Skip to main content
. 2022 Dec 12;22(24):9735. doi: 10.3390/s22249735
Abbr. Description Abbr. Description
ITS Intelligent transportation system fl LSTM feature space
TTP Travel time prediction fg GRU feature space
ATIS Advanced traveler information system dl LSTM decision space
GPS Global positioning system dg GRU decision space
OD Origin–destination yh Final output
GRU Gated recurrent unit it Input gate
XGB Extreme gradient boosting ft Forget gate
LightGBM Light gradient boosting machine ot Output gate
FCD Floating car data σs Sigmoid activation function
MLP Multilayer perceptron Wi Input gate weight
CNN Convolutional neural network Wf Forget gate weight
BiLSTM Bidirectional long short-term memory Wo Output gate weight
BiGRU Bidirectional gated recurrent unit bi Input gate bias
SVR Support vector regressor bf Forget gate bias
RMSE Root mean square error bo Output gate bias
MAE Mean absolute error ht1 Hidden state of prior timestamp
R2 Coefficient of determination xt Current input
PCA Principal component analysis Ct Cell state
DSAE Deep stacked autoencoder ht Hidden output
LSTM Long short-term memory μt Tanh activation function
OSRM Open-source routing machine Wc Cell state weight
ut Update gate bc Cell state bias
ht Current memory content time (t) rt Reset gate
ht Final memory content time (t) Wr, Ur Reset gate weight
Wu, Uu Update gate weight Element-wise multiplication
hft Hidden state variable (Forward) hbt Hidden state variable (Backward)
ot Output layer state variable Wfo Hidden output weight (Forward)
Wbi Hidden input weight (Backward) Wfi Hidden input weight (Forward)
Wbh Hidden weight (Backward) Wfh Hidden weight (Forward)
Wbo Hidden output weight (Backward) f Hidden layer activation
g Output layer activation TT_i Actual travel time
TTi^ Predicted travel time TT_m Mean travel time
MI Mutual information E Entropy
F Feature T Target