNBC. Currently, Effector Therapeutics

(NCT04092673) is recruiting patients for a phase I-II clinical trial for

targeting eIF4A1 with their synthetic small-molecule inhibitor

eFT226, which is somewhat analogous to Rocaglamide A.

As BCSCs play a role in drug tolerance and resistance, targeting

the plasticity may lead to a profound and more durable clinical

response. Targeting eIF4A1 seems a promising strategy to overcome

TNBC stemness and chemoresistance in in vitro systems. A combina-

torial treatment approach comprehensively targeting stem-like cells

may overcome the MDR encountered in the clinic and may result in a

better objective treatment response in mTNBC.
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