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Abstract: Coronary artery disease (CAD) is a multifactorial disease with a high prevalence, par-
ticularly in developing countries. Currently, the investigation of telomeres as a potential tool for
the early detection of the atherosclerotic disease seems to be a promising method. Telomeres are
repetitive DNA sequences located at the extremities of chromosomes that maintain genetic stability.
Telomere length (TL) has been associated with several human disorders and diseases while its at-
trition rate varies significantly in the population. The rate of TL shortening ranges between 20 and
50 bp and is affected by factors such as the end-replication phenomenon, oxidative stress, and other
DNA-damaging agents. In this review, we delve not only into the pathophysiology of TL shortening
but also into its association with cardiovascular disease and the progression of atherosclerosis. We
also provide current and future treatment options based on TL and telomerase function, trying to
highlight the importance of these cutting-edge developments and their clinical relevance.

Keywords: telomere length; LTL; telomerase; cardiovascular disease; myocardial infarction; atherosclerosis;
senolytics; treatment

1. Introduction

During the last two decades, scientific society has been trying to investigate the role of
potential biomarkers in the early detection of atherosclerotic disease [1]. The emphasis on
inflammatory cytokines and their tight link with the progression of atherosclerosis, particu-
larly in the coronaries, resulted in innovative diagnostic and therapeutic approaches [1–5].
However, even with access to the most advanced technology and most recently available
secondary prevention therapies, the burden of recurrent events following acute coronary
syndromes remains unacceptable, ranging from 10% to 20% in the first 12 months [6,7].
As such, atherosclerotic disease constitutes a global health and socioeconomic challenge,
while the development of modalities for early detection of its progression and manifesta-
tions such as coronary artery disease (CAD) is considered mandatory.

The link between genetics and atherosclerosis has recently been added to the arsenal for
estimating its progression. More particularly, physicians have suggested that information
from genetic material may be the most specific biomarker for an individual’s predisposi-
tion to atherosclerotic disease progression and prognostication as well. This could be an
important research endeavor since it is quite clear that the first signs of atherosclerosis may
appear as early as adolescence, while severe complications appear later [8]. Observations
showed that the length of the end sections of chromosomes may widely differ and be
linearly associated with age and atherosclerotic burden. These DNA sequences, which can
be visible in a light microscope, are called telomeres [9,10]. The length of telomeres seems
to be generally affected by various inflammatory, stressed conditions and environmental
factors [11]. In this review, we will explore the role of telomere length (TL) as a potential
biomarker in the progression of atherosclerosis as well as cardiovascular disease.
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2. Telomeres–Telomerase Function

Telomeres are the protective end caps of chromosomes that are essential for the preser-
vation of our genome. Telomeres are regions that are constituted by millions of repeated
DNA base pairs at the very end of each chromosome, which do not express any of the
known proteins [12]. In humans and several other species, the ending telomeric repeat is
represented by the sequence 5′-(TTAGGG) n-3′. The distal part of the telomere does not end
in a double strand of DNA but the 5′-chain is shorter and a single-stranded G-rich section
remains [12]. Telomerase function is not related to the existence of free 3′-chains, and no
clear genetic explanation has been given. De Lange et al. showed that the free 3′-chain is
constituted mainly by triplexes and quadruplexes of guanines (G-3, G-4, etc.) [13,14]. They
suggested that this sequence may create a thermodynamic context for the interaction of a
free 3′-chain with the double helix of telomeric DNA. As such, the related telomere forms
a telomeric loop whose length is linearly correlated with TL in the various measurement
methods [15].

Telomerase is a reverse transcriptase that uses a built-in RNA template to complete
the end sequences of chromosome DNA. It is the protein part of our well-known human
telomerase reverse transcriptase (hTERT) and human telomerase RNA component (hTERC)
whereas a short region of telomerase is used for telomeric DNA synthesis [16]. Telom-
erase works as an enzyme of compound enzymes and proteins, such as pontin, reptin
and chaperones heat shock protein 90 (HSP90) and TRiC [17]. Telomerase maturation
takes place in Cajal bodies, which are rich in protein Telomerase Cajal body protein 1
(TCAB1) [18,19]. However, telomerase activity may be regulated in several stages including
those of transcription, splicing, phosphorylation, maturation, and modifications of both
hTERT and hTERC enzyme components. Several factors are responsible for the appropriate
function of telomerase and the maintenance of TL, including the localization of telomerase
in the cell nucleus or cytoplasm, the state of telomeric chromatin, changes in the packing
of chromosome ends, etc. [20,21]. Other intriguing functions of telomerase have recently
been discovered, with scientists attempting to unravel the underlying molecular pathways.
It seems that telomerase upregulates the expression of NF-kappaB-dependent and gly-
colytic genes [22–24]. Additionally, modification of the inner functions of stem cells as well
as epithelial–mesenchymal cells has been described while a protective role on mitochon-
drial DNA has been identified under oxidative-stressed conditions [23,25]. Interestingly,
telomerase action seems to regulate the RNA Component of Mitochondrial RNA Processing
Endoribonuclease (RMRP), whose mutations are responsible for Cartilage Hair Hypoplasia
syndrome, while in another study normalization of the cell phenotype in patients with the
inherited lipidosis of Niemann–Pick disease has been also observed [26,27]. As such, it is
clear that the correct function of telomerase is not only associated with TL preservation,
but also with the phenotype of a wide variety of genetic and metabolic disorders.

3. Telomere Length

Every person is born with a specific TL that ranges between 5 to 15 kb, which is
affected as the years go by [28]. The rate of TL shortening hovers at 20–50 bp while it is
dependent on several factors such as the end-replication phenomenon, oxidative stress, and
other DNA-damaging agents [29–32]. According to the above-mentioned loop formation
hypothesis, telomeric regions can form loops having a minimum length of about several
thousand nucleotides, which can be used by the cell to quickly detect DNA breaks in this
area [33]. By the end-replication phenomenon, a small telomeric DNA fragment is lost in
every cell division due to the inability of transcription of the free 3′-chain. So naturally,
telomeres reach a critical length and to such an extent that no loop can be formed. Telomere
shortening is thought to be the cause of the restricted number of divisions in most human
cells. Hayflick was the first to describe this occurrence and this phenomenon was later
called the “Hayflick Limit” [34]. A DNA damage signal is received by the cell at this
time, and telomeres lose their protective role. This critical shortening of TL leads the
cell into senescence, and causative cell death, which is regulated by inner biochemical
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and pro-inflammatory changes via the transition of the cell into a senescence-associated
secretory phenotype (SASP) [35,36]. The DNA-damage signal becomes permanent, leading
to activation of cyclin-dependent inhibitor pathways, including either the p53/p21Cip or
p16Ink4a/Rb while transcription factors such as nuclear factor kappa-light-chain-enhancer
of activated B cells (NF-κB), CCAAT/enhancer-binding protein (C/EBP), and tumor protein
p53 are controlling the procession [31,32,36]. Although TL varies along the tissue types due
to the altered proliferation rates, a correlation has been observed between TL in different
tissues and peripheral blood leucocytes [28–30,37,38]. As such, the leucocyte telomere
length (LTL) has been considered as a surrogate marker of TL across the body and it would
be the reference point of our review.

4. LTL and Atherosclerosis

Telomeres, called the “biological clock” of cells, are a recognized marker of cell senes-
cence. They are widely affected by a variety of intrinsic and environmental factors via
the upregulation of oxidative stress levels. It is a condition in which increased levels of
reactive oxygen species (ROS), such as superoxide anions, hydrogen peroxide, and hy-
droxyl radicals, are present due to a biological imbalance [39]. Dysfunctional mitochondria
and immune cells are responsible for the main expression of ROS . The high guanine
content of telomeres makes telomeres an easy target for ROS, leading to guanine oxidation.
These point mutations and single or double DNA breaks affect telomeres’ function and
cell proliferation [40,41]. Consequently, oxidative stress leads to TL shortening which is
closely associated with tissue age-related decline regardless of the telomerase function [42].
As we discussed above, when a critical TL is reached, apoptotic mechanisms and molecular
paths such as p53, MAP kinase (mitogen-activated protein kinase), and transcription factor
kappa B are activated, leading to cell senescence [43]. Cells with SASP secrete a variety
of pro- and inflammatory cytokines well known for their atherosclerotic effect [44]. SASP
cells have been identified in vasculature regions with atherosclerotic plaques as well as in
cardiomyocytes in biopsies of patients with heart failure [45–47]. In both conditions, the
SASP phenotype was followed by significant short TL [45]. As a result, factors that induce
oxidative stress and telomere shortening can lead to a vicious cycle that promotes a state of
chronic inflammation, which causes vascular endothelial dysfunction and contributes to
the development of atherosclerotic plaques.

Atherosclerosis is a multifactorial condition whose progression is affected by a variety
of cardiovascular risk factors [2]. Recently, short LTL has been positively associated with
cardiovascular risk factors such as high BMI, waist circumference, high levels of blood
C-reactive protein, low levels of HDL (high-density lipoprotein), high levels of cholesterol
and triglycerides, as well as insulin resistance and blood pressure [48–50]. In another
study, although no association was observed between classical cardiovascular risk factors
and short LTL, when the results were adjusted to smokers a strong statistical significance
was detected [51]. Benetos et al. previously verified the link between hypertension and
shorter telomeres [52]. In the same regard, Morgan et al. discovered that the exposed
telomere ends led to arterial cell senescence in individuals with hypertension [53]. Finally,
Haycock et al. concluded that patients with diabetes mellitus presented shorter LTL than
their healthy counterparts [54]. Short telomeres have been linked to increased arterial
stiffness, preclinical atherosclerosis, and poor diabetes management. This might be owing
to the harmful consequences of persistent hyperglycemia and the accumulation of advanced
glycation end products (AGEs) [55].

Atherosclerosis is characterized by the formation of plaques in the vessel wall. These
emerge as a result of complex pathophysiological pathways involving pro- and anti-
inflammatory cytokines [1,56]. Given the elevated cardiovascular risk in people with
short LTL, it would be rational to assume that there is a connection between short LTL and
subclinical atherosclerosis. Since the investigation of potential indicators of atherosclerosis
progression constitutes a huge challenge worldwide, several studies are trying to detect
the exact role of LTL in this context. Until now, the landscape has been quite hazy with
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the results from a number of studies being inconsistent. In 2016, a large study including
1459 middle-aged adults found no statistically significant link between shortened LTL and
subclinical atherosclerosis [57,58]. Thus, TL does not seem to have a prognostic value
in individuals without clinical signs of disease. Indeed, Nzietchueng and Nguyen et al.
showed a significantly shorter TL in aortic cells with atherosclerotic lesions as well as
in vasculature regions with low elasticity [59,60]. A possible explanation is that local
vascular alterations affect TL as a result of oxidative stress. In the Framingham study,
internal carotid artery intima-media thickness was linked with short LTL among obese
males (BMI > 30 kg/m2) but not in the whole cohort. No association was observed between
short LTL and common carotid artery intima-media thickness or carotid artery stenosis [61].
Trying to connect LTL with potential modifiable behavioral factors, Bountziouka et al.
analyzed 422.797 patients from the UK Biobank. Although lifestyle changes appear to be
quantitatively related with LTL, the magnitude of these effects is insufficient to appreciably
affect the connection between LTL and various diseases or life expectancy [62]. In another
study, Schellnegger et al. highlighted the detrimental role of sedentary life, not only in
cardiovascular risk induction but also in LTL attrition. More specifically, a regular basis
aerobic physical activity at a moderate to high level tends to help LTL preservation, while
it is still unclear as to the optimal type and duration of exercising [63]. LTL was also not
a significant predictor of intima-media thickness or plaque formation in the Asklepios
study [57]. However, Panayiotou et al. showed an inverse association between LTL and
common carotid artery intima-media thickness [64]. In the same aspect, the Strong Heart
Study examined 2819 Americans without known cardiovascular risk factors for a follow-up
period of 5.5 years to assess the predictive role of LTL in the occurrence and progression of
carotid atherosclerosis. The shortest LTL had a 49% and 61% greater incidence of plaque
formation and plaque development, respectively, than the longest LTL [65]. Finally, a strong
association of carotid atherosclerosis with short LTL has been established in hypertensive
patients, highlighting the unfavorable impact of hypertension on TL [66].

5. LTL and Cardiovascular Disease

Since observational studies illustrated that attrition of LTL is related to mortality,
physicians are trying to investigate its role in cardiovascular disease (CVD), which is the
leading cause of death worldwide [67]. The Hutchinson–Guilford Progeria Syndrome
constitutes a striking example of age-related LTL shortening, in which the majority of the
patients die from a myocardial infarction or stroke in their teenage years [68]. Premature
senescence of fibroblasts as well as rapid TL shortening was observed in the cell cultures
of these patients [68]. As such, there was a rationale for further exploration of LTL’s
role in CVD, especially since studies showed that shorter LTL is associated with higher
mortality rates. Indeed, in the Bruneck and LURIC studies, patients with a lower relative
LTL presented higher death incidences in a 10-year follow-up [67,69,70]. In the same vein,
multiple studies reported an increase in all-cause mortality risk, ranging from 17% to 66%,
when patients with the longest telomeres were compared to subjects with the shortest
telomeres [67,69–72]. However, some studies could not confirm the hypothesis of the
association between LTL and CVD or mortality. This might be partially explained by the
fact that some of these studies focused on low-risk populations with a modest number of
events [73–75].

Several studies also investigated the association of LTL shortening with the presen-
tation and progression of CAD. In two studies conducted in 2010 and 2021, physicians
found that LTL in patients with stable CAD was significantly shorter than in healthy in-
dividuals of the same age (1.13 ± 0.52 CU in patients with CAD vs. 1.52 ± 0.81 CU in
healthy individuals) which was further extended to sex analysis. It was interesting that
men presented with shorter LTL than women, which could partially be related to the effect
of estrogen, but this is an observation that remains hazy [70,76]. Trying to investigate the
genetic background of premature CAD onset, Tian et al. compared Chinese patients with
healthy individuals. It was shown that patients with premature CAD presented shorter LTL
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and higher circulating levels of oxidative stress components [77]. In another study, men
with arterial hypertension, CAD, and early vascular aging (defined as arterial hypertension
or CAD debut at young age—before 45 years, increased vascular wall stiffness according to
the cardio-ankle vascular index), the LTL was significantly shorter than in men with arterial
hypertension and CAD but without early vascular aging [78]. Haycock et al. conducted
a meta-analysis on 43,000 individuals, including over 8000 patients with cardiovascular
disease. It was demonstrated that, regardless of other risk factors, people with a shorter
LTL were more likely to develop CAD [54]. In another meta-analysis published in 2020,
shorter LTL was shown to be strongly connected to CAD severity, with Asians presenting
the shortest LTL after ethnicity adjustment [79]. However, regarding the association of
function stages of stable angina I–III (according to the Canadian Cardiovascular Society
classifications) and LTL, no significant relation was observed [67,78].

One of the major manifestations of CAD is myocardial infarction (MI), and the devel-
opment of biomarkers for early prognosis is referred to as mandatory [80–84]. LTL has been
investigated as a potential biomarker with controversial results. A significantly shorter
LTL has been observed in individuals with MI compared to healthy individuals even after
adjustment for sex, body mass, and age [80]. Similarly, a study from the United Kingdom
in 2017 demonstrated that in patients suffering from MI, LTL may be a useful prognostic
biomarker for cardiovascular outcomes after the event, regardless of age. More particu-
larly, MI patients with short LTL (defined as less than 0.96 CU in the study) presented
significantly higher rates of all-cause and cardiovascular mortality within the first year
after the event [85,86]. On the other hand, Russo et al. found no significant association
between LTL and MI occurrence in young Italians [87]. Neither could Chan et al. confirm
the hypothesis, as no statistically significant association was observed between relative
LTL and adverse MI outcomes (death, recurrent MI, unplanned percutaneous coronary
intervention revascularization, stroke, significant bleeding) in elderly Chinese patients, one
year after their percutaneous coronary intervention [88]. Finally, while there was initially
a connection between LTL and MI incidence in Czech women, the significance was lost
after adjusting for major cardiovascular risk factors [86]. LTL has also been explored as a
potential biomarker for the prognostication of stroke. The vast majority of the trials, which
included over 37,000 and 25,000 people, respectively, could not establish a link between
stroke risk and LTL [89,90]. However, a study in 2019 related short LTL with not only
stroke incidence, but also post-stroke recovery in the elderly population [91] Findings of a
Mendelian Randomization study in 2022 showed that longer telomeres were associated
with decreased risk of several CVDs, including CAD, MI, and stroke, driving the rationale
for further investigation in the domain (Figure 1) [92].

As such, we can safely conclude there is a need for further investigation of LTL’s
role in cardiovascular disease. Although the results are encouraging, the lack of uniform
assessment methodologies, as well as disparities in critical parameters such as patient age,
ethnicity and race, and region of residence, prevent a safe conclusion from being reached.
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Figure 1. Telomere length shortening and its effect on atherosclerosis progression and coronary artery
disease. DDR: DNA-damage-response; SASP: senescence-associated secretory phenotype; TF-kB:
nuclear factor kappa-light-chain-enhancer of activated B cells.

6. A Target for Treatment

In Stockholm, during December 2009, the Nobel Prize in Physiology or Medicine was
awarded to three biologists: Elizabeth H. Blackburn; Carol W. Greider; and Jack W. Szostak.
Their project on how chromosomes are protected by telomeres and the enzyme telomerase
changed the way that medicine used the therapeutic arsenal in several conditions including
cardiovascular diseases [93–95]. They assumed that increasing telomerase activity can lead
to telomere lengthening by influencing telomeres, telomerase function, and senescence.
The hypothesis was that modest and potentially intermittent telomerase activity would
allow cells to only repair telomeres, lowering the DNA damage response and SASP, while
decreasing inflammation and oxidative stress levels [96].

Gene therapy using adeno-associated viruses to introduce the telomerase gene into
aging mice appears to be promising, with incremental improvements in several biomark-
ers [96–99]. More particularly, beneficial effects were observed on insulin sensitivity, osteo-
porosis, neuromuscular coordination, and several molecular biomarkers of aging with a
significant increase in median lifespan [98]. Another study by the same team supported that
diet treatment with TA-65 (a product derived from a traditional Chinese medicinal plant—a
weak telomerase activator) resulted in telomerase-dependent elongation of short telomeres
and rescue of associated DNA damage, demonstrating that the TA-65 mechanism of action
is via telomerase pathways [97]. Several studies are currently investigating the effect of TA-
65 administration on cardiovascular health. Fernandez et al. showed that although the LTL
was not significantly altered in patients receiving TA-65, there was an improvement in risk
factors for cardiovascular disease. Reduced inflammatory levels were observed (low tumor
necrosis factor-α levels) with a parallel reduction in body mass index, waist circumference,
and atherosclerotic ratio LDL-C/HDL-C [99,100]. Finally, a promising ongoing trial (Phase
II) is investigating whether a telomerase activator, TA-65, can reduce the proportion of
senescent T cells in patients with acute coronary syndrome and confirmed CAD. It is also
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assessing the effect of TA-65 on decreasing telomere shortening, reducing oxidative stress,
and improving endothelial function [101]. It is also possible to use therapeutic mRNAs
that encode telomerase in senescent cells in specific regions of the vasculature [102]. The
issue of adverse events due to the systematic administration of mRNAs can be solved
by the use of modified nucleotides (on mRNA sequencing) that reduce innate immune
response or functionalize nano- and microparticles to release therapeutic molecules directly
to the inflamed endothelium [103]. Studies on cultured human cells revealed an increase
in TL and a parallel ability for replication, while nanoparticles targeting endothelium are
anticipated to lead in a slower or even reversible progression of vascular disease [102–104].

Senescent cells are subjected to immunosurveillance by multiple components of innate
and adaptive immunity, including NK cells, T cells, and macrophages. Due to a decrease in
immunosurveillance, senescent cells accumulate in aging and diseased tissues [105–107].
As a result, restoring or enhancing the immune system’s ability to precisely remove senes-
cent cells may result in their effective clearance from tissues [105–107]. In experimen-
tal models, the removal of senescent cells led to a reduction in risk for atherosclerotic
disease [8,108]. More particularly, the administration of senolytic drugs, Dasatinib and
Quercetin (D & Q), led to improved left ventricular ejection fraction and fractional short-
ening. In the same way, the double administration of D & Q senolytic therapy reduced
senescence burden and plaque calcification in transgenic mice [109,110]. Childs et al.
showed a significant reduction in atherosclerotic formation and burden, as well as the
mean lesion length, after administration of another senolytic drug, Navitoclax. In contrast
to the reduction in CD8+ effector memory cells, this drug appeared to alleviate systemic
inflammation or rejuvenation of progenitor pools, enhancing the presentation of naive
CD8+ T cells [8,108,111].

Another side of the same coin is the use of senolytic drugs not only for removing
senescent cells but for suppressing the processes leading to the development of SASP. The
introduction of sequence-specific telomeric antisense oligonucleotides (tASOs) seems to al-
ter the behavior of senescent cells when critical TL is reached [112]. These oligonucleotides,
as the name implies, are similar to the 3′ overhangs of mammalian chromosomes and have
shown strong anticancer effects in numerous cancer types, both in vivo and in vitro [112].
Finally, it would be very intriguing to see how hyperbaric oxygenation affects the progres-
sion of atherosclerosis, based on a hyperoxic–hypoxic paradox [113]. Studies showed that
repeated intermittent hyperbaric oxygenation leads to significant lengthening of telomeres
and a decrease in the number of senescent cells [112–114].

7. Considerations and Conclusions

Considering the above-mentioned innovative therapeutic methods, there are some con-
cerns. Telomerase activation is the most prevalent hallmark of cancer cells (approximately
90%), and it is one of the most critical cancer indicators [115–117]. Telomerase activation
in normal cells does not lead to carcinogenesis, while several cell types normally present
high telomerase function (fetus, stem or progenitor, germ line in testes) [118]. For the
formation of pre-cancerous cells, an accumulation of changes has to be synthesized with
high telomerase activation. As such, it can be assumed that the induction of high telom-
erase activity in the aging cells of the organism, which may have gathered a substantial
number of mutations, will result in malignant development. Therefore, the challenge for
the physicians is to deploy a regulated telomerase activity allowing telomeres to reform,
decreasing DNA damage response and SASP.

Another practical concern for using LTL directly in clinical practice is that current
measurement accuracy is insufficient. Although measurement bias cannot be quantified
in a population, this cannot be stated for individuals. The most prevalent approach,
quantitative Polymerase Chain Reaction (qPCR), allows for quick testing but does not
yield an absolute kilobase length estimate until combined with standard oligos [119].
Terminal Restriction Fragment (RTF) is another measurement method that provides mean
length measure without recognition of individual short telomeres or missing ends. Finally,
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quantitative fluorescent in situ hybridization (Q-FISH) and primed in situ labeling (PRINS)
are specialized for measuring telomeres in single cells and reporting the results as relative
fluorescence units that exclusively relate to telomere length [120].

We are currently disregarding the potential effects of human telomere lengthening.
To the best of our knowledge, shortening LTL seems to be a symptom of CAD rather than
a causative factor. As such, the next step may be the use of LTL for the estimation of the
biological age of the body, as well as the evaluation of the risk for future major cardiovascu-
lar adverse events. It will also be a promising alternative in examining the effectiveness of
preventive medications. Further research is needed in the domain, especially in the role
of telomerase function and its regulated activation. This is important not only in vascular
beds but also in the therapeutic alternatives of different types of cancer. Physicians have
to identify the lifestyle modifications connected with LTL preservation that contribute to
increased life expectancy. One of these is the optimal intensity and duration of physical
activity, as well as the type of exercise. This is a subject for extensive research due to the
scourge of sedentary behavior and the Western lifestyle. Finally, research on the associa-
tion of air pollution levels with LTL and major cardiovascular events, assessing patients
from urban and rural areas, is needed to elucidate the impact of extrinsic factors on our
cardiovascular health.
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