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Abstract: Human pressure due to industrial and agricultural development has resulted in a biodi-
versity crisis. Environmental pollution is one of its drivers, including contamination of wildlife by
chemicals emitted into the air, soil, and water. Chemicals released into the environment, even at
low concentrations, may pose a negative effect on organisms. These chemicals might modify the
synthesis, metabolism, and mode of action of hormones. This can lead to failures in reproduction,
growth, and development of organisms potentially impacting their fitness. In this review, we focused
on assessing the current knowledge on concentrations and possible effects of endocrine disruptor
chemicals (metals, persistent organic pollutants, and others) in studies performed in South America,
with findings at reproductive and thyroid levels. Our literature search revealed that most studies
have focused on measuring the concentrations of compounds that act as endocrine disruptors in
animals at the systemic level. However, few studies have evaluated the effects at a reproductive
level, while information at thyroid disorders is scarce. Most studies have been conducted in fish
by researchers from Brazil, Argentina, Chile, and Colombia. Comparison of results across studies
is difficult due to the lack of standardization of units in the reported data. Future studies should
prioritize research on emergent contaminants, evaluate effects on native species and the use of current
available methods such as the OMICs. Additionally, there is a primary focus on organisms related
to aquatic environments, and those inhabiting terrestrial environments are scarce or nonexistent.
Finally, we highlight a lack of funding at a national level in the reviewed topic that may influence the
observed low scientific productivity in several countries, which is often negatively associated with
their percentage of protected areas.

Keywords: South America; wildlife species; endocrine disruptors; trace elements; organic compounds;
metals; ecotoxicology
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1. Introduction

Chemical pollutants have deleterious effects on biodiversity, but several effects are not
well-known by society and relevant stakeholders (e.g., policy makers, non-governmental
organizations). This phenomenon may be due to the sublethal and chronic effects of many
types of chemical pollution, including those denominated endocrine disrupting chemicals
(EDCs), which may cause effects through infinitesimally low levels of exposure [1] and
with impacts determined many years after the first contamination event including trans-
generational effects [2]. South America is a region with increasing population size and
urbanized area [3]. This constant growth in population results in an increasing deforestation,
agricultural and industrial expansion, along with waste emission [4–7]. In consequence,
there is an increasing use and release of chemicals with unknown impacts on natural
ecosystems [8–12]. Therefore, there is a need to quantify and monitor the extent and
consequences of this contamination.

Loss of biodiversity has been linked to an increase in environmental pollution [13–15],
where chemicals emitted by industrial processes, pesticide use, mining and waste discharge
are of main concern [16]. Since the last century, over 80,000 chemical compounds have
been synthesized, and intentionally or unintentionally released to the environment [17].
Thus, wildlife and humans are exposed to these chemicals through ingestion, dermal
contact, respiration, and maternal exposure [18–23]. Recent research has questioned
the capacity of protected areas to safeguard biodiversity from the effects of chemical
pollution [9,24,25], recognizing the need to monitor and control the potential negative
effects of these chemicals in wild animals and people. Therefore, we need to quantify
and monitor the extent and consequences of this contamination in natural ecosystems.
According to The Endocrine Disruption Exchange (TEDX; http://endocrinedisruption.org
accessed on 01 January 2021), about 1000 chemicals are recorded as EDCs (e.g., plastics,
personal care products, pesticides, metals, biogenic and industrial chemicals) [26]. Most
of these chemicals are released as a combination of EDCs into the environment every day
and can negatively affect and disrupt the endocrine system of wildlife species [27–30].
In addition, new chemicals are manufactured and enter the market, without quantify-
ing their possible effects on wildlife and/or humans [20,31,32]. EDCs category includes
persistent organic compounds (e.g., organochlorine pesticides, polychlorinated biphenyls
(PCBs), polybrominated biphenyls (PBBs), brominated flame retardants (PBDEs), diox-
ins), detergents, plasticizers, and plastic additives (e.g., nonylphenol), bisphenol A (BPA),
diethylstilbestrol, persistent halogenated hydrocarbons (PHAs) and tributyltin (TBT), plas-
ticizers and plastic additives [33–36], and Perfluoro alkyls (PFOS and PFOA). In addition,
some metals (Cd, Pb, Hg, As) are considered EDCs due to their adverse effect on health of
different species including humans [31,34,36–38]. One mode of action (MoA) of EDCs is to
interact with the hormonal system by binding with endocrine receptors, which either block,
magnify or inactivate the subsequent events of hormone action in an organism [19,39–41].
These alterations represent a series of “false signals” that can modulate the normal en-
docrine function at low dose exposure [42–46]. The consequences of endocrine disruption
include alteration on reproduction (e.g., low fertility rates, quality of the sperm, imposex),
development (e.g., malformations, growth, body mass, immune system impairment) be-
havior (e.g., communication skills, mating, feeding times, predator-prey dynamics) of the
exposed organisms, but also their offspring [27,28,33,47,48], which highlights potential
long-term consequences for the conservation of wild species.

The purpose of this review is to compile the available literature on EDC effects on South
American wildlife published from 1985 to 2019, from a country contribution point of view,
including (1) studies on the concentration in animal tissues/organs/acellular structures
of EDCs at the individual-level, (2) effects of EDCs on an individual’s development and
reproduction, and (3) the use of biomarkers to determine EDCs’ impact on an individual’s
development and reproduction. This work provides a necessary update of knowledge on
EDCs impact on organisms (both vertebrates and invertebrates) in the region identifying
relevant gaps that can be filled with future research.

http://endocrinedisruption.org
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1.1. Endocrine Regulation and Effects of Xenobioc Chemicals

Vertebrates have three major neuroendocrine systems controlling reproductive pro-
cesses, growth, development, and metabolism: (a) the hypothalamic–pituitary–gonadal
(HPG) axis, (b) the hypothalamic–pituitary–thyroid axis (HPT), and (c) the hypothalamic–
pituitary–adrenal axis (HPA) [30]. The hypothalamus regulates the endocrine system and
initiates the secretion of the hormones for each of the three axes. Cross regulations be-
tween the HPT axis and the HPG axis influence reproduction and metabolism [48–50].
Additionally, cross regulations between the HPT axis and the HPT axis will influence the
development and metabolism [48,49,51].

EDCs also act at different levels of the endocrine axes, including their feedback mecha-
nisms, which may lead to physiological malfunctions. Hormone regulation and production
are modified by EDCs (Figure 1) [27]. Since all systems are interconnected, consequences
of EDCs on one system may have effects on multiple compartments, leading to failure
at the individual level with implications on metabolism, growth, reproduction and/or
development [48,49,51–56]. However, for this review, only the HPG and HPT axis were
evaluated. Since these two axes are the main and most studied in wildlife, it can be under-
stood how an alteration in the action of hormones will affect the metabolic regulation of the
processes involved in growth, reproduction, and behavior. This directly affects the fitness
of the species in the wild.

1.1.1. The Hypothalamic-Pituitary-Gonadal (HPG) Axis

The HPG axis controls the sexual steroids production, preparing the organism for
reproduction. The hypothalamus secretes the gonadotropin-releasing hormone (GnRH)
and the gonadotropin inhibitory hormone (GnIH), which regulates the secretion of go-
nadotropins: the luteinizing hormone (LH) and the follicle-stimulating hormone (FSH)
in the pituitary [27,51,57]. In turn, the LH and the FSH induce the secretion of steroid
hormones (testosterone and estrogens) in the gonads, having a direct effect in the target
tissues [51,57]. The steroid hormones control the release of the GnRH and gonadotropins
to maintain accurate concentrations of FSH and LH via negative feedback [57,58]. The
EDCs compounds influence the secretion of GnRH, LH, FSH and have an influence on the
enzymes responsible for the conversion of testosterone to dihydrotestosterone or 11-keto-
testosterone (or androgen similes, depending on the organism) in males for testosterone
to estrogen in females (Figure 1) [58–60]. EDCs that have an estrogenic or antiandrogenic
activity will impact the testis, leading to their abnormal development and a possible femi-
nization in male organisms, while androgenic EDCs will cause masculinization in female
organisms by influencing female gonads [58,60–62]. Antiestrogenic compounds in male
and female gonads have a harmful effect on gonadal development [58,63].

During embryonic development, EDCs interfere in the reproductive neuroendocrine
axis provoking permanent effects on physiology and behavior in adults with failure in
growth, development, and reproduction [21,48,64]. Reproductive dysfunctions in wildlife
include alteration in fertility and changes in their reproductive anatomy, reducing nor-
mal hormone secretion and future generations’ viability [27,28,30]. In the long term,
changes in reproductive aspects can lead to the viability of future generations [65]. For
example, EDCs caused changes in testosterone and estrogen levels that led to low fer-
tility and alterations in reproductive behavior and ultimately caused the population de-
cline during several decades for the alligator (Alligator mississippiensis) in Lake Apopka,
Florida (United States) [28,66–68]. Similarly, EDCs on sewage effluents developed inter-
sex (i.e., eggs within the testis) on fish [69], and organotin compounds like tributyltin
(TBT) are related to imposex (female masculinization) in gastropods worldwide, leading to
reproductive failure and population decline [70,71].
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Figure 1. Effects of endocrine disrupting chemicals for vertebrates. Own production figure. 
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1.1.2. The Hypothalamic-Pituitary-Thyroid Axis

The HPT axis regulates the secretion of thyroid hormones, which are essential for metamor-
phosis in amphibians, and the development and metabolism in all vertebrates [53,59,72–74].
The hypothalamus secretes the thyrotropin-releasing hormone (TRH), which induces the
secretion of the thyroid-stimulating hormone (TSH) in the pituitary [51,55,57]. TSH stimu-
lates the secretion of the thyroid hormones: thyroxine (T4) and triiodothyronine (T3); and
enhances iodine accumulation, which is necessary for the biosynthesis of thyroid hormones
(Kloas and Lutz, 2006). TSH also induces the enzyme thyroid peroxidase (TPO), also neces-
sary for thyroid hormone production (Kloas and Lutz, 2006). The thyroid hormones control
via negative feedback the release of the TRH and the TSH [57,58]. In amphibians, the
hypothalamus secretes the corticotropin-releasing hormone (CRH) instead of the TRH [55].
Studies in different species of terrestrial and aquatic taxonomic groups such as frogs
(e.g., Rana pipiens), fish (e.g., Clarias gariepinus, Danio rerio) and rats (e.g., Rattus norvegicus)
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revealed that thyroid hormones affect the synthesis and action of steroid hormones, having
an impact on gonadal differentiation, hormone levels and reproduction [53,75–80]. At the
HPT axis, EDCs will have a negative effect at different stages of the synthesis, secretion
and metabolism of the thyroid hormones influencing eventually their serum concentration
and thyroid function [58,81,82]. Thyroid hormones are responsible for the metamorphosis
of amphibians and a disruption on HPT axis could lead to an accelerated or incomplete
metamorphosis, affecting their development and reproduction and leading to population
decline (Figure 1) [55,74,83–85]. In reptiles, disruption of thyroid hormones has conse-
quences in gene expression, thermoregulation, reproduction, and metabolism [38,86]. In
birds, a study in crows (Corvus macrorhynchos) revealed histopathological thyroid gland
changes related with environmental chemicals in an urban area [87].

1.2. The Use of Biomarkers of Endocrine Disruptors

Biomarkers are used to assess whether an organism has been exposed to a toxic
compound and to detect possible effects in tissues and susceptible individuals in different
ecosystems [88]. Biomarkers are quantifiable changes in organisms at morphological
(e.g., morphological, and histological thyroid gland observation in Xenopus laevis (African
clawed frog)), physiological (e.g., body size, weight and bridal pad in Bufo bufo) or
biochemical levels (e.g., induction 7-ethoxyresorufin O-deethylase (EROD) in liver of Perca
fluviatilis) [89–91]. Biomarkers are subdivided into three types [88,92,93]: (I) Biomarkers
of exposure, which indicate a direct exposure of an organism to a pollutant (measure of
a contaminant or its metabolites in biological tissues of an organism like organochlorine
concentrations in dolphin tissue [94]). (II) Biomarkers of effect, which are the biological
responses of the organism related to the exposure to a contaminant, where physiological
or biochemical changes are detected (e.g., histological alteration in fish exposed to methyl
mercury [95]). (III) Biomarkers of susceptibility, which identify susceptible individuals in
a population exposed to a specific pollutant (e.g., gene polymorphism due to exposure
of mercury [96]).

In this review, we focused on the EDC effects in the two main axes (HPG axis and
HPT axis) in wild animals of South America, using the biomarkers described above. The
results were reported considering the country and the species studied, as well as different
EDCs identified.

2. Materials and Methods

Data were obtained from publications related to EDCs from 1985 to 2019, which
were quantified in different organs of animals excluding those without having considered
any physiological changes in the species in South America. Subsequently, a search for
publications related to the presence of endocrine disruptors in tissue/organs or animal parts
associated with alterations in reproduction, growth or development was made. Publications
under experimental studies were incorporated. Additionally, publications with invasive
species have been included as a surrogate to native species, especially due to a lack of
knowledge of the biology/physiology of native wild species. The papers published in
various academic databases (ISI Web of Knowledge, Google Scholar, Scopus) were searched
using the keywords like “Persistent Organic Pollutants” or “Endocrine Disruptors” or
“Heavy Metal”. In addition, keywords such as “Fauna” were combined with the names
of the countries of South America (e.g., “Persistent Organic Pollutants” or “Endocrine
Disruptors” and “Fauna” and “Chile “). We excluded from our search papers that report
levels and/or concentrations as routine monitoring without any physiological changes
related to endocrine alterations. Later, we commented on our results as reported by each
country, revealing regional differences.
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3. Results and Discussion

A total of 606 scientific articles reported the concentrations of EDCs in South America
between 1985 and 2019. The 605 publications are distributed in thirteen countries: Argentina
(88) Bolivia (7), Brazil (325), Chile (72), Colombia (47), Ecuador (6), French Guiana (11),
Paraguay (1), Peru (14), Suriname (2), Trinidad and Tobago (3) Uruguay (5) and Venezuela
(25) of the 14 countries surveyed (Table 1). Among the reviewed publications, 72.3% (438)
assessed the concentration of metals in tissues of animals, 20.8% (126) were based on
persistent organic compounds, 2.3% (14) analyzed concentrations of metals and persistent
organic compounds together, 0.6% (4) articles evaluated persistent organic compounds and
other compounds and 4% (24) publications on several other compounds (Table 1).

Table 1. Number of publications by country of concentrations of trace metals (TM), persistent organic
compounds (POPs) and others. N (%): numbers express the total publications and in parentheses the
percentage with respect to the total.

Country M
N(%)

POPs
N(%)

POPs/M
N(%)

POPs/Other
N(%)

Others
N(%)

Total
N

Argentina 58 (66) 22 (25) 1 (1.1) 1 (1.1) 6 (6.8) 88
Bolivia 7 (100) 0 0 0 0 7
Brazil 247 (76) 59 (18.2) 7 (2.2) 2 (0.6) 10 (3) 325
Chile 34 (47.2) 33 (45.8) 3 (4.2) 0 2 (2.8) 72

Colombia 36 (76.6) 7 (14.9) 2 (4.3) 1 (2.1) 1 (2.1) 47
Ecuador 4 (66.7) 2 (33.3) 0 0 0 6

French Guyana 9 (90) 0 1 (10) 0 0 10
Paraguay 1 (100) 0 0 0 0 1

Peru 11 (78.7) 1 (7.0) 0 0 2 (14.2) 14
Surinam 3 (100) 0 0 0 0 3

Trinidad and Tobago 3 (100) 0 0 0 0 3
Uruguay 3 (60) 0 0 0 2 (40) 5

Venezuela 22 (88) 2 (8) 0 0 1 (4) 25

TOTAL 438 (72.3) 126 (20.8) 14 (2.3) 4 (0.6) 24 (4) 606

The number of publications increased exponentially over the last 30 years, being Brazil
the principal contributor (Figure 2). Brazil, Argentina, Chile and Colombia contributed in
the last ten years the most of the publications related to the measurement of concentrations
of metals and persistent organic pollutants (POPs) in species tissues (Figure 3). Most
publications focused on fish 41.1% (249) followed by more than one class of organism
12.2% (74), mammals 12% (73), birds 10.6% (64), bivalve 10.6% (64), crustacean 4.5% (27),
reptile 4.3% (26), gastropods 3.1% (19), insects 0.6% (4), and amphibians 0.3% (2) (Figure 4).
The larger proportion of studies focusing on fishes could be linked to their economic
importance as well as the possible risk for human health, due to exposure to this type of
contaminant via ingestion. A total of 8.9% (54) publications studied showed the presence
and concentration of metals in more than one animal class, revealing the biomagnification
of the compounds through the food web (Figure 4). Most studies in mammals were focused
on marine species (Table S1 in supplemental material). Studies conducted in mammals
include two publications related to measurements of mercury in otter in Brazil and Peru [97],
and three related to metals concentrations in tissues from bats, jaguars, and wild canids
in Brazil [98–102]. Two papers focused on measurements of metals in jaguar and wild
mice from Colombia [103,104], and one paper that determined organochlorine pesticide
concentration in the tissue of a guinea pig in Argentina [105].
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 Figure 4. Publications developed by animal group where concentrations of compounds that act as
endocrine disruptors were determined. Oligochaeta, Ascidiacea, Chondrichthyes and Polichaeta
had one publication each and were excluded from the figure. M (Metals), POPs (Persistent
Organic Pollutants).

Most papers focused on concentrations of metals, POPs and other compounds, which
that cannot be compared between countries, since authors reported the concentrations of
contaminants in different types of tissues (fat and muscle, hepatic, gonadic), egg parts (yolk,
albumen, shell, and whole egg), acellular structures (mainly proteinic, feather, carapace),
blood, and the whole animal in the case of invertebrates and different weight references
(wet weight, fresh weight, dry weight, lipid weight), which makes it difficult to compare
concentrations and effects [106–110]. In some cases, studies reported that the levels of
pollutants were too low to cause a population decline or concentrations found in tissues of
organisms did not exceed the limits set by environmental authorities. None of the studies
described a relationship of concentrations of POPs, metals, and other compounds with
an effect on the HPG axis nor the HPT axis.

On the other hand, twelve studies assessed the concentrations of organotin compounds
found in tissues and the incidence of imposex in gastropods (Table S1 in Supplemental Materials).
Additionally, 30 studies about imposex in gastropods were related to their possible exposure
to organotin compounds present in the environment (Table S2 in Supplemental Materials).
Twenty-one (21) studies focused on the effect that EDCs may have on wild populations or
an invasive species. Another 47 studies focused on experimentally assessing the impact of
EDCs (compounds, polluted sediments, polluted water) on different species at different
developmental stages using biomarkers as endpoints. Argentina, Brazil, Chile, Colombia
and Venezuela revealed most of the publications and will be explained individually in the
following section.
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3.1. Argentina

Most publications in Argentina 66% (58) focused on metals, followed by POPs 25%
(22). A small proportion was related to the measurement of concentrations of organotin
compounds in gastropod tissues where imposex was also evaluated [111–113]. Fish and
mammals (cetaceans and pinnipeds) were the principal taxonomic groups selected to assess
the concentrations of EDCs (Table S1 in supplemental material). A study in Argentina
revealed imposex in gastropods and butyltins, PAHs, and POPs accumulation in sediments
and bivalve muscle [114]. No study focused on measuring metals or POPs in wild reptiles
or insects was found for this country.

In five studies of Argentina, imposex in gastropods was evaluated in marine areas,
indicating their possible exposure to organotin compounds present in the environment
(Table S2 in supplemental material). Imposex was reported in gastropods in the coastline of
Argentina and in the edible snail (Adelomelon ancilla) in two sites in Golfo Nuevo [115,116].
One study evaluated the concentrations of TBT that ranged from not detected to 1369.58 ng
Sng−1 in sediments in different study sites of the Argentinean shoreline and their incidence
of imposex [117]. Another study was conducted in areas where TBT was previously
detected (up to 174.81 ng Sn g−1 DW) and shell shape was associated to imposex in
gastropods [118]. Shell shape was used to evaluate marine pollution through history in
Buccinanops globulosus [119] (Table S2 in supplemental material).

Three studies in Argentina reported the possible effects of EDCs on wild fauna using
biomarkers. For example, the organochlorine pesticide concentrations were evaluated
in tissues of fish-eating birds (ΣHCH range: ND to 3168.41 ngg−1 fat, ΣCHL range: ND
to 4961.66 ngg−1 fat, ΣALD range: 287.07 to 9161.70 ngg−1 fat, ΣDDT range: 1068.98 to
6479.84 ngg−1 fat) and amphibians (heptachlors: 2.34 ± 0.62 ngg−1 wet mass, hexachloro-
cyclohexanes: 9.76 ± 1.76 ngg−1 wet mass) in the Reservoir Florida, along with possible
effects in the biota [120,121]. In the birds and amphibians of that study, possible internal
and external malformations were evaluated, but no possible relationship with the POPs
was found [120,121]. In the introduced fish (Gambusia affinis), several biomarkers such as
histopathological parameters, vitellogenin expression and copulatory organ morphology
revealed alterations in different gradients of water quality in the Suquía River basin [122].
In water samples, alpha-cypermethrin was detected from lower than the detection limit to
23.4 ± 7.70 ng L−1, beta-endosulfan from lower than the detection limit to 4.6 ± 1.8 ngL−1,
chlorpyrifos from lower than the detection limit to 3.3 ± 0.5 ng L−1, endosulfan-sulfate
from lower than the detection limit to 5.1 ± 2.6 ngL−1 and mercury from lower than the
detection limit to 0.33 ± 0.02 ng L−1 [122].

Twenty-six (26) publications in Argentina were based only on experimental studies at
the laboratory level to observe biomarkers or biological alterations to environmental con-
taminants that act as EDCs in different species at different developmental stages (Table 2).
Most of the publications were based on the reptile Caiman latirostris and fish (Table 2).
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Table 2. Effects of endocrine disruptors under experimental conditions in Argentina by species, type of contaminant and biological responses.

Species State of Development Contaminant Concentration Biomarkers or Biological Alterations Reference

Reptile
Caiman latirostris Egg

Endosulfan
Atrazine

DDT

Oxyclordan

PCB

Bisfenol A
17 β-estradiol

2/20 ppm
0.2/2 ppm

Range BDL −153.0 ng g−1 lipid
52.0 ± 710.5 ng g g−1 lipid

Range BDL −34.3 ng g−1 lipid
17.8 ± 73.9 ng g−1 lipid

Range BDL −136.6 ng g−1 lipid
23.0 ± 74.0 ng g−1 lipid

1.4/140 ppm
0.014/1.4 ppm

Egg weight loss, reduction in hatchling fractional
weight, ltered levels of steroid hormones,

follicular dynamics, decreased shell porosity and
number of eggs per clutch, reduced weight, and

size in the young, indirect effect on survival,
alteration in gene expression, impaired

gonadal histoarchitecture.

[123–129]

Reptile
Caiman latirostris Egg Endosulfan, Bisphenol A 20 ppm

1.4 ppm

Tortuous seminiferous tubules with empty
tubular lumens.

BPA: Relative seminiferous tubular area
was decreased.

[130]

Fish
Cichlasoma dimerus Adult (males, females)

Endosulfan,
17β-estradiol Octylphenol

4-tert-octylphenol

0.1, 0.3, 1 µL L−1

10 µg g−1 body weight dose
50 µg g−1 body weight dose

30, 150 and 300 µgL−1

Increased synthesis of vitellogenin and zona
pellucida proteins, impaired testicular structure. [131–133]

Fish
Jenynsia multidentate Adult (males) 4n–nonylphenol 0.20 and 40 µg L−1

Gonadsomatic index decreased, multiple
apoptotic bodies in Sertoli cells, loss of testicular

cystic structure.
[134]

Fish
Jenynsia multidentate Adult (males) 17α-ethinylestradiol 10, 75 and 150 ngL−1

Reduction in live and motile spermatozoa,
increase in dead and immotile spermatozoa and

sperm speed, gonadsomatic index decreased.
[135]

Fish
Jenynsia multidentate Adult (males) 17β-estradiol 50, 100, and 250 ngL−1

Reproductive behavioral: Sexual activity
increased at 50 ng L−1 E2., but not at other

concentrations. No modification in gonadsomatic
index and sperm quality.

[136]

Fish
Odontesthes bonariensis Larvae 17α-ethinylestradiol 0.1 and 1 µg g−1 food

Altered sex ratio, expression of cyp19a1a gen
increased, expression of hsd11b2 decreased. [137]
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Table 2. Cont.

Species State of Development Contaminant Concentration Biomarkers or Biological Alterations Reference

Fish
Cichlasoma dimerus Larvae 17β-estradiol,

4-tert-octylphenol
1 and 10 µgL−1

10 µgL−1

High concentrations of E2: feminizing effect
directing sex differentiation towards ovarian

development. Lower concentration of E2: testis
development was inhibited.

Exposure, no impairment of male gonad
development and functionality.

[138]

Fish
Cichlasoma dimerus Adult (male) 4-tert-octylphenol 150 and 300 µg L−1

High concentration of OP: Impairment of testis
architecture. Fishes were transferred to OP-free

water after 60 days of exposure: at day 28
testicular functionality was recovered.

[139]

Fish
Cichlasoma dimerus Adult (males, females) Endosulfan ES-AI: 100 µM

ES by itself did not affect testosterone and
estradiol levels. ES with an active ingredient

caused steroidogenesis disruption.
[140]

Fish
Odontesthes bonariensis Adult (male) Metals

Cd 0.25 µgL−1

Cr 4 µgL−1

Cu 22 µgL−1

Zn 211 µgL−1

Laboratory exposure to environmental
concentrations of Cd, Cr, Cu and Zn. Gonads of
the fish exposed to all the tested metals suffered

structural damages showing shortness of the
spermatic lobules, fibrosis, testis ova and the
presence of yknotic cells. With Cd: increased
expression gnrh, Cd and Cr: decrease of fshb.

[141]

Crustacea
Zilchiopsis collastinensis Adult (females) Endosulfan 94 ± 6; 192 ± 10 and 360 ± 15 µg

endosulfan L−1
Changes in volume of oocytes in a certain period

without change in the gonadsomatic index. [142]

Crustacea
Cherax quadricarinatus

(invasive species)
Juvenile Atrazine 0.1, 0.5 and 2.5 mgL−1

Weight gain decreased.
At higher atrazine concentration the proportion of

females increased gradually.
[143]

Crustacea
Neohelice granulata Adult (female) Atrazine 0.03, 0.3 and 3mgL−1

Higher proportion of previtellogenic oocytes,
reduction, and delay in the ovarian growth,

vitellogenin decreases.
[144]

Crustacea
Eurytemora americana Adult (females) Sewage effluents

(4 different water qualities)
Fertility was reduced at bioavailable contaminants

from dissolved phase of the sewage effluent. [145]
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Table 2. Cont.

Species State of Development Contaminant Concentration Biomarkers or Biological Alterations Reference

Amphibian
Rhinella arenarum Adult (males, females) Cadmium 0.5 and 5 mg kg−1

Ovary: nuclear and cytoplasmic pleomorphism,
vacuolization of oocytes in the early stages of

development. Higher dose: increase in the
proportion of atretic oocytes.

Testes: seminiferous tubules dilated,
disappearance of cysts, leukocyte infiltration.

Decreased concentration, viability, and
progressive motility of sperm

[146]

Amphibian
Rhinella arenarum Larvae Fludioxonil, Metalaxyl-M 0.25 and 2 mg L−1 General underdevelopment, gonadal

development and differentiation were impaired. [147]

Amphibian
Leptodactylus latrans Larvae Glyphosate

Roundup ®

3–300 mgL−1

0.0007–9.62 mg of acid
equivalentsL−1

Oral abnormalities and edema. Swimming
activity affected. [148]
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3.2. Brazil

Most of the literature regarding EDCs in South America has been published from
Brazilian studies, counting 322 publications, reporting different concentrations of EDCs
found in tissues of animals in Brazil. The majority, 76% (247), were recorded for metals,
18.2% (59) assessed POPs levels, 2.2% (7) studied metals and POPs together, 0.6% (2) studied
POPs with other compounds together and 3% (10) for other compound concentrations.
Diuron, as well as chlorinated pesticides and PCBs were quantified and related to immuno-
logical and pathological findings in the liver of fish [149]. Organotin compound concentra-
tions were analyzed in cetaceans, fish, gastropods, crustaceans and ascidiacea [150–156]
(Table S1 in the supplemental material). Gastropods were used as bioindicators revealing
imposex or shell shape differences due organotin compounds present in the environment
in fourteen studies, without measurements of these compounds in their tissue (Table S2 in
supplemental material).

The possible effect of EDCs in wildlife has been reported in 12 publications of Brazil.
This included the response of wild fish (Astyanax fasciatus) exposed to discharges from
agriculture, industrial and municipal wastewater in Furnas Reserve [157] Biomarkers such
as feminization index, intersex rate, reduction in body size, delayed gonadal maturation,
increase in proteins of the zona radiata and increased liver-somatic index, were assessed in
an exposure gradient of sampling sites of the river basin [158].

Alterations, such as incidence of histopathological changes, expression of metalloth-
ionein, vitellogenin and radiata zone protein were related to the concentration of metals in
water and fish (Prochilodus argenteus) in a polluted river in Brazil [157]. Additionally, water
conditions impacted by anthropic activity indicated a higher concentration in plasma E2
levels and hepatic vitellogenin gene expression in males, as well as an absolute and relative
fecundity in females [159].

The total estrogen level in the water (<120 ng L−1) had an impact on vitellogenin
levels, zona radiata (eggshell) proteins, growth factors like insulin (IGF-I and IGF-II)
and reproductive parameters in wild male and female fish Astyanax fasciatus exposed
to discharges of untreated municipal and industrial sewage [160]. Hermaphroditism in
frogs (Physalaemus cuvieri) was observed when exposed to waters with concentrations
around 0.05 mg L−1 of dieldrin [161]. Similarly, high levels of estrone (187.39 ng g−1),
estriol (34.68 ng g−1), diethylstilbestrol (453.69 ng g−1), 17α-estradiol (1.36 ng g−1), 17α-
ethinylestradiol (70.28 ng g−1) and 17β-estradiol (52.82 ng g−1) in sediments of the Pa-
coto River (Ceará, Brazil) induced the vitellogenin expression in male fish (Sphoeroides
testudineus), although the gonads of the fish had a normal structure [162]. Likewise, concen-
trations of environmental estrogens (estrone (>250 ng L−1), estradiol (>200 ng L−1), estriol
(>200 ng L−1), bisphenol-A (>190 ng L−1) and nonylphenol (>600 ng L−1) in different
sites of collection produced follicular atresia, yolk deficient oocytes, over-ripening and
decreased vitellogenin in female fish (Astyanax rivularis), intersex gonads and vitellogenin
induction in males [163]. Fishes (Astyanax rivularis) in the Velhas River headwaters with
estrogenic compounds in water (estrogenic potential (EEQt) of S1 site was 161.7 ng L−1,
S2 site: 667 ng L−1 and S3: 1300 ng L−1) showed alterations in gonad morphology, and
changes in germ cell proportion and on the sex steroid levels [164]. Male fish captured
from the Iguaçu River exhibited increased levels of vitellogenin, and female fish revealed
decreased levels of vitellogenin and estradiol, and immature gonads and degeneration of
germ cells [165].

An article demonstrates that Cu (0.035 mg kg−1) in sediments had a negative ef-
fect on the survival of embryos of the sea turtle Erehmochelys imbricate and an increase
of Ni (1.711 mg kg−1) in adult female blood was responsible with fewer eggs in their
nests [166]. Variations of concentration of Zn in sediments (highest value in one site:
115 ± 6.9 mg kg−1) in urban stream sediments was correlated with deformities in the
mentum of chironomid larvae [167].

In Babitonga Bay (Santa Catarina State, Southern Brazil), organotin concentration
in tissues (<LOQ to 418.5 ng g−1 dw of Sn) was correlated with imposex incidence and
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total testosterone/total estradiol ratio imbalance the muricid Stramonita haemastoma [154].
An article related the butyltin (BT) contamination (383.7 to 7172.9 ng g−1 of Sn) that was
previously described on the Espírito Santo coast with the incidence of imposex in L. nassa
and S. brasiliensis gastropods [168] (Table S1 in supplemental material). No evidence
of imposex was found in the gastropod Stramonita rustica populations of two tropical
estuaries in relation to BT concentrations (<LOQ to 542 ng g−1 dw of Sn) in sediments [156]
(Table S2 in supplemental material).

Eight (8) different studies in Brazil were based only on controlled or semi-controlled expo-
sures to EDCs, to evaluate the response of biomarkers to environmental contaminants (Table 3).

Table 3. Effects of endocrine disruptors under experimental conditions in Brazil by species, type of
contaminant and biological responses.

Species State
of Development Contaminant Concentrations Biomarkers

or Alterations Reference

Mussel
Perna perna

Adult
(males, females)

Coastal area of
São Paulo

Reduction in embryonic
development, negative

impact on the community
structure at one study site.

[169]

Fish
Gymnotus carapo Adult (males) Mercury chloride 5–30 µM

Reduction in sperm count
and impaired sperm
morphology. Direct

correlation between the
accumulation of Hg and

severity of lesions.

[170]

Fish
Oreochromis niloticus

(invasive species)
Adult (females)

Diuron
Diuron

metabolites
100 ng L−1

Diuron metabolites:
gonadosomatic indices,

percentage of vitellogenic
oocytes and

E2 plasma levels improved.
Diuron and its

metabolites: germinative
cells reduction.

[171]

Fish
Astyanax bimaculatus Adult (females) Endosulfan 1.15, 2.30, and

5.60 µgL−1

Increase in diameters of
secondary follicles.
Secondary follicles:

increased expression of
integrin β1 and collagen
type IV in cytoplasm of

follicular cells.

[172]

Fish
Rhamdia quelen Adult (males) Paracetamol 0.25 and 2.5 µgL−1

Reduced
testosterone levels.

High concentration of
paracetamol induces

estradiol levels.

[173]

Fish
Odontesthes humensis Embryos Glyphosate-

based herbicide 0.36 mg a.e.L−1
Reduced eye size and
distance between eyes
after 96 h of exposure.

[174]

Fish
Rhamdia quelen Larvae

Water (polluted
with PAHs and
toxic metals) of

Iguaçu River

Skeleton deformities such
as lordosis, scoliosis, and

kinks in tails. Cranial
abnormalities.

Thorax injuries.

[175]

Mammal
Artibeus lituratus Adult (males) Endosulfan 1.05; 0.015 (E1) gL−1

2.1; 0.015 (E2) gL−1

Decreased plasma glucose
concentration and carcass

fatty acids.
[176]
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3.3. Chile

Most EDCs related published articles in Chile 47.2% (34), reported metal concentra-
tions, 45.8% (33) assessed POPs levels, 4.2% (3) studied metals and POPs together and
2.8% (2) other compounds (Table S1 in supplemental material). Most of the documented
research in Chile has been focused on the occurrence of possible EDCs in biota, with a minor
approach to effects.

Imposex was found in gastropods that were potentially exposed to organotin com-
pounds in three studies [177–179]. The mean value for TBT in sediment samples in different
sites ranged from 0.48 ± 0.21 ng g−1 to 37.1 ± 26.6 ng g−1 and in samples of the biota the
values ranged from 0.8 ± 0.3 1 ng g−1 to 2.74 ± 0.43 ng g−1 [179]. Two studies reported
that imposex could be caused by butyltin in sediments and biota, despite a global ban of
this component [180,181]. In one study, high TBT concentrations were found in sediments
(122.3 ng g−1 of Sn) and gastropods tissue (59.7 ng g−1 of Sn), while in another study site,
TBT concentrations ranged from 7.4–15.8 ng g−1 of Sn in biota [181]. The second study
revealed TBT levels above of 90 ng Sn g−1 in gastropod tissues and 300 ng g−1 of Sn in
sediments of six study sites [181].

Three articles assessed the possible endocrine disruption effect of industrial effluent
discharges in wild fish populations. Several biological responses of freshwater wild fish
(Percilia gillissi and Trichomycterus areolatus) exposed to an industrial pulp mill discharge
into the Itata River were reported [182]. The results revealed an increase of 17β-estradiol in
females and decreased 11 keto-testosterone in male Percilia gillissi and an increase in female
gonadal size and an increased hepatic 7-ethoxyresorufin O-deethylase (EROD) activity.
Additionally, alterations in fish sizes of both species related to the discharges at differ-
ent periods of time were detected, which could be linked to the reproductive alterations
observed [182]. In the saltwater flatfish (Paralichthys adspersus), a decrease in the gonad
somatic index was shown, along with changes in male gonadal development, and an in-
crease of plasma vitellogenin and liver somatic index at the seacoast of Itata [183]. Previous
studies of the area revealed, among other compounds, a high presence of pentachlorophe-
nol (0.35 ng g−1), organic halogens compounds (171.21 mg kg−1), total hydrocarbons
(3 µg g−1) in sediments and aluminum (0.41 ± 0.45 to 3.19 ± 2.41 µg L−1), total chromium
(0.38 ± 0.26 to 3.70 ± 0.85 µg L−1), and copper (0.30 ± 0.48 to 4.66 ± 2.24 µg L−1) in the
water column along the coastline of Chile [184,185]. Another study in two wild fish
species (Trichomycterus areolatus and Percilia iwini) exposed to paper mill and pulp effluents
in the Biobio River revealed an increase in gonadosomatic index and increased hepatic
7-ethoxyresorufin O-deethylase (EROD) related to the estrogenic compound found in the
river sediments [186].

One article related the histological changes in male gonads of the invasive amphibian
species Xenopus laevis to dioxin-like and estrogenic activity in sediments [187]. Bio-TCDD-
EQ in sediments from different study sites ranged from 0.003 to 0.69 ng g−1 SEQ and Bio-E2
EQ-polar ranged from 0.06 to 5.19 ng g−1 SEQ. Additionally, vitellogenin induction and
low testosterone concentration were evident in male Xenopus laevis from different study
sites, indicating their exposure to endocrine disruptors [187].

Six experimental studies at laboratory and semi-controlled scale assess biomarkers or
biological alterations in different species due to exposure to EDCs (Table 4).
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Table 4. Effects of endocrine disruptors under experimental conditions in Chile by species, type of contaminant and biological responses.

Species State of Development Contaminant Concentrations Biomarkers or Alterations Reference

Mussel
Aulacomya ater Adult (males, females) 17β-estradiol 1 and 100 µg L−1 Increased vitellogenin and some

differences in reproductive parameters. [188]

Fish
Oncorhynchus mykiss

(invasive species)
Juvenile (males, females)

Laboratory exposures to pulp and
paper mill effluents and in situ

bioassay downstream of the combined
discharge of the same pulp mill

10, 35, 60 and 85% [v/v]

Higher concentrations of plasma
vitellogenin. Male fish revealed
intersex characteristics in all the

laboratory assays and in caged fish.
Increase in the average gonadosomatic

index in exposed fish.

[189]

Fish
Oncorhynchus mykiss

(invasive species)
Juveniles (females)

Sediments of different gradients of
contamination from the Biobio river

impacted by the pulp mill
Caged trout exposure to different

pollution gradients in the Biobio River
Intraperitoneal injection of effluent of

a cellulose plant extract

Sediment from the three
sampling areas (PRE, IMP,

POST), in a 1:10 w/v
proportion

Increase in vitellogenin and
gonadosomatic index, presence of
vitellogenic oocytes, inhibition of
acetylcholinesterase activity and
induction of 7-ethoxyresorufin

O-deethylase (EROD).

[190–192]

Fish
Percilia irwini Adults (male, females)

Laboratory exposures to wastewater
treatment plant and pulp and paper

mill effluents

Increased VTG-like phosphoproteins
and hepatic ethoxyresorufi

n-o-deethylase induction levels were
detected in

effluent-exposed individuals.

[193]
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3.4. Colombia

Forty-seven publications from Colombia reported concentrations of EDCs found in the
tissues of animals. Of these, 76.6% (36) were recorded for metals, 14.9% (7) articles reported
POPs, 4.3% (2) were recorded for POPs and metals, 2.1% (1) assessed POPs and other com-
pounds and 2.1% (1) were related to other compounds (Table S1 in supplemental material).
The articles for other compounds evaluated organochlorine and organophosphates pesti-
cides in fish at the Bogotá River in Suesca and the presence of perfluorinated compounds
in fish (Mugil incilis) and in tissues of pelicans (Pelecanus occidentalis) [194,195]. One study
showed imposex in gastropods, Stramonita haemastoma, with possible exposure to organotin
compounds [196] (Table S2 in supplemental material).

Two articles focused on the possible effects of EDCs in wildlife populations. The study
evidenced an increase in calcium (9.91 ± 0.65 ng g−1) and mercury (19.86 ± 1.88 ng g−1

r) concentrations in eggshells, reduced eggshell thickness, lesser weight and length of
eggs from egrets (Egretta thula) when compared to more pristine egret’s nesting areas [197].
A study conducted in conjunction in Colombia and Nicaragua showed disturbances in
oysters (Crassostrea) reproduction (gamete development, alterations in sex ratio) related to
pollutant exposure in Isla Brujas, Taganga and Isla Barú in Colombia [198].

A laboratory conducted article revealed that cadmium exposure at environmentally
relevant concentrations (0.0025 ppm) caused damage of sperm quality and changes in
the initial stages of development of in the fish Prochilodus magdalenae [199]. Additionally,
a laboratory conducted study with tropical cup oysters (Saccostrea sp.) revealed an anti-
estrogenic effect of Cd at high concentrations (1000 µg L−1), where vitellogenin was lower
compared to the control group [200]. An experimental study of water samples with
potentially toxic xenobiotic substances revealed in Chironomus columbiensis deformities in
the mentum and wing [201].

3.5. Venezuela

Twenty-five studies (25) showed concentrations of EDCs in fish, bivalves, birds, crus-
taceans and gastropods. Of these, 88% (22) focused on metal concentrations, 8% (2) analyzed
POPs in different tissues and 4% (1) of the articles reported other compounds (Table S1 in
supplemental material).

One laboratory experiment exposed three species (Pseudoplatystoma fasciatum, Piaractus
brachypomus and Colossoma macropomum) of male fishes to estradiol to characterize vitel-
logenin through a proteomic study [162]. The study points out that peaks of vitellogenin
spectra for C. macropomum (m/z: 1481.7, 1537.9, 1649.9), P. brachypomus (m/z: 1546.8, 1573.8,
1621.9) and P. fasciatum (m/z: 1642.9, 1665.9, 1706.0) were significant [202].

One article revealed levels of butyltin compounds (<LOQ to 53.6 ng g−1 of Sn) in
gastropod Plicopurpura patula visceral tissue in different study sites and the incidence of
imposex [203]. One article related imposex in Voluta musica with the presence of TBT
(3.9 ± 3.4 ng g−1 of Sn) and Cu (21.9 ppm) in the sediments, and another assessed imposex
in gastropods without evaluating TBT compounds in sediments or water [204,205] (Table S2
in supplemental material).

3.6. Other Countries

For other South American countries including Bolivia, Ecuador, French Guyana,
Paraguay, Perú, Surinam, Trinidad & Tobago and Uruguay, a total of 39 articles on EDCs
were found. Most studies focused on metals 88.7% (39), 6.9% (3) articles for POPs in
mammals, 2.2% (1) article for POPs and metals together, and 2.2% (1) on concentra-
tions of tributyltin compounds in tissues and imposex in Thais ípicamen [150] (Table S1
in supplemental material). Imposex incidence was evaluated in marine snail Xantho-
chorus buxea, Thaisella chocolate, Xanthochorus buxeus and Stramonita chocolate in Peru, as
well as in muricid species such as Thais biserialis, T. brevidentata, T. kiosquiformis, T. mel-
ones, Plicopurpura patula and Plicopurpura columellaris in Ecuador [206–210] (Table S2 in
supplemental material). Tributyltin (TBT), dibutylin (DBT), and monobutylin (MBT) were
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determined in surface sediments in six coastal areas of Ecuador, and the values ranged
between 12.7–99.5 ng g−1 dw for TBT 1.8–54.4 ng g−1 dw for DBT, and 44–340 ng g−1 dw
for MBT [206].

In Uruguay, three experimental studies correlated biomarker responses with exposures
to polluted sediments or water. The first study found that juvenile fish, Pimephales promelas,
exposed to water from domestic discharges and pulp mill had no alteration in their testicular
structure [211]. The second study showed that juvenile carps (Cyprinus carpio) exposed
to sediments from urban and industrial effluent discharges along the Uruguay River
exhibited delayed testicular maturation, reduced primary spermatozoa, and increased
serum vitellogenin [212]. One article related the incidence of masculinized females of the
fish Cnesterodon decemmaculatus in different sampling sites where urban-industrial and
agricultural activities were evident in the Arroyo Colorado basin [213].

4. Conclusions and Recommendations

Aquatic wildlife such as fish, bivalves, crustaceans, and marine mammals are the
most studied organisms in South America regarding the effects of endocrine disruptor
chemicals. The 73% of publications focused on measuring the concentration of metals in
different animal tissues, 47% corresponding to fish. Due to differences in the reported units
of contaminant concentrations, and types of animal tissue studied in each country, results
are difficult to compare across studies and countries of South America.

Our review shows that even though South America harbors the greatest biological
diversity on the planet [214–219], evaluations of the EDCs exposure and/or effects on many
taxonomic groups such as insects, amphibians, reptiles, birds, and terrestrial mammals
are scarce. For example, Colombia is one of the most megadiverse countries and the
biggest mercury polluter per capita in the world due to mining activities, where mercury
releases to the environment can go up to 150 tons year−1 [214,220]. Further, Colombia
is the country with more reported chemical pollution cases inside protected areas [25].
Therefore, threats faced by Colombian wildlife from environmental pollution are not fully
elucidated, and only very few taxonomic groups (e.g., fish) have been evaluated. The lack
of biodiversity investigations related to environmental pollution in Colombia may also be
linked to administrative challenges to conduct biodiversity research in this country [221].

EDCs are widely distributed in the environment, having negative effects on species
of different taxonomic groups, which may affect their population persistence. Our review
revealed that, although various compounds that act as endocrine disruptors in tissues of
different species of wildlife of South America have been quantified, only some of them
(e.g., Brazil and Chile) related their effects at the reproductive endpoint level. Despite the
evidence of low concentrations of metals in different fish tissues it has not been determined
whether they could be generating or not an adverse effect on the fish reproductive, thyroid,
or adrenal health. If fish health is involved, this can also lead to a decrease in their
populations and eventually affect human wellbeing.

Studies that assessed EDCs in species at a reproductive level in South America
are scarce, and the majority have focused on fish species. Although effects on repro-
ductive health have been assessed, less attention has been given to the endocrine dis-
rupting effects on the HPT axis in wildlife species in South America. Brazil and Chile
had publications related to the effects that could have contaminants on wild fish and
insect populations [157,167,182].

Among the lessons learned from the present work, we recommend that: (a) the mea-
surements of the levels of EDCs on organisms is an urgent need and should be standardized
to allow meaningful comparisons across studies and with other pollutants, (b) further inves-
tigations are required on population-level effects of neglected aquatic or terrestrial species
in different ecosystems in South American countries to generate crucial information for bio-
diversity protection, (c) future studies should prioritize research on emerging contaminants
(e.g., perchlorate, thiocyanate, nitrates); developing methods to unravel the effects on native
species and the use of current available powerful methods such as the OMICs (genomics,
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transcriptomics, proteomics and metabolomics), and (d) a substantial increase of funding is
needed to support research in countries harboring high levels of biodiversity [222].

Finally, the present review identified critical gaps in South America on determining the
effects of endocrine disruptors in different ecosystems and wildlife species. Overall, an ur-
gent need for research is necessary to evaluate the impact of mining activities on mammals
and several taxonomic groups exposed to pesticides in aquatic and terrestrial habitats.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/toxics10120735/s1. Table S1: List of manuscripts examined for the
present review reporting concentrations of Metals (M), Persistent Organic Pollutants (POPs) or other
pollutants (Other). Table S2: List of manuscripts examined for the present review reporting the
occurrence of ecotoxicological indicators not related to specific pollutant that were reviewed for the
present manuscript.
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