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Abstract: Arduino-based accelerometers are receiving wide attention from researchers to make
long-term Structural Health Monitoring (SHM) feasible for structures with a low SHM budget. The
current low-cost solutions found in the literature share some of the following drawbacks: (1) high
noise density, (2) lack of wireless synchronization, (3) lack of automatic data acquisition and data
management, and (4) lack of dedicated field tests aiming to compare mode shapes from Operational
Modal Analysis (OMA) with those of a digital model. To solve these problems, a recently built short-
span footbridge in Barcelona is instrumented using four Low-cost Adaptable Reliable Accelerometers
(LARA). In this study, the automatization of the data acquisition and management of these low-cost
solutions is studied for the first time in the literature. In addition, a digital model of the bridge
under study is generated in SAP2000 using the available drawings and reported characteristics of
its materials. The OMA of the bridge is calculated using Frequency Domain Decomposition (FDD)
and Covariance Stochastic Subspace Identification (SSI-cov) methods. Using the Modal Assurance
Criterion (MAC), the mode shapes of OMA are compared with those of the digital model. Finally, the
acquired eigenfrequencies of the bridge obtained with a high-precision commercial sensor (HI-INC)
showed a good agreement with those obtained with LARA.

Keywords: Operational Modal Analysis; Arduino; low-cost accelerometer; IoT-based sensor;
long-term monitoring; FDD; SSI-cov

1. Introduction

The evaluation of bridge infrastructures in Italy after the Polcevera Viaduct collapse
in Genoa served as a warning that sturdy construction alone cannot ensure a bridge’s
longevity [1]. Morgese et al. [2] indicate that real-time health monitoring of this bridge
could have provided sufficient information for adequate maintenance and warning of
the impending failure 2–4 years before the actual bridge collapse in August of 2018. In
fact, continuous monitoring of bridges is necessary to spot defects and damage and to
schedule maintenance periodically [1]. It should also be noted that the health state of
bridges normally depends on the country. For example, the USA’s infrastructure is strongly
dependent on the state.

In reality, the pathologies (such as those associated with degradation of structural
and mechanical properties of the materials) in the structures can advance substantially
faster due to a lack of continuous maintenance and repair efforts or due to ineffective ones.
It is essential to highlight that these pathologies can endanger the very stability of the
structures [3].
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The possibility of lowering the risks connected with structural pathologies depends on
the feasibility of accurately analyzing its structural performance [4]. In addition, continuous
maintenance and repair activities are required to ensure functional and safe conditions
throughout the lifecycle of civil infrastructures and buildings [5]. One of the great chal-
lenges of long-term monitoring is distinguishing the modal parameter changes caused
by environmental parameters (such as temperature and humidity) from those caused by
structural pathologies. It is shown in the civil engineering literature (see, e.g., [6]) that
the natural frequency of a structure decreases with the increase in ambient temperature
and humidity. However, in comparison with the eigenfrequencies, these environmental
parameters do not play an important role in mode shapes. In fact, to take into account the
ambient variations, it is suggested by many scholars (such as in [7]) that SHM applications
should be performed based on long-term average values. Among the applications for
long-term ambient vibration assessment, it is important to highlight the Probabilistic Power
Spectral Density (PPSD), which has been successfully used in several regions (such as India,
Bulgaria, Italy, and Austria) [8].

Assessment of the health state of infrastructures throughout their lifecycle is essential
to verify their structural safety and serviceability [9] and minimize their future repara-
tion costs [10]. Structural Health Monitoring (SHM) applications can provide essential
information about the current structural response, performance, and condition of infras-
tructures [11]. Consequently, SHM techniques are gaining extensive attention from civil
engineers and infrastructure owners [12].

The Structural System Identification method is a vital component of SHM that evalu-
ates the parameters of the structural model [13]. Set up from the structural response that was
induced, Structural System Identification applications can be grouped as static [14,15] or
dynamic [3,16,17]. Dynamic Structural System Identification techniques require the natural
structure’s dynamic features (such as frequencies, damping ratio, and mode shapes) [18,19]
that can be calculated by the modal analysis of the structure [20].

Modal analysis is typically used to determine infrastructures’ mechanical characteris-
tics [21,22]. In the literature, three main modal analysis methods can be found. Experimental
Modal Analysis (EMA): EMA is known to be the oldest modal analysis method and is
carried out by artificially exciting a structure using an impact hammer or a shaker in a
controlled environment such as a laboratory [23]. Operational Modal Analysis (OMA): this
method performs a modal analysis of a structure under operation, which is only excited by
its ambient vibrations [24]. Impact Synchronous Modal Analysis (ISMA): this application
carries out the modal analysis of a structure under operation that is excited both artificially
and by its ambient vibrations [25]. Unlike EMA, OMA and ISMA are performed while the
structure is in its ordinary operation [26]. The difference between OMA and ISMA is that
OMA is performed under ambient excitation without any additional artificial excitation
instruments. The value of these vibrations, which will be the inputs of OMA, is unknown.
Contrary to OMA, ISMA uses artificial excitation as in EMA, with known values as its
input value [27].

It should be noted that OMA or EMA methods depend on the availability of the
external excitation of a structure and are not dependent on the type of the sensors used for
measuring the corresponding response of the structure. In fact, both contact and contactless
sensors can be used for OMA and EMA. The selection of the sensor type (contact or
noncontact) depends to a great extent on the structure characteristics, as well as on the
monitoring budget.

Table 1 summarizes the comparison of the aforementioned modal analysis applications.
One of the well-known drawbacks of OMA is the inaccurate identification of harmonics

as poles, which has been discussed in several works [28]. In addition, when the frequency
of the input’s harmonic component is near to an eigenfrequency of the system, OMA
approaches fail to appropriately identify the modal parameters [29].



Sensors 2022, 22, 9808 3 of 22

Table 1. Comparison of the famous modal analysis methods.

Modal Analysis Method
Natural Excitation of the
Structure under Ambient

Vibrations

Artificial Excitation of the
Structure by Using a
Vibrator or an Impact

Hammer

EMA
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ologies of SSI are data-driven (SSI-data) and covariance (SSI-cov) [35]. The literature 
pointed out that SSI-data methods are less straightforward and computationally more ex-
pensive than the SSI-cov methods [36,37]. 

The basic idea behind frequency domain techniques is to calculate the modal param-
eters from quantities (such as magnitude, phase, and half-bandwidth) related to the spec-
tral response function’s peak values. SSI algorithms, on the other hand, approach this 
problem from a time domain point of view, modeling the obtained timeseries as the out-
put of an analogous linear system whose governing equations are entirely characterized 
by the linked state–space matrices [36]. The primary benefit of SSI approaches over tradi-
tional spectral alternatives is that they are entirely unsupervised [37]. 

To compare the mode shapes generated from a modal analysis technique with an-
other technique, Modal Assurance Criterion (MAC) is typically used [38]. One of its uses 
is comparing an operational analysis’ mode shapes with an analytical one [39]. 

The needed vibration response of the structure for modal analysis is usually acquired 
using accelerometers [40,41]. These types of devices are force-based sensors that are typi-
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of accelerometers are piezoelectric [42], piezoresistive [43], differential capacitive [44], and 
micro-electro-mechanical systems (MEMS) accelerometers [31]. Piezoelectric accelerome-
ters with a range frequency of up to 12 kHz are among the most popular types of accel-
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erometers are silicon-based sensors that found their way into many industrial applications 
due to their significant ongoing technological developments. 
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The most significant advantage of OMA in comparison with EMA and ISMA is its
modal characterization in natural operating conditions when it is difficult to artificially
excite the structure [30]. Consequently, in civil engineering applications, OMA methods
are typically used for bridges [31].

Some of the most common OMA methods in the literature are as follows: (1) Frequency
Domain Decomposition (FDD), and (2) Stochastic Subspace Identification (SSI).

On the one hand, FDD is a nonparametric frequency domain modal analysis method
that analyzes the structures under ambient excitations [32] and is widely used due to its
simplicity [33]. This method is also known as Complex Mode Indicator Function (CMIF)
to show its ability to detect multiple roots. This ability counts the number of primary
(dominant) modes at a particular frequency. In addition, since the mode shape outputs of
the FDD method are usually complex eigenvalues, they must be converted to real mode
shapes [33]. After their conversion, the mode shapes of the operational analysis can be
compared with an analytic model.

Stochastic Subspace Identification (SSI) is a parametric time domain modal analysis
method that fits a parametric model directly into the raw timeseries data. In this approach,
a parametric model is considered as a mathematical model that has parameters that can be
changed to alter how the model fits to the data [34]. Two of the most popular methodologies
of SSI are data-driven (SSI-data) and covariance (SSI-cov) [35]. The literature pointed out
that SSI-data methods are less straightforward and computationally more expensive than
the SSI-cov methods [36,37].

The basic idea behind frequency domain techniques is to calculate the modal parame-
ters from quantities (such as magnitude, phase, and half-bandwidth) related to the spectral
response function’s peak values. SSI algorithms, on the other hand, approach this problem
from a time domain point of view, modeling the obtained timeseries as the output of an
analogous linear system whose governing equations are entirely characterized by the linked
state–space matrices [36]. The primary benefit of SSI approaches over traditional spectral
alternatives is that they are entirely unsupervised [37].

To compare the mode shapes generated from a modal analysis technique with another
technique, Modal Assurance Criterion (MAC) is typically used [38]. One of its uses is
comparing an operational analysis’ mode shapes with an analytical one [39].

The needed vibration response of the structure for modal analysis is usually acquired
using accelerometers [40,41]. These types of devices are force-based sensors that are
typically used to measure the vibration response of structures. The four most common types
of accelerometers are piezoelectric [42], piezoresistive [43], differential capacitive [44], and
micro-electro-mechanical systems (MEMS) accelerometers [31]. Piezoelectric accelerometers
with a range frequency of up to 12 kHz are among the most popular types of accelerometers
traditionally used in SHM applications [45]. On the other hand, MEMS accelerometers are
silicon-based sensors that found their way into many industrial applications due to their
significant ongoing technological developments.

According to the literature [46], the cost of accelerometers is one of their main lim-
itations for SHM applications. In fact, the price of the vibration acquisition equipment
is not limited to the accelerometer itself since additional costs (data acquisition equip-
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ment, high-quality wires for transferring analog data, and a real-time controller) must be
considered [31].

Furthermore, it should be noted that the focus of SHM applications is shifting from
temporary structural assessment (also known as time-based evaluations) to long-term
monitoring (permanent-based) applications. This shifting requires for low-cost, reliable
instrumentation of the infrastructures [47].

It should be noted that an accelerometer’s sensitivity has an indirect relation with the
squared value of the resonant frequency. As a result, the higher the sampling frequency of
an accelerometer, the lower its sensitivity [48]. Consequently, to choose the right accelerom-
eter, the dynamic characteristics of the structures under study should first be studied. It
should be noted that the primary natural frequency range of most civil structures that are
typically used for SHM is between 0.2 and 100.0 Hz [49]. It is shown in the literature on
civil engineering that the primary natural frequency of short-span bridges (span length of
a maximum of 40 m [50]) usually ranges between 3.0 and 30.0 Hz [51–53]. The primary
eigenfrequency of the medium-span and long-span bridges is between 0.1 and 8.0 Hz (see,
e.g., [54–56]). It should be noted that an accelerometer’s sensitivity has an indirect relation
with the squared value of the resonant frequency. As a result, the higher the sampling
frequency of an accelerometer, the lower its sensitivity [48].

In fact, MEMS accelerometers can offer a low-cost alternative with low-power con-
sumption, high sensitivity, and an adequate sampling frequency compared with piezo-
electric accelerometers [47]. Another advantage of using MEMS accelerometers is their
connectivity to low-cost microcontrollers such as Arduino. Arduino, a low-cost microcon-
troller with several communication ports [57] (such as the Inter Integrated Circuit (I2C)
serial communication bus), can be used to connect with a MEMS accelerometer [58].

It should be noted that more and more prototypes based on the use of low-cost MEMS
accelerometers are being developed every day. For example, Pardeshi et al. [59] used an
ADXL335 accelerometer and an Arduino Mega2560 to estimate the tire pressure of a vehicle
using the vibration of the wheel hub. Patange et al. [60] developed a system for detecting
various failure modes of a single-point cutting tool using machine learning and an Arduino-
based vibration acquisition equipment that uses an ADXL335 MEMS accelerometer.

Notwithstanding the versatility and the advantages of MEMS accelerometers, they
are typically affected by intrinsic noise density values comparatively higher than those
from other types of accelerometers [37]. In addition, while piezoelectric accelerometers use
expensive external precise signal conditioning circuitry [31], MEMS accelerometers typically
incorporate it onboard. However, even though this onboard incorporation provides possible
connectivity with low-cost microcontrollers (Arduino), it is a known source of additional
noises [61].

To enhance the noise density of low-cost MEMS accelerometers, Komarizadehasl
et al. [31] proposed combining several synchronized and aligned accelerometers and pre-
senting the average value of the acquired vibrations as an output. This sensor combination
reduced the inherent noise density of the individual sensors used and enhanced the noise
density and resolution of the combined system.

The Low-cost Adaptable Reliable Accelerometer (LARA) is a triaxial accelerometer
with improved noise density and accuracy by combining the outputs of five synchronized
MPU9250 circuits using a multiplexor (TCA9548A). According to [31,47], reporting the
averaged results of five similar low-cost accelerometers aligned and located on a rigid plate
improves RMS resolution, noise density, and accuracy.

LARA is based on Arduino and Raspberry Pi technologies. Furthermore, LARA
uses an activated Network Time Protocol (NTP) that can be post-synchronized for modal
analysis applications. In addition, LARA has an open-source programable data acquisition
application written in Python language [47].

A literature review comparing LARA with other developed low-cost MEMS accelerom-
eters for SHM applications is summarized in Table 2. This table includes the following
information collected in columns: (1) the name or the model of the accelerometer, (2) the
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acceleration range, (3) the sampling frequency, (4) the noise density (ND), (5) application,
and (6) references.

Table 2. Low-cost solutions in the literature to measure accelerations.

Accelerometer Acceleration
Range (g)

Sampling
Frequency (Hz)

Spectral Noise
(µg/
√

Hz) Application References

ADXL335 ±3 g 100 300 1 Eigenfrequency analysis of a bridge [59,60]

LIS344ALH ±2 g 100 50 1 Mode shape assessment of a beam
model [62]

LEWIS ±2 g 100 400 1 Shaking table that simulates
transverse displacements [63]

LEWIS2 ±2 g 500 300 1 Shaking table that simulates
transverse displacements [64]

LSM9DS1 ±2 g 952 No data Eigenfrequency analysis of a nearby
sheet piling work [65]

ADXL362 ±2 g 100 400 1 Mode shape assessment of a
laboratory floor [66]

LARA ±2 g 333 51 2 Eigenfrequency analysis of a bridge [47]
1 Datasheet. 2 Laboratory test.

Analysis of Table 2 shows that LARA has a better noise density (51 µg/
√

Hz) than
most of the other developed solutions (usually ranging between 300 and 400 µg/

√
Hz). As

a result, LARA distinguishes itself from most current low-cost accelerometers in the market.
In fact, its accuracy and resolution can be compared to those of commercial accelerometers
(PCB 393A03 and 356B18) [31].

It should be noted that contact sensors (such as accelerometers) are not the only type
of sensor that can be used for the modal analysis of a structure. In fact, the literature review
shows the increasing use of noncontact modal analysis of structures. Marwits et al. [67]
investigated the feasibility of using three arrays of Scanning Laser Doppler Vibrometers
(SLDV) for a noncontact OMA. Wang et al. [68] developed a novel vision-based modal
testing application using three synchronized cameras. The application was then used
for the OMA of a suspension footbridge. Another noncontact sensor used for modal
analysis is 3D Laser Vibrometry. However, due to its high cost, it is normally used in EMA
in the aerospace industry and when other solutions are not applicable, as in very light
structures [69].

There is a gap in the literature regarding implementing low-cost Arduino-based
accelerometers on actual structures under operation for mode shape assessment. This
paper, for the first time in the literature, instruments a short-span bridge in Barcelona
using four upgraded LARA accelerometers with automatized data acquisition features for
OMA. After post-synchronizing the vibration acquisition of the used LARAs, a FDD and
SSI-cov analysis is performed. Finally, the acquired complex mode shapes are normalized
and compared with those of an analytical model of the bridge under study using the
MAC equation.

In this experiment, the analyzed eigenfrequencies of the OMA are compared with
those of a commercial dynamic sensor (HI-INC) [70].

The novelty of this paper refers to the use of a low-cost accelerometer prototype in an
experiment with real conditions and comparing the mode shapes of the modal analysis
with those of the digital model of the structure based on the available blueprints of the
structure. This work also presents a novel application for LARA that automates its data
acquisition and management.

It should be noted that the physical construction of LARA is part of the open-design
movement that can provide new opportunities for other researchers to produce their own
sensors instead of purchasing expensive commercial solutions. In order to encourage
researchers to use LARA, the instructions for its manual alignment of 5 MPU9250 are
presented in [47,71,72]. LARA is an open hardware prototype that has customization
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advantages. For example, in case a project needs temperature and humidity measurements,
another sensor (such as DHT22 [73]) can be added to the system, making it versatile
and customizable.

This paper is organized as follows: In Section 2, LARA is presented with its detailed
characteristics and new upgrade for automated data acquisition and management. Further
in this section, a laboratory experiment is performed to show the post-synchronization
capability of LARA. Then, in Section 3, the analytical and operational modal analyses
(FDD and SSI-cov) of a short-span bridge are presented with a detailed comparison of both
methods. Finally, the main conclusions are drawn in Section 4.

2. Low-Cost Adaptable Reliable Accelerometer (LARA)

This section begins by explaining why LARA was chosen for this research. Then, a brief
overview of the sensing and data acquisition components of LARA is provided. Finally, the
post-synchronization application of this paper is presented using a laboratory experiment.

2.1. Selection of LARA

LARA is a low-cost wireless accelerometer with post-synchronization capability and
a noise density of 0.00005 m/s2. This device has been validated in laboratory experi-
ments against commercial experiments using commercial piezoelectric accelerometers
(PCB 393A03 and PCB 356B18) [31]. In these laboratory experiments, the eigenfrequency
measurement of LARA was validated in the frequency range of 0.4 to 32 Hz. Furthermore,
its acceleration amplitude was confirmed within the range of 0.006 to 1 g (9.80655 m/s2).
Moreover, the eigenfrequency analysis of LARA was validated on a short-span and a
medium-span footbridge with a frequency range of 2 to 25 Hz [47].

Table 3 compares the RMS resolution and price of a LARA with some commercial
accelerometers commonly used in SHM applications for bridges and footbridges. This table
includes the following information collected in columns: (1) name, (2) price: based on a re-
cent quote from retailors (VAT excluded), (3) sampling frequency, (4) broadband resolution,
also known as Root Mean Square (RMS) resolution, (5) sensitivity, and (6) references.

Table 3. Comparing a LARA with standard accelerometers for the SHM of bridges.

Name Price Sampling
Frequency

Broadband
Resolution Sensitivity Type Reference

EUR Hz mg RMS V/g [47]
LARA 140 3 333 0.93 0.625 Triaxial

IMI 604B31 613 5000 0.35 0.100 Triaxial [74]
IMI 607A61 324 10,000 0.35 0.100 Uniaxial [75]

3 Research prototype.

It should be noted that the only wireless solution presented in Table 3 is LARA.
Furthermore, unlike the commercial solutions, LARA does not necessitate the purchase of
additional Data Acquisition Equipment (DAQ). This equipment adds an average extra cost
of EUR 700 for every single measurement channel [31].

In addition, LARA in its current form has a higher broadband resolution than tradi-
tional commercial accelerometers (Table 3). Consequently, its use can be limited to those
structures that have a high ambient vibration, such as the OMA of bridges, as they are
normally dependent on the heavy ambient vibrations to excite the structure. It should be
noted that to deal with unwanted frequencies such as ambient vibrations, bandpass filters
from the signal processing toolbox [76] of MATLAB can be used. It should also be noted
that the current noise density of LARA based on the presented information in Table 2 is 51
µg/
√

Hz. This value can be improved by aligning more MPU9250 chipsets on a single PCB.
This is because the noise density of LARA has an indirect ratio with the square root of the
number of aligned chipsets [31].
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LARA has an adequate sampling frequency of 333 Hz for vibration acquisition of
bridges, three times higher than the indicated eigenfrequency range of short-span bridges
in the literature [49].

Figure 1a presents the LARA sensor used in this study. This device is composed of
two essential parts: (1) the sensing part: containing the aligned accelerometers and the
multiplexor, and (2) the data acquisition part: containing the Arduino used to convert the
accelerometer outputs to a typical acceleration value (g) and the Raspberry Pi 3+ used to
save the Arduino outputs and provide internet access to the entire system. It is critical
to state that LARA employs Arduino and Raspberry Pi for robust data acquisition and
post-synchronization of multiple accelerometers. The Arduino serves as a data conditioner,
and the Raspberry Pi serves as a low-cost data acquisition system capable of providing
wireless access to the data acquisition process and the low-cost accelerometer configuration
with microsecond resolution timestamps [47].
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Figure 1. LARA: (a) boxed sensing part and data acquisition part of LARA, and (b) PCB design
of LARA.

Figure 1b shows the compact version of the LARA circuit developed by the research
group with a dimension of 40× 40× 2 mm. It should be noted that LARA can be assembled
by hand using commercially available MPU9250 circuits and a TCA9548A multiplexor.
This manual assembly is fully detailed in [31].

It should be noted that the proposed methodology is not limited to Arduino-based
sensors. In fact, the adaptation of the sensing part (to other IoT-based sensor solutions such
as ESP32- and ESP8266-based microcontrollers) is a straightforward task.

2.2. Automatic Tailored Data Acquisition Application of LARA

This paper presents an upgraded version of LARA, automatizing its data acquisition
process. Figure 2 shows the programmed steps of this, within the following four stages:
(1) Initiation: after connecting the Raspberry Pi to any power source, it intends to connect to
the Internet. (2) Cloud storage: Automatically mounts a Google Drive and downloads the
latest Python code for the data acquisition process if an Internet connection is available. In
the absence of the Internet, the present Python code on the hard drive of the Raspberry Pi
will be used. (3) Vibration acquisition: at the scheduled date and time, the data acquisition
begins, and (4) data management: the finalized acquired data are moved to the Google
Drive when an Internet connection is available.
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After connecting LARA to a power source, the Raspberry Pi is programmed to connect
to the Internet with a Wi-Fi, LAN, or SIM Card. The next step is automatically mounting
cloud storage (Google Drive) on its hard drive. This way, each LARA will have access
to a specific folder in the drive where it can download and save Python code for its data
acquisition procedure. Later, LARA starts the vibration acquisition at the scheduled date
and time indicated on the received Python code

Furthermore, the acquired vibrations are saved in a text file on the Raspberry Pi hard
drive for 30 min. It should be noted that this duration can be altered inside of the data
acquisition Python code. Another task is written on the operating system of Raspberry Pi
to periodically check and move the text files containing the data acquisition to the Google
Drive. The hard drive is never overburdened or filled as long as the Internet connection
(through Wi-Fi or LAN) is available. It is essential to mention that in case of the absence of
the Internet connection, the acquired data will stay on the hard drive of the Raspberry Pi
until the Internet connection is fixed or the memory card is full. It should be noted that the
storage can be upgraded using external hard drives.

It should also be noted that Raspberry Pi and its programmed tasks can face errors
or malfunctions can happen. These unforeseen software problems are fixed by rebooting
the system. The system reboot can fix issues such as connection problems with Arduino,
absence of a response from the accelerometer, and lack of access to the Google Drive. For
that, LARA is programmed to be rebooted once every day. During the short-term data
acquisition applications, the flow of acquired data must be checked periodically, and in
case of any issue, a reboot must be manually applied.

2.3. Post-Synchronization Application of LARA

To show the post-synchronization capability of LARA, a laboratory experiment was
designed. In this experiment, two LARAs were located on the midspan of a simply
supported beam model. Then, several impacts were introduced on the midspan of the
beam model. The overlapping of the acquired vibration of the LARAs used can show the
synchronization of both sensors.

To perform this experiment, a U-shaped aluminum profile with a section dimension
of 25 × 25 × 3 × 3 mm and an adequate length of 1100 mm was chosen. Figure 3a shows
the setup of LARA 1 and LARA 2 on this beam. The access to the data acquisition of
these LARAs was provided from a Wi-Fi 4G SIM Card router. As presented in Figure 3a,
LARA 1, LARA 2, and the used router were directly connected to separate power banks.
After mounting the sensors on the beam using an industrial adhesive, the sensors were
scheduled to start a vibration acquisition simultaneously.
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Figure 3b illustrates on the same graph the data acquisition outputs of LARA 1 and
LARA 2. The analysis of this figure shows that even though the sensors started their vibra-
tion acquisition simultaneously, a lag appeared 150 s after the data acquisition initiation.
The reason behind this lag is the production imperfection of the data conditioner used
(Arduino Due). Even though the provider of the purchased Arduinos, the length and
material of the used wires, and the uploaded code to the bios of both Arduinos are the
same, the sampling frequency of LARA 1 (333.33 Hz) was found to be different from the
sampling frequency of LARA 2 (333.85 Hz). This difference resulted in about 0.2 s of lag
drift between the two devices.

To fix this issue, a MATLAB code was used to resample the acquired data of the
accelerometers. This code is part of the signal processing toolbox of MATLAB and is
written to change the sampling frequency of uniform or nonuniform data to a new one [76].

Figure 3c presents the resampled acquired vibrations by LARA 1 and LARA 2 in a
time domain representation figure. The sampling frequency of both LARAs is now the
fixed value of 333 Hz.

It is essential to mention that if the sampling frequency of two accelerometers is not
exactly the same, mode shapes obtained by carrying out a modal analysis cannot be trusted.
To solve these issues, resampling functions are typically used.

A resampling function can modify the sample rate of time domain data. This is a
typically used method in the vibration analysis literature [77], for frequency conversion
and resampling of timeseries data. There are various methods for resampling time domain
data [76]. In this paper, a MATLAB function that uses a polyphase antialiasing filter for
resampling the time domain data at a uniform sample rate (333 Hz in this paper) was used.
This function is shown in Equation (1):

Y = resample (x, tx, Fs) (1)

In Equation (1), Y refers to the time domain series with a steadily fixed sampling
frequency of 333 Hz, x presents the time domain series with a slightly different sampling
frequency (such as LARA 1 with a sampling frequency of 333.33 Hz), tx is the corresponding
timestamps of x, and Fs is the desired final sampling frequency, which here was set to
be 333 Hz.

Analysis of Figure 3 shows the importance of the resampling program for synchro-
nizing the acquired vibrations of several low-cost accelerometers based on the Arduino
technology. It should be noted that without the activated NTP of the Raspberry Pis and their
timestamps with microsecond resolution, the resampling could not have been accurately
performed. It should be noted that the current experiment was only carried out to show
the apparent lag in the time domain representation. This is because the sampling frequency
of each LARA was slightly (about 0.1%) different than the other. Notwithstanding that
the sampling frequency of each LARA is calculated before performing an eigenfrequency
analysis, the frequency domain representation of each LARA is accurate. However, the
application for performing a modal analysis using a number of synchronized LARAs
requires a unique sampling frequency. This means that all the accelerometers used must
have the same sampling frequency. To fix the individual sampling frequency of each LARA,
their acquired vibrations were resampled with a sampling frequency of 333 Hz.

Nonetheless, the eigenfrequency analysis of LARA has previously been validated
through 11 experiments on an actuator in the structural laboratory of the Universitat
Politècnica de Catalunya (UPC) university, Barcelona, Spain [47,71]. In that work, it was
reported that eigenfrequency analysis of LARA had 0.5% and 0.003% for signals with 0.1
and 32 Hz, respectively.

It should also be noted that the results of the eigenfrequency analyses of LARA 1
and LARA 2 before and after fixing their sampling frequency should be the same. To
demonstrate this, eigenfrequency analyses were performed on the time domain responses
presented in Figure 3b,c and Figure 4a,b, which show the eigenfrequency analysis of
LARA 1 and LARA 2, respectively, before fixing their sampling frequency using the re-
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sampling MATLAB function. Furthermore, Figure 4c,d show the eigenfrequency analyses
of LARA 1 and LARA 2, respectively, after fixing their sampling frequency at the rate of
333 Hz.
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The analysis of Figure 4 shows that fixing the sampling frequency of the sensors does
not affect the eigenfrequency analysis results. In fact, the highest difference between the
detected frequencies in Figure 4a,b is less than 0.04%. It can also be seen that Figure 4c,d
represent the same frequency value.

It should be noted that the sampling frequency of the accelerometer used should
have a relation with the frequency of the understudy signal. This relation (also known as
Nyquist frequency) indicates that a repetitive waveform can be accurately reconstructed
if the sampling frequency is higher than twice the maximum frequency that has to be
sampled [35]. Moreover, knowing the exact sampling frequency of the accelerometer
used is another important topic that is needed for performing an eigenfrequency analysis.
Additionally, it should be kept in mind that, when performing a modal analysis using a
number of synchronized accelerometers, the sampling frequency of the accelerometers
used should be the same. This is because the programs aiming to perform a modal analysis
normally ask for a single sampling frequency and not the exact sampling frequency of each
accelerometer used.

3. Experimental Modal Analysis of a Short-Span Bridge

This section compares an experimental modal analysis of a footbridge in Barcelona
using four LARAs with an analytical modal analysis. The findings of this test were validated
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by comparing the eigenfrequency analysis of LARA with those of a commercial dynamic
sensor. In addition, the generated mode shapes of the operational modal analysis were
compared with an analytical FEM model (SAP2000 model [62]). Firstly, the preparation of
the digital model of the structure is presented. Then, modal analysis of the structure using
the outputs of the LARA accelerometers is detailed. Finally, the results of the experimental
and analytical models were compared with each other.

3.1. Bridge Description and Structural Modeling

This section provides the characteristics of the studied footbridge. Then, the bridge’s
structural modeling is illustrated. Further in this section, the description of the different
elements that make up the theoretical model of the pedestrian walkway is presented. The
primary aspects considered when modeling the bridge are then outlined. Following that,
the sensor positioning is indicated. Finally, the findings of the bridge model’s modal
analysis are discussed.

First, the studied structure (Polvorines’ Footbridge in Barcelona, Spain) is shown in
Figure 5a. As shown in this figure, the structure is connected to an elevator box and on an
abutment. Figures 4c and 5b present the section and plan of the bridge, respectively. This
bride is 13.68 m long and 2.35 m wide. The primary beams are IPE600 beams located in
the footbridge’s longitudinal direction. In addition, the transverse beams are IPE160. The
deck of this bridge is composite and has been modeled in the software with the shell-thin
element with a thickness of 120 mm.
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This structure was selected because of its relatively reduced uncertainty (the structure
is made mainly of steel, it was built recently (2019), and all its blueprints were available
in [78]).

From Figure 6a, it is clear that the bridge is connected to the elevator box using a shear
tap [79]. Figure 6b shows the other support of this footbridge. As shown in Figure 6b, the
bridge can freely move along its longitudinal axis. In fact, only the translation Z and Y
directions are restrained on these supports.
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Figure 6. Supports of the footbridge bridge: (a) connection to the elevator and (b) abutment connection.

A numerical model of this structure was generated in the software SAP2000 using the
available drawings of the bridge. The physical and mechanical properties of the material
used in the FEM were defined based on the construction blueprints of the walkway. Table 4
shows the characteristics of the materials used.

Table 4. Material characteristics of the footbridge.

Material Description Characteristics

1 S275 beam steel
Elasticity modulus (MPa) 210,000.0

Poisson’s ratio (ν) 0.3
Specific weight, ρ (kN/m3) 78.5

2 Concrete
Elasticity modulus (MPa) 24,855.0

Poisson’s ratio (ν) 0.2
Specific weight, ρ (kN/m3) 25.0

In Figure 7a, the location of the accelerometers (4 LARAs) is shown. This way, after the
modal analysis of the software, mode shapes can be compared with the analytical research.
The location of the commercial dynamic sensor (HI-INC beanair) is shown in Figure 7a.
HI-INC is a dynamic inclinometer that has a sampling frequency of 250 Hz [47]. This
sampling frequency enables HI-INC to acquire the main mode shapes of the footbridge
under study. Figure 7b shows the setup of LARA 1 and HI-INC on the midspan. It should
be noted that LARA accelerometers are mounted to this structure with their X and Y axes
parallel to the X and Y axes (Figure 7a) of the footbridge. Consequently, the Z-axis of the
accelerometers is aligned with the vertical axis of the bridge and the gravitational force
of the earth. The sensors LARA 1, Hi-INC, and LARA 4 were located in the midspan
(6.84 m) of the structure support and the sensors LARA 2 and LARA 3 were located in the
one-fourth (3.42 m) of the bridge abutment.
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Figure 7. Digital model and position of the sensors: (a) SAP2000 model of the footbridge under study
and allocation of the used sensors, and (b) instrumentation of the Polvorines footbridge.

Table 5 shows the frequency, mode shapes, and mass participation output of the SAP
modal analysis for the first four mode shapes. Ux, Uy, and Uz indicate the mass participa-
tion on longitudinal, transversal, and vertical directions of the bridge, respectively. Rx, Ry,
and Rz show the rotational mass participation of the bridge’s longitudinal, transversal, and
vertical axes, respectively.

Table 5. Modal mass participation of the bridge under study.

Mode
Number

Fs
Hz

Ux
Unitless

Uy
Unitless

Uz
Unitless

Rx
Unitless

Ry
Unitless

Rz
Unitless

1 6.61 0 0 0.895 0 0.008 0
2 9.83 0 0 0 0.895 0 0
3 24.56 0 0 0.003 0 0.825 0
4 30.25 0 0 0 0.003 0 0

The analysis of Table 5 shows that the primary mode shapes with the highest mass
participation are modes 1, 2, and 3. In addition, their eigenfrequency is lower than 1/10 of
the sampling frequency of LARA. Furthermore, it can be seen that these three mode shapes
are only vertically active.
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Table 6 presents the node displacements corresponding to the location of the mounted
accelerometers for the first three vertical mode numbers together with the normalized
mode shapes of the digital model under the modal analysis load case. Table 6 also presents
the mode shape of every mode number.

Table 6. Normalized mode shapes of SAP2000 from the modal analysis load case.

LARA
Number

Mode
Number Frequency Normalized

Amplitude Mode Shape

LARA 1

1 6.61 Hz

1.00

Sensors 2022, 22, x FOR PEER REVIEW 15 of 23 
 

 

Mode 
Number 

Fs 
Hz 

Ux 
Unitless 

Uy 
Unitless 

Uz 
Unitless 

Rx 
Unitless 

Ry 
Unitless 

Rz 
Unitless 

1 6.61 0 0 0.895 0 0.008 0 
2 9.83 0 0 0 0.895 0 0 
3 24.56 0 0 0.003 0 0.825 0 
4 30.25 0 0 0 0.003 0 0 

The analysis of Table 5 shows that the primary mode shapes with the highest mass 
participation are modes 1, 2, and 3. In addition, their eigenfrequency is lower than 1/10 of 
the sampling frequency of LARA. Furthermore, it can be seen that these three mode 
shapes are only vertically active. 

Table 6 presents the node displacements corresponding to the location of the 
mounted accelerometers for the first three vertical mode numbers together with the nor-
malized mode shapes of the digital model under the modal analysis load case. Table 6 also 
presents the mode shape of every mode number. 

Table 6. Normalized mode shapes of SAP2000 from the modal analysis load case. 

LARA 
Number 

Mode 
Number 

Frequency Normalized  
Amplitude  

Mode Shape 

LARA 1 

1 6.61 Hz 

1.00 

 

LARA 2 0.71 
LARA 3 0.71 
LARA 4 1.00 
LARA 1 

2 9.83 Hz 

−0.99 

 

LARA 2 −0.85 
LARA 3 0.85 
LARA 4 1.00 
LARA 1 

3 24.56 Hz 

0.05 

 

LARA 2 1.00 
LARA 3 1.00 
LARA 4 0.05 

The analysis of Table 6 shows that this bridge is designed to work like a simply 
supported beam. In fact, the first and the third mode shapes are bending mode shapes. In 
addition, no torsional mode shapes are obtained. Further analysis of the information of 
this table shows that the eigenfrequencies of this bridge are higher than 5 Hz. This makes 
this bridge safe from the resonance effects that can happen because of the walking 
frequency of a person (usually between 2 and 3 Hz) and the first harmonic (approximately 
5 Hz) which is caused by the double excitation caused by the interaction of the heel and 
toe [80]. 

3.2. Operational Modal Analysis of the Bridge under Study 
In this section, the modal analysis of the bridge under study is presented. 
For the present work, two alternative OMA methods were applied to analyze the 

measurement data obtained by the LARA sensors. After mounting the LARAs on the 
bridge under study (Figure 7) using an industrial adhesive [31], each was connected to a 
power bank. Right after being connected to the power bank, the sensors were booted au-
tomatically, and then connected to a previously introduced wireless Internet connection. 
They started their data acquisition process as scheduled and their data acquisition files 
were constantly uploaded to the Google Drive. After two hours, the sensors were turned 
off as they were coded and detached from the bridge. 

LARA 2 0.71
LARA 3 0.71
LARA 4 1.00
LARA 1

2 9.83 Hz

−0.99

Sensors 2022, 22, x FOR PEER REVIEW 15 of 23 
 

 

Mode 
Number 

Fs 
Hz 

Ux 
Unitless 

Uy 
Unitless 

Uz 
Unitless 

Rx 
Unitless 

Ry 
Unitless 

Rz 
Unitless 

1 6.61 0 0 0.895 0 0.008 0 
2 9.83 0 0 0 0.895 0 0 
3 24.56 0 0 0.003 0 0.825 0 
4 30.25 0 0 0 0.003 0 0 

The analysis of Table 5 shows that the primary mode shapes with the highest mass 
participation are modes 1, 2, and 3. In addition, their eigenfrequency is lower than 1/10 of 
the sampling frequency of LARA. Furthermore, it can be seen that these three mode 
shapes are only vertically active. 

Table 6 presents the node displacements corresponding to the location of the 
mounted accelerometers for the first three vertical mode numbers together with the nor-
malized mode shapes of the digital model under the modal analysis load case. Table 6 also 
presents the mode shape of every mode number. 

Table 6. Normalized mode shapes of SAP2000 from the modal analysis load case. 

LARA 
Number 

Mode 
Number 

Frequency Normalized  
Amplitude  

Mode Shape 

LARA 1 

1 6.61 Hz 

1.00 

 

LARA 2 0.71 
LARA 3 0.71 
LARA 4 1.00 
LARA 1 

2 9.83 Hz 

−0.99 

 

LARA 2 −0.85 
LARA 3 0.85 
LARA 4 1.00 
LARA 1 

3 24.56 Hz 

0.05 

 

LARA 2 1.00 
LARA 3 1.00 
LARA 4 0.05 

The analysis of Table 6 shows that this bridge is designed to work like a simply 
supported beam. In fact, the first and the third mode shapes are bending mode shapes. In 
addition, no torsional mode shapes are obtained. Further analysis of the information of 
this table shows that the eigenfrequencies of this bridge are higher than 5 Hz. This makes 
this bridge safe from the resonance effects that can happen because of the walking 
frequency of a person (usually between 2 and 3 Hz) and the first harmonic (approximately 
5 Hz) which is caused by the double excitation caused by the interaction of the heel and 
toe [80]. 

3.2. Operational Modal Analysis of the Bridge under Study 
In this section, the modal analysis of the bridge under study is presented. 
For the present work, two alternative OMA methods were applied to analyze the 

measurement data obtained by the LARA sensors. After mounting the LARAs on the 
bridge under study (Figure 7) using an industrial adhesive [31], each was connected to a 
power bank. Right after being connected to the power bank, the sensors were booted au-
tomatically, and then connected to a previously introduced wireless Internet connection. 
They started their data acquisition process as scheduled and their data acquisition files 
were constantly uploaded to the Google Drive. After two hours, the sensors were turned 
off as they were coded and detached from the bridge. 

LARA 2 −0.85
LARA 3 0.85
LARA 4 1.00
LARA 1

3 24.56 Hz

0.05

Sensors 2022, 22, x FOR PEER REVIEW 15 of 23 
 

 

Mode 
Number 

Fs 
Hz 

Ux 
Unitless 

Uy 
Unitless 

Uz 
Unitless 

Rx 
Unitless 

Ry 
Unitless 

Rz 
Unitless 

1 6.61 0 0 0.895 0 0.008 0 
2 9.83 0 0 0 0.895 0 0 
3 24.56 0 0 0.003 0 0.825 0 
4 30.25 0 0 0 0.003 0 0 

The analysis of Table 5 shows that the primary mode shapes with the highest mass 
participation are modes 1, 2, and 3. In addition, their eigenfrequency is lower than 1/10 of 
the sampling frequency of LARA. Furthermore, it can be seen that these three mode 
shapes are only vertically active. 

Table 6 presents the node displacements corresponding to the location of the 
mounted accelerometers for the first three vertical mode numbers together with the nor-
malized mode shapes of the digital model under the modal analysis load case. Table 6 also 
presents the mode shape of every mode number. 

Table 6. Normalized mode shapes of SAP2000 from the modal analysis load case. 

LARA 
Number 

Mode 
Number 

Frequency Normalized  
Amplitude  

Mode Shape 

LARA 1 

1 6.61 Hz 

1.00 

 

LARA 2 0.71 
LARA 3 0.71 
LARA 4 1.00 
LARA 1 

2 9.83 Hz 

−0.99 

 

LARA 2 −0.85 
LARA 3 0.85 
LARA 4 1.00 
LARA 1 

3 24.56 Hz 

0.05 

 

LARA 2 1.00 
LARA 3 1.00 
LARA 4 0.05 

The analysis of Table 6 shows that this bridge is designed to work like a simply 
supported beam. In fact, the first and the third mode shapes are bending mode shapes. In 
addition, no torsional mode shapes are obtained. Further analysis of the information of 
this table shows that the eigenfrequencies of this bridge are higher than 5 Hz. This makes 
this bridge safe from the resonance effects that can happen because of the walking 
frequency of a person (usually between 2 and 3 Hz) and the first harmonic (approximately 
5 Hz) which is caused by the double excitation caused by the interaction of the heel and 
toe [80]. 

3.2. Operational Modal Analysis of the Bridge under Study 
In this section, the modal analysis of the bridge under study is presented. 
For the present work, two alternative OMA methods were applied to analyze the 

measurement data obtained by the LARA sensors. After mounting the LARAs on the 
bridge under study (Figure 7) using an industrial adhesive [31], each was connected to a 
power bank. Right after being connected to the power bank, the sensors were booted au-
tomatically, and then connected to a previously introduced wireless Internet connection. 
They started their data acquisition process as scheduled and their data acquisition files 
were constantly uploaded to the Google Drive. After two hours, the sensors were turned 
off as they were coded and detached from the bridge. 

LARA 2 1.00
LARA 3 1.00
LARA 4 0.05

The analysis of Table 6 shows that this bridge is designed to work like a simply
supported beam. In fact, the first and the third mode shapes are bending mode shapes. In
addition, no torsional mode shapes are obtained. Further analysis of the information of this
table shows that the eigenfrequencies of this bridge are higher than 5 Hz. This makes this
bridge safe from the resonance effects that can happen because of the walking frequency of
a person (usually between 2 and 3 Hz) and the first harmonic (approximately 5 Hz) which
is caused by the double excitation caused by the interaction of the heel and toe [80].

3.2. Operational Modal Analysis of the Bridge under Study

In this section, the modal analysis of the bridge under study is presented.
For the present work, two alternative OMA methods were applied to analyze the

measurement data obtained by the LARA sensors. After mounting the LARAs on the
bridge under study (Figure 7) using an industrial adhesive [31], each was connected to
a power bank. Right after being connected to the power bank, the sensors were booted
automatically, and then connected to a previously introduced wireless Internet connection.
They started their data acquisition process as scheduled and their data acquisition files
were constantly uploaded to the Google Drive. After two hours, the sensors were turned
off as they were coded and detached from the bridge.

After successfully post-synchronizing and resampling the data of all LARAs, the
acceleration vectors were used in an open-access MATLAB code for the FDD analysis and
the post-normalization and conversion of the generated complex mode shapes [81]. Then,
the synchronized acceleration vectors were used in another open-access MATLAB code for
the SSI-cov analysis [82].

3.2.1. OMA Using FDD

Since the analytical model’s first three generated mode shapes only affect the Z-axis
(vertical axis), only the Z-axis data of all accelerometers have been analyzed in detail. The
outputs of the FDD analysis are summarized in Figure 8 for Z-directions.
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Figure 8. Modal analysis of a footbridge by FDD on the Z-axis.

Figure 8 shows that the first three mode shapes are very evident and selecting them is
performed by choosing the highest peaks of the figure.

Table 7 shows modal values of the first three generated mode shapes of the experi-
mental analysis. The information in this table includes: (1) LARA number: corresponding
to a LARA located on the bridge, (2) mode shape: presenting the mode number of the
modal analysis, (3) frequency: reporting the eigenfrequency of FDD for every step number,
(4) complex mode shapes: showing the raw mode shapes of the FDD analysis for every
accelerometer, and (5) normalized real mode shapes: after converting and normalizing
the generated complex mode shapes of FDD using Reference [83], this information can be
compared with the normalized mode shapes of the analytical model.

Table 7. Modal analysis output of the FDD application for the four low-cost sensors.

LARA
Number

Mode
Number Frequency Complex Mode

Shapes
Normalized Real

Mode Shapes

LARA 1

1 7.924 Hz

−0.581 + 0.000i −1.000
LARA 2 −0.343 + 0.229i −0.710
LARA 3 −0.145 − 0.332i −0.624
LARA 4 −0.580 − 0.025i −0.999
LARA 1

2 10.023 Hz

−0.542 − 0.000i −0.857
LARA 2 −0.232 + 0.263i −0.555
LARA 3 0.284 + 0.029i 0.451
LARA 4 0.632 − 0.009i 1.000
LARA 1

3 25.383 Hz

−0.014 − 0.000i −0.022
LARA 2 0.455 − 0.048i 0.732
LARA 3 0.268 − 0.566i 1.000
LARA 4 −0.001 + 0.060i −0.097

3.2.2. OMA Using FDD

Since this bridge’s first three mode shapes were found in the Z-direction by the modal
analysis of the digital model, the SSI-cov was performed on the same axis. The SSI-cov
method was used to calculate the stabilization diagram of the identified eigenfrequencies
as a function of the model order. The stabilization diagram is presented in terms of the
number of poles in Figure 9.
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Figure 9. Stabilization diagram of the identified eigenfrequencies calculated with the SSI-cov.

The analysis of Figure 9 shows that the highest picks are selected by the program itself.
Unlike FDD, SSI methods select the picks themselves. The studies carried out showed
that the SSI-cov required a lower computational capacity in comparison with the FDD one.
Table 8 presents the calculated eigenfrequencies and normalized mode shapes obtained by
the SSI-cov method.

Table 8. Modal analysis output of the SSI-cov application for the four low-cost sensors.

LARA
Number Mode Number Frequency Normalized Shapes

LARA 1

1 7.966 Hz

−0.999
LARA 2 −0.582
LARA 3 −0.691
LARA 4 −0.999
LARA 1

2 10.007 Hz

0.663
LARA 2 0.999
LARA 3 −0.851
LARA 4 −0.628
LARA 1

3 25.341 Hz

−0.048
LARA 2 0.615
LARA 3 1.000
LARA 4 −0.060

3.3. Comparison of the Results

To compare the outputs of the structural model with the results of the OMA methods,
the eigenfrequencies and mode shapes of the first three vertical mode numbers were
compared with each other. This comparison also includes an eigenfrequency analysis
carried out using a commercial dynamic sensor. The mode shapes of the analytical analysis
with the experimental study have been compared using the Modal Assurance Criterion
(MAC) value [39]. The MAC value is calculated using Equation (2):

MAC(r, q) =

∣∣∣{ϕr}T {
ϕq

}∣∣2(
{ϕr}T{ϕr}

)({
ϕq

}T{
ϕq

}) (2)

In Equation (2), ϕr refers to the normalized mode shape matrix extracted from the
FEM model and ϕq is the extracted mode shape matrix from FDD analysis, which is already
converted to real mode shape values and is normalized. The value of the MAC number
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must be between 0.8 and 1 for every mode shape to show a remarkable resemblance of the
mode shapes [39].

Table 9 shows the error of the acquired frequency for every mode number from the
commercial dynamic sensor used (HI-INC). Table 9 also shows the MAC number of the
first three mode shapes of the bridge under study. The MAC value comparison of the
mode shapes of FDD analysis with those of the analytical analysis and mode shapes of
SSI-cov analysis with those of the analytical model are shown in columns MACFDD, Digital
and MACSSI-cov, Digital, respectively.

Table 9. Eigenfrequency and MAC value comparison of the experimental analysis with the digi-
tal model.

Mode
Number

Digital
Model
(Hz)

HI-INC
(Hz)

FDD
(Hz)

SSI-cov
(Hz) MACFDD, Digital MACSSI-cov, Digital

1 6.61 7.91 7.92 7.97 1.00 1.00
2 9.83 9.94 10.02 10.01 0.95 0.93
3 24.56 26.25 25.38 25.34 0.96 0.93

Comparing the measured eigenfrequencies of LARA with those of HI-INC from Table 9
showed a maximum difference of 0.87 Hz for the third mode, representing a difference of
3.3%. However, compared with the outputs of other developed low-cost accelerometers in
the literature (accelerometers in Table 1), 3.3% looks like a great benchmark.

In addition, the analysis of Table 9 showed that the eigenfrequency analysis of FDD
and SSI-cov methods presented similar outputs. In fact, the maximum difference between
the illustrated eigenfrequencies was less than 0.05 Hz for the first mode, representing a
difference of 0.6%.

Further analysis of Table 9 showed that the first reported eigenfrequency of the
SAP2000 model was 16.4% off from the reported value of the high-precision instrument
(HI-INC). The difference between the first analyzed eigenvalue of the digital model from
that of HI-INC might be due to the use of a shear tab for connecting the bridge beams to
the elevator box. In fact, a number of civil engineering scholars report that the shear tab
causes rotational rigidity [79].

Table 9 also showed that all the presented MAC values were within the range of 0.93
to 1.00. This shows a very good correlation between the analytical model and the OMA
methods. Consequently, it can be deduced that LARA sensors are sensitive and accurate
enough for OMA applications and can be used in FDD and SSI-cov methods.

The analysis of Table 9 showed the good correlation of the FE model with the bridge.
This is because the mode shapes extracted from the modal analysis of the SAP model,
correspond accurately to those mode shapes extracted from the OMA of the footbridge.

4. Conclusions

Developing and validating low-cost sensors is critical for Structural Health Monitoring
(SHM) of structures with limited funds for SHM assessments. In addition, with low-
cost sensors, the long-term monitoring of infrastructures can be feasible and affordable.
Previous works introduced a Low-cost Adaptable Reliable Accelerometer (LARA), where
its eigenfrequency analysis was validated in the laboratory and on two footbridges (one
flexible and one less flexible). This system is a low-cost triaxial accelerometer with a
sampling frequency of 333 Hz with attached data acquisition equipment.

This paper first presented a program to automatically perform the data acquisition and
management of LARA. This program was made to be self-sufficient. In fact, as long as the
Internet connection (Wi-Fi or LAN) is available and the power source provides the sensors
with electricity, this system acquires the vibration of the bridge under study based on its
programmed schedule and moves the received data to a Google Drive folder. Furthermore,
this program was written to perform self-troubleshooting. Every day at a known time, the
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device gets rebooted, receives the newest Python program for the data acquisition process
(if available), and starts the automatic vibration acquisition process.

To validate the performance of the developed sensor in real conditions, an operational
modal analysis on a footbridge in Barcelona was carried out using four LARA accelerome-
ters. After post-synchronizing the acquired vibrations from the four LARAs, they were used
in a parametric and a nonparametric OMA. The parametric modal analysis used was the
Covariance Stochastic Subspace Identification (SSI-cov) method. This method was chosen
because of its cheap computational requirement and its high accuracy. In addition, the
modal analysis of the bridge using the Frequency Domain Decomposition (FDD) method,
which is a nonparametric modal analysis application, was performed.

Finally, the first three vertical mode shapes and eigenfrequencies of this footbridge’s
OMAs (SSI-cov and FDD) using four LARAs were compared with a numerical model.
The mode shapes generated from the digital model have been compared with the mode
shapes of the modal analysis using the Modal Assurance Criterion (MAC). The MAC values
comparing the modal analysis of the digital model and SSI-cov were between 0.93 and
1.00. In addition, the comparison of mode shapes generated from the modal analysis of
the analytical model with FDD showed MAC values ranging between 0.95 and 1.00. These
MAC values for the first three mode shapes illustrate LARA’s high accuracy and reliability
in experimental modal analysis. Furthermore, the generated frequencies of the OMA from
the four LARA accelerometers were validated with a commercial dynamic sensor (HI-INC).

The main limitations of LARA are as follows: (1) Noise density: LARA has a higher
noise value (51 µg/

√
Hz) in comparison with traditional wireless commercial accelerome-

ters (usually ranging between 8 and 30 µg/
√

Hz). Even though the current resolution and
accuracy of LARA are enough for the SHM application of bridges, they are not enough for
the analysis of buildings. To improve the noise density of LARA, more MPU9250 chipsets
can be aligned. (2) Data curing: The number of needed post-processing procedures for
preparing the acquired vibrations for performing modal analysis. In future works, those
post-processing codes aiming to synchronize and fix the sampling frequency of individual
accelerometers should become automated.

To summarize, both the laboratory and in situ tests carried out in this work validate
the applicability of LARA for the SHM of the studied bridge.
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