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Abstract: The nucleocapsid (N) protein contributes to key steps of the SARS-CoV-2 life cycle, in-
cluding packaging of the virus genome and modulating interactions with cytoplasmic components.
Expanding knowledge of the N protein acting on cellular proteins and interfering with innate immu-
nity is critical for studying the host antiviral strategy. In the study on SARS-CoV-2 infecting human
bronchial epithelial cell line s1(16HBE), we identified that the N protein can promote the interaction
between GTPase-activating protein SH3 domain–binding protein 2 (G3BP2) and tripartite motif
containing 25 (TRIM25), which is involved in formation of the TRIM25-G3BP2-N protein interactome.
Our findings suggest that the N protein is enrolled in the inhibition of type I interferon production in
the process of infection. Meanwhile, upgraded binding of G3BP2 and TRIM25 interferes with the
RIG-I-like receptor signaling pathway, which may contribute to SARS-CoV-2 escaping from cellular
innate immune surveillance. The N protein plays a critical role in SARS-CoV-2 replication. Our study
suggests that the N protein and its interacting cellular components has potential for use in antiviral
therapy, and adding N protein into the vaccine as an antigen may be a good strategy to improve
the effectiveness and safety of the vaccine. Its interference with innate immunity should be strongly
considered as a target for SARS-CoV-2 infection control and vaccine design.

Keywords: SARS-CoV-2; nucleocapsid protein; G3BP2; TRIM25; RIG-I-like pathway

1. Introduction

SARS-CoV-2 propagates via infectious particles with a 30-kb single-stranded RNA
genome, which encodes 16 nonstructural proteins, five major open reading frames for
nonstructural replicase polyproteins and structural proteins, namely, spike (S), envelope
(E), membrane (M), and nucleocapsid (N) [1,2]. Among these viral proteins, the N protein
contributes to multiple steps of the viral life cycle, including packaging of the RNA genome,
regulating viral RNA synthesis and modulating interactions with cellular components in
the cytoplasm [3]. High levels of IgG antibodies against N have been detected in both
SARS-CoV and SARS-CoV-2 patients [4,5]. A study shows that memory T cell responses to
N proteins are persistent in recovered patients with SARS-CoV and SARS-CoV-2 [6]. Thus,
the N protein is considered as a representative antigen for specific T cell proliferation and
cytotoxic activity [7]. Some recent studies have found that some specific antibodies against
the N protein also have a neutralizing activity, so some small molecular polypeptide drugs
targeting specific epitopes of N protein are also being developed; similarly, these clues are
also very helpful to the development of vaccines [8]. In addition to the adaptive immune
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response to SARS-CoV-2 infection, innate immunity triggered by the RIG-I-like receptor
signaling pathway is important in defense against RNA viruses such as coronaviruses [9,10].
Previous studies on SARS-CoV suggest that viral components including both the M protein
and N protein impair type I interferon production by suppressing the RIG-I-like receptor
pathway through different mechanisms [11]. Recently, several studies have revealed that
the N protein interacts with the tripartite motif containing 25 (TRIM25) to inhibit activation
of retinoic acid-inducible gene-I (RIG-I) [12,13].

TRIM25 plays an important role in the activation of the RIG-I receptor pathway via
binding with the caspase recruitment domain (CARD) of RIG-I and resulting in ubiquitin ac-
tivation signal transmission of RIG-I [14,15]. Within the signal transduction regulator family,
GTPase-activating protein SH3 domain–binding protein 1 (G3BP1) and protein 2 (G3BP2)
are closely related to innate immunity via the formation of stress particles [16–20]. G3BP2
is involved in the nuclear translocation of NF-κB [14,15] and has been identified as a novel
interacting partner with TRIM25 in prostate cancer cell proliferation [21]. Recent data
show that SARS-CoV-2 inhibits stress particle formation by interacting with G3BPs during
replication to promote the separation of N from viral RNA [18].

Many studies have shown that G3BP1 and G3BP2 stress particles are crucial for the
host antiviral process [22]. In this study, we found G3BP2 to be consistently involved in
this process via the formation of the TRIM25-G3BP2-N protein interactome. G3BP2 is also
known as a stress granule assembly factor in the cytoplasm for viral replication complexes
during infection of some RNA viruses [23]. Other studies have revealed a close relationship
between G3BP2 and the NF-κB signaling pathway of innate immunity [20]. We speculate
that the N protein promotes G3BP2 and TRIM25 binding in the process of SARS-CoV-2
infection, interfering with RIG-I-like receptor signaling, weakening the innate immune
response, and leading to SARS-CoV-2 immune escape. Our study further explains the
mechanism by which N inhibits interferon I production, suggesting that It has potential as
a vaccine antigen and an antiviral therapeutic target.

2. Materials and Methods
2.1. Cells and Viruses

16HBE, HEK293T and A549 cells were obtained from the American Type Culture
Collection (ATCC, Manassas, VA, USA) and cultured in Dulbecco’s Modified Eagle’s
medium (DMEM) (Biological Industries) supplemented with 10% fetal bovine serum (FBS)
(ThermoFisher, Waltham, MA, USA) and 1% penicillin–streptomycin. The viral strain
SARS-CoV-2-KMS1/2020 (GenBank accession number: MT226610.1) was isolated from
sputum collected from a COVID-19 patient by IMBCAMS, and propagated and tittered
on Vero cells in DMEM supplemented with 2% FBS. The harvested virus was purified by
Sepharose 6 Fast Flow chromatography. The virus stock titer was 106 TCID50/mL and the
concentration was diluted to a suitable working concentration before the experiment. All
work with infectious SARS-CoV-2 was approved under biosafety level-4 (BSL-4) conditions
by the Institutional Biosafety Committee of IMB.

2.2. CCID50 Assay

The culture of Vero cells with 96-well plates and the SARS-CoV-2 virus was diluted
by 10 times with MEM medium containing 2% serum. The cells were infected with each
dilution. We observed the CPE phenomenon 7 days after virus infection, and the virus titer
was calculated according to the Reed & Muench method [24].

2.3. Plasmids and Reagents

Gene fragments of the SARS-CoV-2 protein were obtained by PCR of SARS-CoV-2
cDNA and cloned into the pAcEGFP-C1 vector (TAKARA, Tokyo, Japan). G3BP2 was
cloned into the pcDNA3.1 vector (ThermoFisher, Waltham, MA, USA). TRIM25 was cloned
into the pCMV-Myc vector (TAKARA, Tokyo, Japan). All DNA transfections were per-
formed using FuGENE HD (Promega, Madison, WI, USA). Poly (I:C) transfection was
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performed using Lipofectamine 2000 (ThermoFisher, Waltham, MA, USA) and siRNA
transfection using Lipofectamine RNAimax (ThermoFisher, Waltham, MA, USA).

2.4. Antibodies

Anti-NF-κB, anti-IRF3, anti-TBK1, anti-IFN-β, anti-GAPDH, anti-pNF-κB, anti-pTBk1,
anti-pIRF3 and anti-DDDDK for WB and immunofluorescence (IF) assays were purchased
from Abcam (Abcam, Cambridge, UK). Anti-HA and anti-Myc for WB and immunofluo-
rescence (IF) assays were purchased from Thermo Fisher (ThermoFisher, Waltham, MA,
USA). Anti-J-2 for IF assays were purchased from Scicons (Scicons, Szirák, Hungary). Sec-
ondary antibodies labeled with Alexa Fluor 488, Alexa Fluor 555, Alexa Fluor 594 or Alexa
Fluor 647 for the IF assay were purchased from Abcam (Abcam, Cambridge, UK). Goat
anti-mouse IgG H&L (HRP) and goat anti-rabbit IgG H&L were purchased from Abcam
(Abcam, Cambridge, UK) and used in the WB assays.

2.5. Immunofluorescence Analysis

The cells were cultured in a 12-well plate with cover slides according to the density
of each well of 2 × 105. Twenty-four hours later, the cells were infected with SARS-
CoV-2 (MOI = 0.5) or transfected with 3 µg of plasmid. Cell samples were collected
according to the experimental design. After washing with PBS, the cells were fixed with 4%
paraformaldehyde for 15 min, blocked with 5% BSA, and permeabilized with 0.1% Triton
for 45 min. The treated cells were incubated with the primary antibody at room temperature
for 2 h and then with the secondary antibody was incubated for 1 h. Glass coverslips on
the slides were sealed by dripping the DAPI stain and sealing agent. Cell samples were
analyzed by a Leica SPR8 laser confocal microscope. For FLIM/FRET experiments, the
“donor only” sample was transfected with G3BP2 plasmids. We analyzed the colocation
between G3BP2 and TRIM25 with N protein exist or not. The average fluorescence lifetimes
of the donor-only and FRET samples were measured in fast FLIM mode. The measurement
was completely controlled via Leica Application Suite Advanced Fluorescence. The FRET
efficiency was calculated from the ratio of the FRET donor lifetime τquench and the non-FRET
lifetime τquench as follows:

FRET efficiency (%) = 1 − (τdonor, FRET)/(τdonor, no FRET) (1)

2.6. Western Blot Analysis

16HBE, HEK293T and A549 cells were preplated into six-well plates at a density of
5 × 105 cells per well. The next day, the cells were inoculated with SARS-CoV-2 (MOI = 0.5),
transfected with 3 µg of plasmid (using FuGENE HS transfection reagent) or treated with
poly (I:C). After collection at the appropriate time points, total cellular protein was extracted
with an RIPA (Thermo Scientific, Waltham, MA, USA) buffer consisting of 25 mM Tris·HCl
(pH 7.6), 150 mM NaCl, 1% NP-40, 1% sodium deoxycholate, and 0.1% SDS complete EDTA-
free protease inhibitors. Following SDS–PAGE, Transfer of nitrocellulose membrane by wet
rotary film meter (GenScript, Nanjing, China) under the following common conditions. The
membranes were blocked at room temperature for 1 h and incubated with primary antibodies
diluted with 5% skim milk overnight at 4 ◦C, washed with 0.1% PBST, incubated with
secondary antibody diluted with 5% skim milk at room temperature for 1 h, and washed with
0.1% PBST. ECL chemiluminescence was examined using a BIO-RAD (BIO-RAD, Hercules,
CA, USA) imager, and the grayscale results were analyzed using a Gel-Pro analyzer.

2.7. Pulldown and Immunoprecipitation Analysis

293T cells were placed in 10-cm culture dishes and transfected with pAcGFP and
pAcGFP-N-Flag constructs 12 h later. The cell samples were collected after 24 h; total protein
was extracted with a Pierce™ IP buffer (Thermo Scientific, Waltham, MA, USA) consisting
of 25 mM Tris·HCl (pH 7.4), 150 mM NaCl, 1% NP-40, 1 mM EDTA, and 5% glycerol
complete EDTA-free protease inhibitors. The protein samples were immunoprecipitated
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using Pierce Anti-DYKDDDDK Magnetic Agarose (Thermo Scientific, Waltham, MA, USA)
at room temperature for 20 min. One hundred microliters of SDS–PAGE sample buffer
was then added to the centrifuge tube containing the incubated agarose magnetic beads,
and the mixture was gently vortexed and incubated at 95–100 ◦C for 5–10 min. Following
denaturation, proteins were detected by western blotting.

2.8. Knockdown

siRNA targeting G3BP2 was purchased from Thermo Fisher. 16HBE and A549 cells
were seeded into a 12-well plate at 2 × 105 cells per well and transfected with 30 pg siRNA;
cell samples were collected after 48 h. Total RNA was extracted with TRIzol (TIANGEN,
Beijing, China), and a One-Step TB Green ®PrimeScript RT–PCR Kit (TAKARA, Tokyo,
Japan) and Bio-rad CFX Detection System was used for RT–PCR.

2.9. RT–PCR Analysis

16HBE and A549 cells were seeded into a 12-well plate at 2 × 105 cells per well and
infected with SARS-CoV-2 virus (MOI = 0.5) or transfected with poly (I:C) (Sigma–Aldrich,
St. Louis, MO, USA). The cell samples were collected after 0, 3, 6 and 24 h, and the total
RNA of cell samples were extracted with TRIzol (TIANGEN, Beijing, China). One-Step
TB Green ®PrimeScript RT–PCR Kit (TAKARA, Tokyo, Japan) and Bio-rad CFX Detection
System were used for RT–PCR. The transcription levels of target genes were quantified by
the 2−∆∆ct [25]. The results were normalized to GAPDH expression.

2.10. Statistical Analyses

Each experiment described in this manuscript was repeated at least three times. All
statistical analyses were performed with GraphPad Prism software (version 5, La Jolla,
CA, USA), and a t-test was used for the statistical analyses. The data obtained from all
experiments are presented as means ± standard deviations (SDs). Statistical significance
between different groups was calculated by a two-tailed unpaired Student’s t-test or two-
way ANOVA test. All the data used for statistical analysis were tested by the Shapiro-Wilk
method, and the data were consistent with normal distribution. A p value of less than 0.05
was assumed to indicate statistical significance.

3. Results
3.1. The N Protein Contributes to Inhibition of the RIG-I-like Receptor Signaling Pathway during
SARS-CoV-2 Replication in 16HBE Cells

Previous studies have shown that viral proteins of SARS-CoV can inhibit type I
interferon in the RIG-I-like receptor signaling pathway. In our study of 16HBE cells infected
with SARS-CoV-2, we found that the level of CXCL10 transcription increased gradually
with virus infection progression but that relative expression of ISG15, NF-κB, IFN-α and
IFN-β increased within 6 h and then decreased (Figure 1A). Moreover, when detecting
downstream regulatory proteins of the RIG-I-like receptor pathway, we observed that
phosphorylation of IRF3, NF-κB and TBK1 increased significantly after virus infection but
decreased at 24 h.p.i. (hours post-infection) (Figure 1B). Viral RNA or double-stranded RNA
can initiate RIG-I-like receptor signaling in response to infection, and the synthesis of viral
negative-strand RNA has been proven in several studies to be a critical stage for SARS-CoV
replication. Notably, by using J-2 staining, we observed increases in double-stranded RNA
in 16HBE cells during the infection process at 3, 6 and 24 h.p.i., accompanied by viral S
and N expression (Figure 1C). Thus, we speculate that SARS-CoV-2 has an inhibitory effect
on the type I IFN response in the viral replication stage, even though IFN-α/IFN-β was
upregulated in the early stage of infection in cells. The findings suggest that SARS-CoV-2
infection activates the innate immune response at the initial stage, but the virus gradually
inhibits the RIG-I-like receptor signaling pathway.
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Figure 1. SARS-CoV-2 inhibits activation of IFN-α/β and related proteins in 16HBE cells during viral
replication. (A) Transcription level of RIG-I-like receptor signaling pathway genes in 16-HBE cells at
0, 3, 6, and 14 h post-SARS-CoV-2 infection. Data represent the relative expression of CXCL10, ISG15,
NF-κB, IFN-α and IFN-β are presented as means ± SD (paired t test, n = 3, biological replicates per
group, ns > 0.05, * 0.01 < p < 0.05, ** 0.001 < p < 0.01, *** p < 0.001). (B) Detection of phosphorylation
by western blot analysis of the IRF3, NF-κB and TBK1 proteins. Grayscale results were analyzed
using a Gel-Pro analyzer. Data are presented as means ± SD (paired t test, n = 3 biological replicates
per group, ns > 0.05, * 0.01 < p < 0.05, ** 0.001 < p < 0.01, *** p < 0.001). (C) Double-strand RNA
stained by J-2 in 16HBE cells during the SARS-CoV-2 infection process at 3, 6 and 24 h.p.i. Red
fluorescence corresponds to a double-stranded RNA-positive signal, yellow and green fluorescence
labels SARS-CoV-2 N and S expression, respectively, and blue fluorescence corresponds to nuclei
(DAPI staining; scale bar, 25 µm).

To investigate the function of viral components in this inhibition, we constructed
several expression plasmids for SARS-CoV-2 major structural proteins and open reading
frames. We found that the M protein and N protein had inhibitory effects on the production
of IFN-β (Figure 2A). Compared to poly (I:C), the N protein significantly reduced the
relative expression of ISG15 and IFN-β in stimulated cells (Figure 2B). However, CXCL10
transcription following poly (I:C) activation was not reduced by N protein pre-transfection,
which may result from the strong triggering effect of poly (I:C) on the production of
inflammatory cytokines and chemokines such as TNF-α, IL-6, and CXCL10. Furthermore,
N reduced the level of IRF3, TBK1 and NF-κB phosphorylation (Figure 2C). These results
indicate that the N protein of SARS-CoV-2 inhibits the activation of the RIG-I-like receptor
signaling pathway.
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Figure 2. The N protein interferes with the RIG-I-like receptor signaling pathway in HEK293T
cells. (A) The pcDNA3.1 vector and pcDNA3.1-E, M, N, RDRP, ORF3, ORF6, ORF-7, ORF-8, and
ORF-10 were transfected into cells. Twenty-four hours after transfection, the transfected cells were
stimulated with poly (I:C). Total RNA was extracted from 0- and 6-h cell samples for real-time
PCR. Data represent the relative expression of IFN–β. (paired t test, n = 3, biological replicates per
group, ns > 0.05, * 0.01 < p < 0.05, ** 0.001 < p < 0.01, *** p < 0.001). (B) The pcDNA3.1 vector and
pcDNA3.1-N were transfected into cells. Twenty-four hours after transfection, the transfected cells
were stimulated with poly (I:C). Total RNA was extracted from 0- and 6-h cell samples for real-time
PCR. Data represent relative expression of IFN-β. Data are presented as means ± SD (paired t test,
n = 3 biological replicates per group, ns > 0.05, * 0.01 < p < 0.05, ** 0.001 < p < 0.01, *** p < 0.001).
(C) The pcDNA3.1 vector and pcDNA3.1-N-Flag were transfected into cells. Twenty-four hours after
transfection, the transfected cells were stimulated with poly (I:C). Phosphorylation was detected
by western blot analysis of IRF3, NF-κB and TBK1 proteins from 0- and 6-h cell samples. Grayscale
results were analyzed using a Gel-Pro analyzer. Data are presented as means ± SD (paired t test,
n = 3 biological replicates per group, ns > 0.05, * 0.01 < p < 0.05, ** 0.001 < p < 0.01, *** p < 0.001).

3.2. Cellular TRIM25 and G3BP2 Proteins Are Coimmunoprecipitated by the N Protein at
Its C-Terminus

The N proteins of SARS-CoV and MERS were reported to inhibit activation of the
RIG-I-like receptor signaling pathway via interacting with TRIM25. In our study, based
on mass spectrometry (MS) analysis on interacting cellular proteins from coimmunopre-
cipitation experiments. (Table S1), we found the TRIM25 peptide as well as a peptide of
protein G3BP2 co-interacting with the N protein. We verified the MS results in Table S1 by
western blotting (Figure 3A) and detected a direct interaction between the N protein and
TRIM25 and G3BP2 (Figure 3B,C), revealing an interaction between TRIM25 and G3BP2
(Figure 3D). Immunofluorescence also showed an interaction between the N protein and
G3BP2 (Figure 3E). Moreover, we constructed expression plasmids of N deletion (amino
acids 1–174, 175–255 and 255–419) to explore regions interacting with TRIM25 and G3BP2
(Figure 3F). We found that TRIM25 interacted with N protein amino acids 1–174 and
255–419 (Figure 3G) and that G3BP2 interacted with amino acids 255–419 (Figure 3H). The
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above results show that the C-terminus of the SARS-CoV-2 N protein interacts directly with
both TRIM25 and G3BP2.

Figure 3. Both the TRIM25 and G3BP2 protein are coimmunoprecipitated by the N protein. (A) The
pcDNA3.1 vector and pcDNA3.1-N-Flag were transfected into cells. Twenty-four hours after trans-
fection, TRIM25 and G3BP2 were precipitated by the N protein in pulldown experiments using
the Flag tag. (B) The pcDNA3.1-TRIM25-Myc and pcDNA3.1-N-Flag were cotransfected into cells.
Twenty-four hours after transfection, the interaction between the N protein and TRIM25 was detected
by a coimmunoprecipitation experiment. (C) The pcDNA3.1-G3BP2-HA and pcDNA3.1-N-Flag were
cotransfected into cells. Twenty-four hours after transfection, the interaction between N protein
and G3BP2 was detected by coimmunoprecipitation. (D) pcDNA3.1-G3BP2-HA and pcDNA3.1-
TRIM25-Myc were cotransfected into cells. Twenty-four hours after transfection, interaction between
TRIM25 and G3BP2 was detected by coimmunoprecipitation. (E) Twenty-four hours after pcDNA3.1-
G3BP2-HA and pcDNA3.1-N-Flag were cotransfected into cells, a cellular immunofluorescence
assay was performed to assess the interaction between the N protein and G3BP2. Red fluorescence
corresponds to the G3BP2-positive signal, green fluorescence labels SARS-CoV-2 N, and blue flu-
orescence corresponds to nuclei (DAPI staining; scale bar, 10 µm). (F) Diagram of the N protein
divided into three parts: amino acids 1–174, 175–255 and 255–419. (G) pcDNA3.1-G3BP2-HA and
pcDNA3.1-N (1–174/175–225/255–419)-Flag were cotransfected into cells. Twenty-four hours after
transfection, an interaction between the 1–174 or 175–255 or 255–419 region of the N protein and
G3BP2 was detected by coimmunoprecipitation. (H) pcDNA3.1-TRIM25-Myc and pcDNA3.1-N
(1–174/175–225/255–419)-Flag were cotransfected into cells. Twenty-four hours after transfection, an
interaction between the 1–174, 175–255 or 255–419 region of the N protein and G3BP2 was detected
by coimmunoprecipitation.
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3.3. Engagement of G3BP2-TRIM25 Binding Is Enhanced by N Protein Recruitment

The above findings suggest that the N protein may recruit TRIM25 and G3BP2 to
enhance the interaction between them. We observed that TRIM25 binding to G3BP2
increased significantly in 293T cells pre-transfected by Flag-N (Figure 4A). Furthermore,
this interacting was observed more significantly in the 293T cells co-transfected with Myc-
TRIM25, HA-G3BP2 and Flag-N (Figure 4B). Confocal imaging also revealed that TRIM25
and G3BP2 gradually colocalized with N in the cytoplasm of SARS-CoV-2-infected cells
from 0 to 24 h.p.i. (Figure 4C). For further verifying G3BP2-TRIM25 interaction enhanced by
the N protein, we designed a fluorescence resonance energy transfer (FRET)/fluorescence
lifetime imaging (FLIM) assay to interpret this process. In 293T cells co-transfected with
Myc-TRIM25, HA-G3BP2 and Flag-N plasmids, we observed three protein co-localization
regions and aggregation as shown in the red circle (Figure 4D). The proximity between two
proteins in cells can be measured by calculating the FRET efficiency values. We found that
the fluorescence energy transfer from G3BP2 to TRIM25 was significantly enhanced by the
N protein being co-expressed in cells, and the FRET efficiency values were 42%, compared
with 36% in cells without N protein expression. Our results confirmed G3BP2 binding
TRIM25 in cytoplasm, and N protein can enhance this interaction (Figure 4E). Interestingly,
we also found that N promoted the expression of both G3BP2 and TRIM25 (Figure S1).

Figure 4. Cont.
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Figure 4. The engagement of G3BP2-TRIM25 binding is enhanced by the recruitment of the N protein.
(A) The pcDNA3.1 vector and pcDNA3.1-N-Flag were transfected into cells. Twenty-four hours after
transfection, coimmunoprecipitation showed that binding of TRIM25 to G3BP2 increased significantly
in the presence of N. Grayscale results were analyzed using a Gel-Pro analyzer. Data are presented as
means ± SD (paired t test, n = three biological replicates per group, * 0.01 < p < 0.05, ** 0.001 < p < 0.01,
*** p < 0.001). (B) pcDNA3.1-TRIM25-Myc, pcDNA3.1-G3BP2-HA and pcDNA3.1-N-Flag were
cotransfected into cells. Twenty-four hours after transfection, coimmunoprecipitation showed that
binding of TRIM25 to G3BP2 increased significantly in the presence of N. Grayscale results were
analyzed using a Gel-Pro analyzer. Data are presented as means± SD (paired t test, n = three biological
replicates per group, * 0.01 < p < 0.05, ** 0.001 < p < 0.01, *** p < 0.001). (C) From 0 to 24 h after cells were
infected with SARS-CoV-2, confocal imaging showed that TRIM25 and G3BP2 gradually colocalized
with N in the cytoplasm from 6 to 24 h.p.i. Red fluorescence corresponds to the TRIM25-positive signal,
yellow fluorescence indicates G3BP2, purple fluorescence corresponds to SARS-CoV-2 N, and blue
fluorescence corresponds to nuclei (DAPI staining; scale bar, 10 µm). (D) pcDNA3.1-TRIM25-Myc,
pcDNA3.1-G3BP2-HA and pcDNA3.1-N-Flag were cotransfected into cells, and confocal imaging
showed that TRIM25 and G3BP2 colocalized with N in the cytoplasm. Red fluorescence corresponds
to the TRIM25-positive signal, yellow fluorescence labels G3BP2, green fluorescence corresponds to
SARS-CoV-2 N, and blue fluorescence corresponds to nuclei (DAPI staining; scale bar, 10 µm). (E) We
divided the plasmid into three groups, the first group was pcDNA3.1-G3BP2-HA; the second group
was pcDNA3.1-TRIM25-Myc and pcDNA3.1-G3BP2-HA; the third group was pcDNA3.1-TRIM25-
Myc, pcDNA3.1-G3BP2-HA and pcDNA3.1-N-Flag was transfected into 293T cells. Twenty-four
hours later, the cell samples were collected for immunofluorescence staining. Samples were analyzed
by fluorescence resonance energy transfer analysis software. Data are presented as means ± SD
(paired t test, n = 5 biological replicates per group, *** p < 0.001).

3.4. Colocalization of G3BP2, TRIM25 and N Protein in Respiratory Tract Tissue Was Observed in
SARS-CoV-2 Infection of Rhesus Monkeys

We obtained similar findings in vivo in a nasal infection experiment of rhesus monkeys.
Using tissue sections of the nasopharynx and lungs of rhesus monkeys infected with SARS-
CoV-2 for 3 days, we detected TRIM25, G3BP2 and N protein colocalization to form a
complex (Figure 5A). There were numerous collocated regions of the three proteins in the
lungs (Figure 5B). Interestingly, on the seventh day after infection, the TRIM25 protein
in nasopharyngeal tissue decreased significantly, with only G3BP2 and N colocalizing
(Figure 5C). Compared with the cellular infection experiment, the protein expression of
G3BP2 and TRIM25 increased gradually in the early stage of virus infection. However, in
the later stage of infection, the expression of TRIM25 decreased to below the normal level,
which was different from that of G3BP2.
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Figure 5. Colocalization of G3BP2, TRIM25 and N in the nasopharynx and lung tissue of SARS-CoV-2-
infected rhesus monkeys. (A) Tissue sections of nasopharynx and lung samples of rhesus macaques
were collected at 3 dpi and stained with a fluorescence-labeled antibody for confocal observation. Yellow
fluorescence corresponds to the TRIM25-positive signal, red fluorescence labels correspond to G3BP2,
green fluorescence corresponds to SARS-CoV-2 N, and blue fluorescence corresponds to nuclei (DAPI
staining; scale bar, 10 µm or 50 µm). (B) Tissue sections of the nasopharynx and lung samples of
rhesus macaques were collected at 7 dpi and stained with a fluorescence-labeled antibody for confocal
observation. Yellow fluorescence corresponds to the TRIM25-positive signal, red fluorescence labels
correspond to G3BP2, green fluorescence corresponds to SARS-CoV-2 N protein, and blue fluorescence
corresponds to nuclei (DAPI staining; scale bar, 10 µm or 50 µm). (C) 16HBE cells (MOI = 0.5) were
infected with SARS-CoV-2. Cell samples were collected 0, 3, 6, and 24 h after infection for western blot
assays. Expression of G3BP2 and TRIM25 increased gradually in the early stage of infection. (paired
t test, n = 3 biological replicates per group, ns > 0.05, * 0.01 < p < 0.05, ** 0.001 < p < 0.01).

3.5. Overexpression of G3BP2 Impairs TRIM25 Regulation of the Type I Interferon Signaling
Pathway during SARS-CoV-2 Infection

The above results suggest that G3BP2 is involved in the process of SARS-CoV-2 N
protein binding to TRIM25 and may play a critical role in the antiviral response. In A549
cells pre-transfected with the HA-G3BP2 plasmid, gene expression of ISG15 and IFN-β
was inhibited after poly (I:C) stimulation (Figure 6A). At the protein level, overexpres-
sion of G3BP2 affected phosphorylation of IRF3 and NF-κB (Figure 6B) and bound with
intracellular TRIM25 (Figure 6C). In addition, the SARS-CoV-2 virus titer in 16HBE cells
overexpressing G3BP2 was higher than that of control cells at 48 h.p.i. (Figure 6D). The
above results implied that G3BP2 functioning in inhibition of the RIG-I-like receptor path-
way may be related to binding to TRIM25. To verify this hypothesis, we knocked down
G3BP2 by siRNA and found that ISG15 and CXCL10 increased significantly in cells, but
expression of IFN-β was still inhibited (Figure 6E). We also observed a significant in-
crease in phosphorylation levels of IRF3, TBK1 and NF-κB in cells with G3BP2 knockdown
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(Figure 6F). Similarly, SARS-CoV-2 replication was increased in G3BP2-knockdown 16HBE
cells (Figure 6G), and expression of the IFN-β gene was inhibited. Finally, we detected the
activation of the RIG-I signaling pathway with the simultaneous overexpression of RIG-I,
TRIM25 and G3BP2, and found that the presence of G3BP2 still inhibits the activation of
the RIG-I pathway (Figure 6H). Based on the above results, we believe that G3BP2 plays a
role in type I interferon production, and its binding to TRIM25 inhibits activation of the
RIG-I-like receptor pathway.
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Figure 6. Overexpression of G3BP2 impairs TRIM25 regulation of the type I interferon signaling pathway
during SARS-CoV-2 infection. (A) The pcDNA3.1 vector and pcDNA3.1-G3BP2-HA were transfected
into A549 cells. Twenty-four hours after transfection, gene expression of ISG15, CXCL10 and IFN-β was
detected by real-time PCR after stimulation with poly (I:C). Data representing the relative expression
of different genes are shown as means ± SD (paired t test, n = 3, biological replicates per group, ns
> 0.05, * 0.01 < p < 0.05, ** 0.001 < p < 0.01, *** p < 0.001). (B) The pcDNA3.1 vector and pcDNA3.1-
G3BP2-HA were transfected into A549 cells. Twenty-four hours after transfection, phosphorylation
was detected by western blot analysis of the IRF3, NF-κB and TBK1 proteins from 0- and 6-h cell
samples after stimulation with poly (I:C). Grayscale results were analyzed using a Gel-Pro analyzer.
Data are presented as means ± SD (paired t test, n = three biological replicates per group, ns > 0.05,
* 0.01 < p < 0.05, ** 0.001 < p < 0.01, *** p < 0.001). (C) The pcDNA3.1 vector and pcDNA3.1- G3BP2-HA
were transfected into A549 cells. Twenty-four hours after transfection, coimmunoprecipitation showed
that overexpressed G3BP2 bound to intracellular TRIM25. (D) The pcDNA3.1 vector and pcDNA3.1-
G3BP2-HA were transfected into A549 cells. Twenty-four hours after transfection, SARS-CoV-2 was
inoculated into the cells; the virus titer in cells overexpressing G3BP2 was higher than that of control
cells at 48 h.p.i. (E) G3BP2 siRNA and control siRNA were transfected into 16HBE cells. After 48 h, cell
samples were collected at 0 and 6 h after poly (I:C) stimulation, and the expression of ISG15, CXCL10
and IFN-β was detected by real-time PCR. Data representing relative expression that normalized by
β-actin of different genes are shown as means ± SD (paired t test, n = 3, biological replicates per group,
ns > 0.05, * 0.01 < p < 0.05, ** 0.001 < p < 0.01, *** p < 0.001). (F) G3BP2 siRNA and control siRNA were
transfected into 16HBE cells. After 48 h of poly (I:C) stimulation, phosphorylation of IRF3, NF-κB and
TBK1 in 0- and 6-h cell samples was detected by western blotting. Grayscale results were analyzed using
a Gel-Pro analyzer. Data are presented as means ± SD (paired t test, n = three biological replicates per
group, * 0.01 < p < 0.05, ** 0.001 < p < 0.01, *** p < 0.001). (G) G3BP2 siRNA and control siRNA were
transfected into 16HBE cells. At 48 h after SARS-CoV-2 infection, cell samples were collected at 0 and 6,
and expression of ISG15, CXCL10 and IFN-β was detected by real-time PCR. Data represent the relative
expression of different genes. The virus titer in G3BP2-knockdown cells was higher than that of control
cells at 48 h.p.i. Data are presented as means ± SD (paired t test, n = 3, biological replicates per group,
* 0.01 < p < 0.05, ** 0.001 < p < 0.01, *** p < 0.001). (H) HA-G3BP2, Myc-TRIM25 and Flag-RIG-I were
transfected into A549 cells. Twenty-four hours after transfection, the cells were stimulated with poly (I:C)
and harvested after 6 h. The expression of IFN-β and ISG15 was determined by real-time PCR. Data
are presented as means ± SD (paired t test, n = three biological replicates per group, * 0.01 < p < 0.05,
** 0.001 < p < 0.01).

4. Discussions

Compared with SARS-CoV and MERS-CoV, SARS-CoV-2 is highly transmissible and
causes serious respiratory symptoms. As many people infected with SARS-CoV-2 do not
have COVID-19 symptoms, there are to date insufficient data to explain this phenomenon.
Our previous study of nasal infection in rhesus monkeys revealed a pattern of long-term
viral shedding related to disturbed innate immune responses in the respiratory tract [26].
Additionally, in previous studies, we found that SARS-CoV-2 has the ability to duplicate
and is maintained in 16HBE cells for longer than 7 days, with no obvious cytopathic effect
(CPE) and accompanied by a modified transcription profile of innate immune signaling
molecules [27]. Different from other RNA viruses, the interferon response induced by
SARS-CoV-2 is notably weak [28–30], which may be related to its multiple inhibition of the
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cellular innate immune response, including several viral proteins that affect the production
of type I interferon during replication in cells [31–34].

Coronavirus structural proteins, the M protein and N protein, were reported to impair
type I interferon production. Previous studies have shown that the N protein of SARS-CoV
interacts with TRIM25 to inhibit activation of the RIG-I-like receptor signaling pathway [12].
In our study, we verified that the SARS-CoV-2 N protein interacts with TRIM25 and inhibits
the RIG-I-like receptor pathway in 16HBE cells. In contrast to previously published results
showing that the C-terminus of SARS-CoV N interacts with TRIM25, we detected two
regions of the N protein that bind to TRIM25. Hence, the SARS-CoV-2 N protein has
a stronger binding affinity to TRIM25, which may result in the enhanced inhibition of
RIG-I-like receptor pathway activation.

One of the most important findings of this study is that G3BP2 is involved in the
process of N protein binding to TRIM25. The presence of the N protein promotes TRIM25
and G3BP2 binding. We further demonstrate that the N protein has a certain recruitment
effect on TRIM25 and G3BP2 through a shared binding region at the C- and N-termini.
Clued by reports that showed that G3BP2 protein knockout inhibits entry of NF-κB into
the nucleus [20], we found that the production of type I interferon is affected by G3BP2
knockdown in cells, demonstrating that G3BP2 is an important factor in innate immunity
during SARS-CoV-2 infection. The interaction between G3BP2 and TRIM25 driven by the N
protein leads to negative feedback regulation, which may be the reason why the RIG-I-like
receptor pathway is inhibited when G3BP2 is overexpressed and interacts with TRIM25.

5. Conclusions

In general, on the basis of previous studies, our results further explain how the N protein
of SARS-CoV-2 inhibits the activation of the RIG-I-like receptor signal pathway. The results
further clarify the importance of the N protein in the process of SARS-CoV-2 infection, and
suggest that the N protein has great potential in the development of vaccines and could be a
good strategy for increasing the effectiveness of SARS-CoV-2 vaccines in the future. We drew
a hypothetical mechanism model diagram to demonstrate our results (Figure 7).

Figure 7. The possible mechanism of the N protein of SARS-CoV-2 promotes the interaction between
G3BP2 and TRIM25 to inhibit innate immunity during infection.
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TRIM25-Myc was cotransfected with 0.5, 1.0, 2.0, or 3.0 µg of pcDNA3.1-N-Flag, Table S1: MASS
spectrometry results.
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