
Citation: Cannavo, A.; Carandina, A.;

Corbi, G.; Tobaldini, E.; Montano, N.;

Arosio, B. Are Skeletal Muscle

Changes during Prolonged Space

Flights Similar to Those Experienced

by Frail and Sarcopenic Older

Adults? Life 2022, 12, 2139. https://

doi.org/10.3390/life12122139

Academic Editors: Claudia Pacelli,

Francesca Ferranti and Marta del

Bianco

Received: 21 November 2022

Accepted: 15 December 2022

Published: 19 December 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

life

Review

Are Skeletal Muscle Changes during Prolonged Space Flights
Similar to Those Experienced by Frail and Sarcopenic
Older Adults?
Alessandro Cannavo 1 , Angelica Carandina 2 , Graziamaria Corbi 3 , Eleonora Tobaldini 2,4,
Nicola Montano 2,4 and Beatrice Arosio 2,*

1 Department of Translational Medical Sciences, Federico II University of Naples, 80131 Naples, Italy
2 Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy
3 Department of Medicine and Health Sciences, University of Molise, 86100 Campobasso, Italy
4 Department of Internal Medicine, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico,

20122 Milan, Italy
* Correspondence: beatrice.arosio@unimi.it; Tel.: +39-02-55035405

Abstract: Microgravity exposure causes several physiological and psychosocial alterations that
challenge astronauts’ health during space flight. Notably, many of these changes are mostly related
to physical inactivity influencing different functional systems and organ biology, in particular the
musculoskeletal system, dramatically resulting in aging-like phenotypes, such as those occurring in
older persons on Earth. In this sense, sarcopenia, a syndrome characterized by the loss in muscle mass
and strength due to skeletal muscle unloading, is undoubtedly one of the most critical aging-like
adverse effects of microgravity and a prevalent problem in the geriatric population, still awaiting
effective countermeasures. Therefore, there is an urgent demand to identify clinically relevant
biological markers and to underline molecular mechanisms behind these effects that are still poorly
understood. From this perspective, a lesson from Geroscience may help tailor interventions to
counteract the adverse effects of microgravity. For instance, decades of studies in the field have
demonstrated that in the older people, the clinical picture of sarcopenia remarkably overlaps (from
a clinical and biological point of view) with that of frailty, primarily when referred to the physical
function domain. Based on this premise, here we provide a deeper understanding of the biological
mechanisms of sarcopenia and frailty, which in aging are often considered together, and how these
converge with those observed in astronauts after space flight.

Keywords: sarcopenia; frailty; aging; space flight; microgravity

1. Introduction

After long-term space flight, astronauts present with health problems with multisys-
temic dysfunction [1–3]. In addition to microgravity, prolonged space missions involve
several environmental and operational stressors (e.g., decompression, dietary restrictions,
psychological factors related to high workload under pressure, operational and interper-
sonal distress, isolation, and confinement) that lead to an impairment in the physiological
reserve. Among the systems involved, the musculoskeletal system is one of the most
affected as the disuse and unloading of muscles in microgravity lead to significant atro-
phy [4]. Importantly, this form of microgravity-induced muscle atrophy is problematic
for its fast development and severity, with muscle mass diminished by up to 20% after a
2-week space flight or up to 30% after longer missions (3–6 months) [5]. In addition, similar
to the effects observed in the older people, this skeletal muscle atrophy may induce adverse
effects systemically impacting the cardiovascular and nervous systems [6,7]. For instance,
a common problem of orthostatic intolerance has been observed in both astronauts and
hospitalized aged patients [8–11]. Together, these problems can hamper or preclude astro-
nauts’ mission tasks, thus demanding more investigations aiming to identify the molecular
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mechanisms responsible for these microgravity-dependent effects along with clinically
relevant biological markers that will allow the design of tailored countermeasures. Of note,
the current knowledge around the aging process can be exploited better to understand most
of the mechanisms behind space flight-induced physiological modifications, as Nandu
Gowsmani [8] stated in the exciting review: “Geriatrics meets Spaceflight!”. In this regard,
studies around sarcopenia, a syndrome characterized by a loss of muscle mass and function
in older individuals, have been proposed as an analog of the muscle loss observed after
space travel. It is worth noting that sarcopenia is considered the biological substrate of
frailty, a condition of the increased vulnerability to stressors that typically leads to adverse
outcomes [8,12,13]. Hence, this review article will provide an update on the most recent
clinical and experimental data on frailty and sarcopenia in older adults. Further, we will
debate how the clinical and biological characteristics of this age-related syndrome are
comparable to the physiological changes observed in astronauts after space flight [14].

2. Frailty and Sarcopenia during Aging

In the last century, the amount of people reaching old age has grown exponentially,
with the number of people aged over 60 years old reaching almost 22% in 2050 [15]. Of
course, prolonged life expectancy is accompanied by an increased risk of chronic degenera-
tive diseases, frequently observed in older populations, with national healthcare systems
encountering this evolution with huge costs [16,17]. For many years, it has been postulated
that aging “per se” is the critical condition for the onset of many age-related diseases. How-
ever, the relationship between aging and age-related diseases is likely much more complex,
since aging is the major risk factor for these diseases, and common biological mechanisms
are shared among them [18]. It is believed that the deviation from healthy aging to the
disease’s onset depends on the rate of cellular and molecular processes implying that
aging and age-related diseases are two different trajectories of the same process [18]. This
determines that the courses of aging are different among individuals and that chronological
aging is very different from the biological one. Furthermore, the interactions between
genetic profile, environment, and lifestyle affect the individual’s ability to adapt to the
various changes occurring over time [19,20]. Overall, the physiological changes that portray
old people are the results of each individual’s adaptive strategies from a biological point
of view [21], balancing the physiological decline that occurs during aging. In this context,
critical events can immediately precipitate the response-ability, intended as the physio-
logical reserve of the individual, thus modifying the aging trajectory [22]. This higher
clinical complexity is well represented by the concept of frailty, a condition characterized
by the increased vulnerability to stressors and reduced homeostatic reserves [23]. From a
biological point of view, frailty is driven by the gradual, lifelong accumulation of molecular
and cellular defects that involve different organs and systems (e.g., skeletal muscle, brain,
respiratory, cardiovascular, and endocrine systems) [23]. Indeed, frailty is highly prevalent
in the general population (~15%) [24]. Under these perspectives, frailty is indicated as a
promising way of capturing the physiological decline, as well as the biological aging of
the individuals [25]. Although there is a general agreement on the theoretical definition
of frailty, the clinical identification is difficult due to pathophysiological complexity and
clinical manifestations that lead each person to experience different degrees of “fragiliza-
tion” [26–29]. Moreover, frailty is an operational definition used to describe a clinical
condition measured with different constructs, and for this reason, incorrect interpretations
are created [30]. There are multiple definitions to quantify frailty [30], and many opera-
tional approaches have been proposed over time [31], generating a relevant problem and
reducing the ability to predict adverse outcomes if we consider that the subtle fluctuations
of frailty are very difficult to detect [32]. Predominantly, the operational tools are based on
two models: the frailty index (FI) [33] and the frailty phenotype (FP) [34]. The FI mirrors
the biological age of the organism presenting the ratio of health deficits manifested by the
individual at the end of a comprehensive geriatric assessment [25,35], demonstrating its
applicability, even among long-lived people [36,37]. Furthermore, the FI is able to well
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capture the so-called “gender-paradox” [38], in which women have experienced greater
longevity than men [39], albeit this survival advantage is linked to higher rates of disability
and poor health during women’s lives [38].

In fact, physical decline is considered the cardinal sign of frailty [34,40], which mo-
tivates the fact that most frailty assessment tools are built on the FP [34]. Indeed, aging
is typically characterized by muscle wasting that progressively causes disability, loss of
muscle function and of self-sufficiency in older subjects. Muscle mass reaches its peak
between 30 and 40 years of age and starts declining after that [41], up to a reduction of
25–30% in the cross-sectional area of the skeletal muscle and 40% in muscle strength [42].
This phenomenon is called “sarcopenia”, a term coined by Rosenberg at the end of the
1980s [43,44] to describe the age-related loss of muscle mass and later revised to include
reduced muscle strength and/or function (i.e., dynapenia) [45–49]. At present, muscle
weakness is the critical factor in diagnosing people with sarcopenia and in clinical decision-
making [49]. As a result, sarcopenia recently received a specific International Classification
of Diseases, Tenth Revision (ICD-10) [50], making it a formally recognized disease [51].
The etiology of sarcopenia is multifactorial, involving many biological mechanisms [52,53],
such as the neuromuscular junction dysfunction, reduced satellite cell number/function,
intramuscular adipose tissue infiltration [54], as well as chronic inflammation [55].

Indeed, the involvement of neurological factors in the etiology of sarcopenia has been
previously reported [56]. It is noteworthy that the PF model shows substantial overlaps
with sarcopenia, since both cause a physically inactive lifestyle and fatigue [57]. Under
this perspective, it has been proposed that sarcopenia may be the biological substrate for
the development of physical frailty [57,58]. However, the causal relationship between
the two manifestations remains largely unknown. For this reason, recently it has been
coined the term ”physical frailty and sarcopenia” to merge the two conditions into a
single entity [59] in which sarcopenia is intended as the biological substratum of physical
frailty [57]. This concept is particularly applicable in older people whose ability to regulate
the musculoskeletal system and cope with stress lose much of their efficiency [60], causing
multisystem dysregulations.

To further complicate the picture, skeletal muscle can function as both an endocrine
and a paracrine organ through the secretion of mediators, such as myokines, that bidirec-
tionally link muscle to skeletal tissue [61,62].

3. Biological Mechanisms Underlying Sarcopenia and Frailty

The pathogenesis of frailty and sarcopenia in older people is suggested to encompass
multiple biological systems [23,63–65]. In this regard, these two syndromes share several
common risk factors, such as immune and inflammatory responses, hormonal dysregula-
tion, and oxidative stress [66]. In this complex scenario, the mitochondrial dysfunction in
skeletal myocytes is recognized as a major driver of sarcopenia. Moreover, the contribution
of the systemic processes (e.g., inflammation, hormones) to the muscle mitochondrial
dysfunction remains to be fully elucidated.

Given this, frailty and sarcopenia are considered highly interrelated [66,67]. This
section provides a brief overview of the current understanding of the key pathophysiologic
processes of each of these conditions.

3.1. Immune Activation and Inflammation

A persistent immune system activation and a heightened inflammatory state are un-
doubtedly the most prominent and documented typical hallmarks of advanced age and a
major contributor to several age-related pathologies, including frailty and sarcopenia [68,69].
This inflammatory process, identified with the term of “inflammaging” is often facilitated
by physiologic and pathophysiologic alterations of the immune system occurring with
aging, such as “immunosenescence”, an impairment of the functionality of immune cells
that contributes to an increased incidence and severity of infections in older subjects [70,71].
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In this context, a critical role is played by IL-6, a pro-inflammatory cytokine, whose age-
related increased levels are well-known predictors of several pathophysiologic processes,
including sarcopenia, physical disability, and motor performance decline even in well-
functioning older adults (both men and women) [72–80].

In addition, a report from Leng et al. [81] provided the first evidence of a link between
frailty and inflammation, demonstrating that community-dwelling older frail subjects
presented with higher serum IL-6 levels than their non-frail-counterparts. To date, several
studies have corroborated that this cytokine is directly related to frailty in community-
dwelling older adults and in hospitalized people [82–87] and its secretion appears to be
driven by an altered functionality of the immune cells (i.e., immunosenescence) in response
to a chronic infection. Indeed, as demonstrated by Leng and colleagues [88], the peripheral
blood mononuclear cells (PBMC) from older frail adults, after continuous exposure to
bacterial lipopolysaccharide (LPS), proliferate less and augment the release of this cytokine.
In line with these reports, Qu and coworkers [89] proved that stimulation with LPS of
monocytes isolated from frail older individuals resulted in a more robust expression of
genes encoding for chemokines and cytokines than their non-frail counterparts. Interest-
ingly, in another report, Schmaltz et al. [90] demonstrated that a chronic cytomegalovirus
(CMV) infection was significantly associated with physical frailty and that IL-6 enhances
the magnitude of such association. Finally, in a recent report from Kawamura et al. [91], it
has been demonstrated that the chronic exposure of mice to porphyromonas gingivalis (Pg)
LPS (LPS-Pg), one of the major pathogenic factors for periodontitis [92,93], increases muscle
atrophy participating to the development of sarcopenia. Of note, periodontitis is a chronic
inflammatory disorder triggered by Pg and other periodontal pathogens, that colonize
the periodontium and, thanks to its virulence factors (including LPS-Pg), stimulates the
production of inflammatory mediators and cytokines. Periodontal pathogens can destroy
the epithelium of the periodontal pocket, thus allowing the entry of noxious endotoxins
and exotoxins into the bloodstream, a process that leads to bacterial dissemination and
systemic infection, with a consequent rise in the inflammatory response.

Importantly, as suggested by several studies, the fate of muscles in older subjects
depends mostly by the severity and chronicity of inflammation [94,95]. In support of this
proposal, Greiwe et al. provided data in humans suggesting that systemic inflammation
(e.g., via the augmented circulating tumor necrosis factor alpha [TNF-α] levels) contributes
to age-associated muscle wasting. These data were corroborated by Crossland and col-
leagues [96], who demonstrated that the LPS infusion in rats induced a significant systemic
inflammatory response, accompanied with an increased expression of IL-6 and TNF-α in
skeletal muscle, causing the loss of muscle mass and strength. In a human perspective, a
recent report by Kamper and colleagues [97], using data from the Copenhagen Sarcopenia
Study [98], observed that, during aging, the systemic levels of TNF-α and the C-reactive
protein (CRP) increase especially in more physically frail older subjects, thus supporting
the association between systemic inflammation and poor physical function. Of note, TNF-α
plays a crucial role in the pathogenesis of sarcopenia and frailty, since it directly upregulates
the nuclear factor kappa-light-chain-enhancer of the activated B cells (NF-κB) pathway,
including the ubiquitin-proteasome system, thus leading to to the loss of skeletal muscle
proteins and myofibrils degradation [99,100] and myogenesis inhibition [101].

3.2. Role of Myokines

Skeletal muscles secrete many cytokines and factors called “myokines” with specific
autocrine regulatory activities, including effects on the muscle metabolism, growth, and
functionality, with effects also on inflammation and myogenesis [102–104]. Interestingly,
such myokines may also systemically elicit paracrine functions on distant organs and
tissues [97]. To date, several myokines have been identified, and some (described in this
section) are relevant for their role in the pathogenesis of sarcopenia and frailty.
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3.2.1. Insulin-Like Growth Factor 1 (IGF-1)

IGF-1 has a robust stimulatory effect on protein synthesis in muscle cells. Therefore,
this factor is a well-recognized regulator of the regenerative capacity of muscle fibers.
Indeed, IGF-1 stimulates growth and proliferation and controls the cell differentiation
in muscles, bone, and cartilage tissue. Lower serum levels of this myokine have been
proposed as an index of frailty and sarcopenia in older adults [105,106]. For instance,
lower serum IGF-1 levels are related to the diminished physical performance and handgrip
strength [107,108], high risk of disability [109,110], and are independently related to the
reduction of skeletal muscle mass [106] in older adults.

3.2.2. Myostatin

Myostatin, also known as the growth differentiation factor 8 (GDF8), is a muscle-
derived protein and member of the transforming growth factor (TGF)-β superfamily. As
IGF-1, myostatin is a myokine regulating skeletal muscle metabolism and muscle mass [111].
However, in contrast to IGF-1, myostatin negatively impacts skeletal muscle mass, enhanc-
ing proteolysis and inhibiting the protein synthesis [111]. In addition, myostatin has been
demonstrated to partake in the process of skeletal muscle wasting, typical of aging. For
these reasons, myostatin has been investigated for its potential involvement in sarcopenia
and frailty [22,112,113]. In this regard, several studies (both clinical and experimental)
have reported an association between high myostatin levels and low muscle mass [114,115].
However, the relationship of myostatin with these conditions remains highly debated
and inconclusive [116]. Indeed, opposite findings [116–118] or a lack of association [119]
between circulating myostatin and frailty/sarcopenia conditions have been reported. In
addition, the activities and levels of myostatin appear to be differently modulated in
older women and men. For instance, Bergen 3rd et al. [120], demonstrated that myostatin
contributes to the higher prevalence of sarcopenia only in women. Conversely, Chew
and colleagues [121], despite confirming the presence of such sex differences, showed
that myostatin in men is a potential biomarker for coexistent sarcopenia and frailty in
community-dwelling older adults. Moreover, myostatin changes are also dependent on age
and comorbidities [118,122], thus claiming for further studies that define better the specific
association between the levels of myostatin and frailty/sarcopenia-parameters.

3.2.3. Irisin

Irisin, a peptide of 112-amino acids, is proteolytically cleaved and secreted from
the fibronectin type III domain-containing protein 5 (FNDC5) [123]. Irisin is considered
a vital myokine, primarily synthesized and secreted by the skeletal muscle following
mild physical activity, and its levels appear to be associated with increased muscle mass
and strength [124,125]. Indeed, at molecular levels, irisin is a positive regulator of the
IGF-1 and mTOR pathways, enhancing the muscle protein synthesis [125,126]. Moreover,
studies demonstrated that the irisin administration to human skeletal muscle cells in-
creased IGF-1 and decreased the myostatin mRNA levels [125,127]. Importantly, irisin
exerts anti-inflammatory effects and positively impacts the myotube glucose homeosta-
sis [102,103]. Accordingly, irisin is considered a promising biomarker of sarcopenia and
frailty [128,129] since its levels are markedly reduced during aging, and as demonstrated by
Chang et al. [128], low circulating irisin levels are a sensitive marker for muscle weakness
and atrophy.

3.2.4. Follistatin

Follistatin is an endogenous inhibitor of the transforming growth factor (TGF)-β
superfamily ligands, including myostatin, and thereby promotes the skeletal muscle hyper-
trophy [130–132]. Therefore, follistatin has been proposed as a potential therapeutic against
muscle atrophy [133–135]. Further, despite the controversy, an association with frailty and
sarcopenia has been provided in older adults for follistatin [119,136,137].
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3.3. Vitamin D

Nutritional factors play a significant role in the pathogenesis of frailty and sarcope-
nia [138]. Among these factors, Vitamin D and its deficiency have been demonstrated to
affect the musculoskeletal function significantly [139]. Vitamin D is a fat-soluble vitamin
primarily synthesized in the skin upon sunlight exposure (ultraviolet B rays [UVB]), and
about only 10% is supplied by dietary intake [138]. Importantly, Bischoff-Ferrari et al. [140]
demonstrated that aging was associated with the decreased intracellular vitamin D receptor
(VDR) expression in human skeletal muscle tissue, and this was paired with a higher
prevalence of a vitamin D deficiency. In addition, several observational studies provided
an association between low vitamin D and sarcopenia and physical performance, in older
adults [141,142], suggesting the involvement of the vitamin D/VDR system in muscle aging.
Of note, the results from a study by Yu and colleagues [143], supported this thesis, demon-
strating that a vitamin D deficiency can increase the incidence of age-related sarcopenia, by
inducing oxidative stress, skeletal muscle senescence, and the senescence-associated secre-
tory phenotype. Moreover, in a recent study [144], Parsanathan and colleagues showed
that the co-supplementation of vitamin D and the antioxidant amino acid L-cysteine, in
vitamin D-deficient mice, exerted beneficial effects on the skeletal muscle, improving the
expression of the myogenic biomarkers and reducing the expression of the markers for
musculoskeletal disorders, such as muscular dystrophy. Therefore, several randomized
controlled trials have investigated the critical physiological role of this system within the
muscle, demonstrating the beneficial effects of vitamin D supplementation on muscle
function [145–148].

3.4. Oxidative Stress

It is widely accepted that a direct relationship between oxidative stress and aging
exists [149,150]. Accordingly, in 1956 Denham Harman proposed, for the first time, the
free radical theory of aging, where oxidatively changed cellular components progressively
accumulate in the cells during the organisms’ lifespan, leading to a decline of the cellular
functions [151]. This thesis has been corroborated by decades of studies in both animals
and humans, and, importantly, among the tissues negatively affected by oxidative stress,
the skeletal muscle is one of the most important, especially in older persons. Indeed, as age
progresses, muscles exhibit increased levels of reactive oxygen species (ROS) and reactive
nitrogen species (RNS) that, in turn, causes the oxidative damage of the biomolecules
(e.g., oxidation of lipids, protein, and DNA; protein carbonylation; inhibition of the mus-
cle cell differentiation; breakdown of the myogenic proteins, and damaged autophagy
process) [152–155]. In addition, the accumulation of ROS with aging induces apoptotic
signaling cascades [150,156,157], leading to age-related muscle loss [158,159]. Mitochondria
are a primary source of ROS in skeletal muscle, and mitochondrial DNA (mtDNA) is espe-
cially sensitive to oxidative DNA damage [160,161]. Of note, mtDNA damage (i.e., deletion,
mutation frequency, copy number) increases in human skeletal muscle with age and is
associated with impaired physical performance and skeletal muscle atrophy [161–168].
Importantly, it was demonstrated how antioxidants, ROS, and antioxidant enzymes control,
in a positive or negative manner, inflammation and macrophage polarization [169–172]
a process that, in skeletal muscle, is particularly relevant since it regulates both tissue
regeneration (after injury) and infection resolution [173]. Together, these mechanisms
seemingly underlie the pathogenesis of sarcopenia and frailty [149,150,174–178]. Indeed, in
2007, Howard and colleagues [179] provided one of the first proofs of the importance of
oxidative protein damage measurement in predicting muscle weakening in the elderly. In
line with these data, in a cross-sectional study performed on older women, these authors
found that protein carbonylation was independently associated with low grip strength
in frail women, compared to their non-frail counterparts. Subsequently, Serviddio and
coworkers [180] provided data about a direct association between oxidative imbalance
and frailty. In detail, these authors found raised levels of oxidized glutathione (GSSG),
malondialdehyde (MDA), and 4-hydroxy-2,3-nonenal-(4-HNE) protein adducts in the
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plasma of frail elderly patients (aged 65 and older), compared to non-frail patients. Analo-
gously, Bellanti et al. [181] demonstrated that significantly greater blood GSSG and plasma
MDA/HNE protein adducts were observed in sarcopenic, rather than in non-sarcopenic,
elderly patients. For their part, Bernabeu-Wittel and colleagues [182] evaluated the asso-
ciation between oxidative stress marker levels (total antioxidant capacity to the reactive
oxygen species [TAC-ROS] and superoxide dismutase [SOD]) with sarcopenia and/or
frailty, discovering that these markers were enhanced in both the conditions and when
these coexisted.

Despite several biological mechanisms that have been highlighted, further studies are
needed to better define their causal relationship with frailty and the sarcopenia parameters
and to identify new possible therapeutic targets.

4. Impact of Space Flight on Astronauts’ Skeletal Muscle Health

Microgravity associated with space flight, especially following prolonged missions,
results in the substantial deconditioning of the musculoskeletal system [183–188] that
can be exacerbated due to a negative energy balance [185,189–191] and by the mission
duration [187,188]. Consequently, a substantial muscle mass reduction (atrophy) and an
impairment of muscle strength and endurance capacity represent a serious medical problem
for astronauts upon their return to Earth or during a long-duration space flight. In this
sense there are many parallels between the effects of aging and space flight on the skeletal
muscle function and structure that can be drawn.

4.1. Clinical Manifestation of Sarcopenia/Frailty-like Phenotype in Astronauts

The term sarcopenia (from Greek: “sarx” for flesh and “penia” for loss) was defined
in 1989 by Irwin Rosenberg to generally describe an age-related loss of muscle mass and
function [44]. However, it is clinically essential to specify that sarcopenia also alters the
physical performance and function. Indeed, this condition is associated with frailty, a
condition characterized by the reduced functional ability and increased postural instability,
disability, and mortality [192]. For this reason, sarcopenia is considered a clinical analog for
microgravity-induced muscle deconditioning observed in astronauts during short and long-
term missions [193,194]. Importantly, due to disuse in microgravity and limited movement
range, astronauts undergo well-characterized and described effects related to muscle tissue
(wasting and/or atrophy) and the skeletal system (accelerated bone resorption) [179].
Atrophy is the main skeletal muscle feature associated with microgravity and is manifested
as both losses of muscle size/ volume and reduction in the myofiber size [180].

Indeed, in astronauts, the antigravity muscles (e.g., soleus, gastrocnemius, quadriceps,
and muscles of the back), that are typically used on Earth, are no longer utilized in the
absence of gravity, thereby they remain in a typical state of unloading and disuse [195–200].
These changes induce alterations in the size of the muscle fibers, resting and active force,
contractile velocity, and function of the neuromuscular junctions, causing substantial
physical deficits, such as fatigue and decreased speed [8,201,202]. Indeed, the clinical and
biological manifestations that astronauts manifest during and after space flight seem to
resemble the clinical and biological characteristics of physical frailty experienced by older
people [60,203,204].

It is well known that aging alters the skeletal muscle homeostasis, contributing to an
imbalance between the muscle protein anabolic and catabolic pathways and leads to an
overall loss of skeletal muscle [205]. For instance, muscle mass reaches its peak between
30 and 40 years of age and starts declining thereafter [41], with up to 50% of the mass
being lost by the 8th decade of life [206]. This decline can rapidly progress in people less
physically active and in acute or chronic conditions [207]. From a biological point of view,
the muscle loss experienced by sarcopenic older patients is driven by the decline in the
number of neuromuscular junctions, leading to a loss of size and number of muscle fibers
(predominately type II) [208].
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In addition, the instability of the neuromuscular junctions, together with the altered
production of calcium during the excitation-contraction coupling of the muscle, appear
to be key factors in the decline of muscle strength [209] and force production [210]. More-
over, muscle capillarization is critical in reducing the exercise capacity and sarcopenia
onset [211], and in regulating the skeletal muscle maintenance [212,213]. Similarly, the
interplay between the nervous system and skeletal muscles is a key factor in the pathogen-
esis of muscular atrophy, induced by prolonged space flight [202,214–216]. Indeed, much
evidence indicates that the presynaptic modulation of motoneurons, from the spinal cord
to the neuromuscular junction, may contribute to muscle atrophy associated with space
flight [201].

Since muscle mass accounts for up to 60 percent of the body mass, pathological
alterations in this tissue could have enormous consequences for astronauts. It has been
shown that muscle fibers rapidly adapt to the space environment in terms of size, strength,
metabolic properties, and vascularization [217]. The level of adaptation and recovery to
the microgravity environment depends on the mission duration and on inter-individual
differences. Pre-flight markers may be used to identify crewmembers at the most significant
risk of an altered response to microgravity and unloading, and therefore to indicate the
need for preventative measures [218].

Furthermore, sex/gender differences may impact the ability to recover and the ade-
quacy of the metabolic response after a space flight. For instance, previous studies showed
that female astronauts take longer to restore their metabolic balance during recovery [219].

Significantly, this effect may depend on the alteration in sex hormones (i.e., estrogen)
which, concerning women, are grossly understudied in both space missions and simu-
lated microgravity [220]. Indeed, previous studies have demonstrated that during the
menopausal and post-menopausal periods, women present with an increased progressive
muscle degeneration (i.e., decrease in the quality and muscle function) than their male coun-
terparts, and this effect has been partly related to the reduction in estrogen levels [221]. In
this regard, studies in rats that underwent space flight (7–14 days) demonstrated a decrease
in oxytocin levels [222]. This hormone attenuates the hypothalamic–pituitary–adrenal
(HPA) axes, dampens the stress responses in women, and indirectly correlates with the
estrogens levels, since this sex hormone may increase the expression of oxytocin [223]. In
addition, it should be kept in mind that other factors, such as impaired nutrition, hormonal
dysregulations, and psychological stress, can trigger bone and muscle loss in older people
and astronauts [180], accounting for the fact that there are very different aging phenotypes
and different outcomes after the space flight [218,224].

Astronauts are subject to environmental stressors, such as isolation, a heavy workload,
high noise and vibrations, exposure to radiation and toxins, limited nutrition, and the
use of recycled air and water. These stressors could reduce their physiological reserve by
altering their homeostasis and impacting the skeletal muscle function [201,202,225], as well
as they can alter the biological mechanisms underlying aging [226,227]. There is growing
evidence that the risk of frailty in older adults is strongly associated with an inadequate
intake of food [228]. Indeed, a low dietary intake is one of the most critical factors of
malnutrition responsible for the functional decline, physical frailty, sarcopenia, disability,
and loss of independence [229,230]. In this regard, an inadequate caloric intake and altered
protein content are also described in long-duration space flights affecting the astronauts’
metabolism and positive attitude [231].

Since some causal factors of sarcopenia, in the elderly population, are superimposable
to the conditions to which the astronauts are exposed (e.g., food restriction, inactivity, social
isolation), the assessment of pathophysiological mechanisms leading to muscle atrophy
during space flight, could bring new insight on sarcopenia and frailty development.

4.2. Pathophysiological Mechanisms Activated in the Muscle by Prolonged Space Missions

As discussed above, there is a keen interest in understanding the molecular mecha-
nisms responsible for the muscle atrophy observed in astronauts during and after space
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missions (Figure 1). Notably, previous studies on rodents have demonstrated that most of
the effects on the muscle structure and function, induced by space, are qualitatively similar
to those found in humans, especially with aging [217,232–236]. The results of both short-
and long-term missions showed that muscle undergoes a considerable mass reduction
(about 20% in humans and 30–40% in rodents), compared to the ground controls. These
effects are associated with an extensive gene expression rearrangement at molecular levels.
For instance, Allen et al. [237] analyzed the expression of key genes involved in numerous
cellular processes, including the cytoskeletal and mitochondrial functions, metabolism, cell
cycle, and apoptosis, in the gastrocnemius of mice (space flight group) that were kept flow-
ing on the mid-deck of the space shuttle Endeavour (STS-108/UF-1) for 11 days and 19 h.
The authors’ analysis demonstrated that the mRNA levels of most of the genes analyzed
were significantly altered by the space flight, compared to the controls (normal gravity). Im-
portantly, these authors found a significant alteration in the PhosphatidylInositol 3-Kinase
(PI3K)/Akt/mTOR pathway, which, as discussed above, represents critical regulator path-
ways of protein synthesis. In detail, an upregulation of the expressed genes involved in
inhibiting this pathway, including the gene encoding for the PI3-kinase regulatory subunit
p85α, which negatively impacts PI3-kinase signaling, has been observed. In addition, a
robust increase in myostatin mRNA levels was found, which, along with the inhibition
of the PI3K/Akt/mTOR pathway, supports the idea that space flight causes a molecular
shift towards mechanisms that enhance protein degradation. In line with these findings,
the authors observed a decrease in the mRNA levels of the myostatin binding/inhibiting
protein gene follistatin-like 3 (FSTL3), underling a negative impact on the skeletal muscle
mass. Finally, a significantly altered expression of mRNAs encoding for the TNF-α-induced
protein 2 and Nfatc3 was observed. In line with these data, Lalani and colleagues [238]
demonstrated that muscle atrophy in rats undergoing a 17-day space flight (NASA STS-90
NeuroLab) was associated with the upregulation of myostatin and the decreased IGF-II
levels. Interestingly, these alterations were normalized upon restoration of normal gravity
and caging conditions. Sandonà et al. [183] performed a long-term (91-days) experiment on
mice (mice drawer system [MDS] program, sponsored by the Italian Space Agency onboard
the International Space Station) demonstrating that this long-term exposure to microgravity
is responsible for an impaired muscle mass associated with a reduced IGF-1 expression.
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Along with myokines, many reports have demonstrated that a dysregulation in the
immune system function occurs in rodents and humans immediately following short-
and long-duration space flights with a shift toward inflammaging, which, as seen in the
previous paragraph, is one of the main factors promoting frailty and sarcopenia [239].
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Notably, such an alteration is mediated both by microgravity or by ionizing radiations [240]
and mainly consists in changes in the leukocyte distribution, in the impaired function
of immune cells, and in altered cytokine and inflammatory mediators’ production and
release [239,241,242]. Moreover, studies in rodents have clearly demonstrated that this
immune system dysregulation is responsible for an impaired ability of the host to respond to
infections [243]. Indeed, astronauts face an increased risk for microbial infections because of
the altered microbiome (dysbiosis) [244]. For instance, studies have reported that astronauts
exhibit increased gingival inflammation and periodontitis [245]. Further, the latent viral
reactivation has been commonly reported during space flight and represent a manifestation
of the immune system dysregulation [246,247].

Finally, oxidative stress and the consequent damage related to the excessive production
of ROS and RNS by the skeletal muscle, have been found in astronauts during space flight,
that are responsible for the altered structural and functional integrities of this tissue [248].

Following space flight, a substantial deconditioning of the musculoskeletal system
with consequent muscle atrophy is observed in astronauts. This effect is dependent on
multiple factors, and among these, a reduction (GREEN arrow) or an increase (RED ar-
row) of the crucial factors involved in protein synthesis, degradation, and oxidative and
nitrosative stress damage, have been described. In detail, it has been demonstrated that
a reduction in the insulin growth factor (IGF-I or IGF-II)/mTOR (mechanistic target of
rapamycin) system resulted in a reduction of the protein synthesis. Similarly, a decrease
in follistatin-like 3 (FSTL3) with a consequent increase in myostatin levels, leads to the
augmented protein degradation via the activation of the ubiquitin-proteasome system
and to a parallel inhibition of the protein synthesis. Similarly, an increased concentration
of pro-inflammatory cytokines, such as interleukin-6 (IL-6) and tumor necrosis factor-α
(TNF-α), also stimulated by the microbial infections, resulted in the increased protein
degradation. In addition to these mechanisms, a vitamin D deficiency is responsible for
an increased mitochondrial dysfunction with a consequent increase in the reactive oxygen
species (ROS), including superoxide anion (O2

·−), hydrogen peroxide (H2O2) and hydroxyl
radical (·HO). In addition, O2

·− can interact with nitric oxide radical (NO·), leading to the
generation of the reactive nitrogen species (RNS) (e.g., peroxynitrite [ONOO−]). ROS and
RNS cause oxidative damage to biomolecules (e.g., protein and DNA) with harmful effects
on the skeletal muscle cells.

5. Potential Countermeasures

Based on current observations, aging-like physical frailty and sarcopenia conditions
are observed in astronauts during and after space flight. Therefore, adequate countermea-
sures aiming at counteracting the adverse effects of space flight on astronauts can take
into account the current strategies used to fight sarcopenia and frailty in older people. In
this regard, physical activity and/or nutritional interventions are undoubtedly consid-
ered the forefront strategies to counteract muscle atrophy and bone mineral density in
both older adults and astronauts [249]. In general, exercise training is mainly associated
with systemically beneficial effects, positively affecting the skeletal muscles and other tis-
sues/organs [250–254]. Among the effects reported on muscles, exercise has been shown to
attenuate the imbalance between the muscle protein degradation and synthesis, reduce the
oxidative damage and mitochondrial dysfunction, decrease inflammation, and stabilize the
autophagy processes [252,253]. Interestingly, it has been described that a multicomponent
intervention, based on physical activity with technological support and nutritional coun-
selling, is associated with a reduction in the incidence of physical frailty and sarcopenia in
older subjects [255].

In this context, exercise remains the primary countermeasure to mitigate the impair-
ment in the physical performance that astronauts experience [256–258]. Indeed, recent
studies have demonstrated that astronauts, using modern on-board resistive exercise de-
vices, appear to be less susceptible to muscle changes [224,259]. However, despite the
beneficial effects elicited by exercise training in astronauts, considerable muscle loss is still
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observed, thus demanding a period of rehabilitation upon their return to Earth [260,261]. In
older adults, the effects of exercise are highly variable and mostly depend on the response
to exercise (which is low in most subjects) and on the patients’ mobility in general [262].
For example, after resistance-type exercise training, the size increment of type II muscle
fibers was mainly driven by individuals who had a higher muscle fiber capillarization at
the baseline [263].

Therefore, other therapeutic approaches have been tested and implemented to coun-
teract the effects of aging or space flight on skeletal muscle. In this regard, nutritional
supplement to prevent a low vitamin D status, seemingly associated with muscle loss
and impaired performance, has been adopted as an additional intervention and has been
tested both in the geriatric population and in space flight studies. However, whether
vitamin D supplementation in astronauts or old sarcopenic patients is beneficial or not
in counteracting muscle atrophy, remains still controversial. Indeed, specific unresolved
issues, including the complicated mechanisms underlying vitamin D activities on muscle
tissue [264], the duration and dose of vitamin D supplementation need to be further inves-
tigated [148,265]. Finally, new drug candidates may find an ideal positioning, particularly
among people that are non-responsive to lifestyle modifications because of the biological,
clinical, and/or social factors [266,267]. Among these, myostatin antagonists (i.e., anti-
bodies) have been extensively investigated under various clinical conditions associated
with muscle loss and functional impairment. For instance, the anti-myostatin antibody
(ATA 842) administration in elderly mice has been proven to increase muscle mass and
strength [268]. In addition, in a multicenter study conducted in older people, it has been
shown that myostatin antibody (LY2495655) improved the functional muscle power [269].
Of note, several myostatin pathway inhibitors are investigated in clinical trials for their
potential impact on muscle atrophy [249], raising the possibility of using this therapeutic in-
tervention also in astronauts and cosmonauts, to counteract long-term space flight-induced
muscle alteration. In this sense, a study by Smith and coworkers [249] represents the
first step towards implementing these drugs in astronauts, as they provide data in mice
showing that the anti-myostatin antibody YN41 prevents space flight-induced atrophy.
From these perspectives, it seems evident that combining pharmacological interventions
with physical activity and nutritional support could be the gold standard to counter these
adverse conditions both in space and on Earth.

6. Perspectives and Conclusions

This review article summarized the current knowledge regarding how space flight
affects the physical function of astronauts by altering skeletal muscle cells and function.
The picture coming out from this analysis is that part of the harmful mechanisms activated
in the muscles and systemically in astronauts are parallel to those observed in older people
(see Paragraph 3 and Figure 2). Of course, further investigations on space flight induced
effects and the recovery phase of astronauts are needed to clarify the main determinants
and causes of the development of these aging-like pathological conditions with applicative
consequences also in the geriatric field. In light of this premise, it is worth stressing that the
convergence of Geroscience and gravitational/space research can significantly advance our
understanding of human physiology and the biological mechanisms involved in adapting
to stress.

Increased inflammation, reactive oxygen species (ROS)/R reactive nitrogen species
(RNS), and the altered myokines expression have been found in astronauts and older
people and are responsible for the altered structural and functional integrity of the skeletal
muscle. Adequate countermeasures aiming at counteracting these adverse effects include
exercise training, vitamin D, and multi-nutrient supplementation, have been shown to
reduce oxidative damage and inflammation and stabilize the myokine expression.
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