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Simple Summary: Monitoring cetacean health is important considering the high strain from both natural
and human-related threats. Most of these, such as Cetacean morbillivirus and man-made pollution in form of
toxins and noise, affect nervous tissues and brain function. Neuropathological research in cetaceans has been
qualitative or semiquantitative. Here, we use stereology to quantify protein expression in neurons, axons,
and glial cells in the auditory nuclei of a bottlenose dolphin and correlate the values to their pre-processed
volumes from MRI scans. This multimodal approach is aims to avoid artifacts that may arise using either
methodology. Similarities in protein expression between a healthy dolphin and a human with brain trauma
implies that dolphins might have a baseline neurochemical buffer against low oxygen (hypoxia). This study
will help expand our quantitative understanding of health and disease in cetacean brains.

Abstract: The importance of assessing neurochemical processes in the cetacean brain as a tool for monitoring
their cognitive health and to indirectly model human neurodegenerative conditions is increasingly evident,
although available data are largely semiquantitative. High-resolution MRI for post-mortem brains and
stereology allow for quantitative assessments of the cetacean brain. In this study, we scanned two brains
of bottlenose dolphins in a 7-Tesla (7T) MR scanner and assessed the connectivity of the inferior colliculi
and ventral cochlear nuclei using diffusion tensor imaging (DTI). Serial thick sections were investigated
stereologically in one of the dolphins to generate rigorous quantitative estimates of identifiable cell types
according to their morphology and expression of molecular markers, yielding reliable cell counts with most
coefficients of error <10%. Fibronectin immunoreactivity in the dolphin resembled the pattern in a human
chronic traumatic encephalopathy brain, suggesting that neurochemical compensation for insults such as
hypoxia may constitute a noxious response in humans, while being physiological in dolphins. These data
contribute to a growing body of knowledge on the morphological and neurochemical properties of the
dolphin brain and highlight a stereological and neuroimaging workflow that may enable quantitative and
translational assessment of pathological processes in the dolphin brain in the future.

Keywords: cetaceans; animals; stereology; MRI; immunohistochemistry; human; neurodegeneration;
chronic traumatic encephalopathy; hypoxia; amyloid β; fibronectin; microglia; astrocytes
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1. Introduction

The dolphin brain is subject to a lot of scientific interest for several reasons, although
many aspects of its neurochemical functions and connectivity remain unexplored. It is an
example of convergent evolution between artiodactyls and humans in terms of their large
brain size and extensive gyrification [1], the longevity of their individuals, the develop-
ment of age-related degenerative conditions, and similar pathological reactions following
exposure to infections, toxins, and certain intensities and frequencies of sound [2–6].

Under baseline conditions, the dolphin brain is exposed to variable and prolonged
periods of limited oxygen during diving. It could therefore display characteristics of human
brains that have been exposed to chronic trauma and neurochemical changes consistent
with hypoxia, as in the case of patients with chronic traumatic encephalopathy (CTE) [7].

Several lines of research hint at morphological and molecular adaptations of the
cetacean nervous tissues to buffer the strain of deep diving in a cool aquatic environment
under high pressure, including the evolution of cervical rete mirabilia that ensure steady
blood flow [8], higher levels of myelination [9], and antioxidant proteins [10] in deeper-
versus shallow-diving cetacean species. Comparatively high levels of uncoupling proteins
are hypothesized to aid in non-shivering thermogenesis to preserve brain function under
cold ambient temperatures [11], although this hypothesis has been disputed [12].

Our recent work focused on validating proteins as indices of the health status of
bottlenose dolphin (Tursiops truncatus) brains, particularly in the dubious cases of potential
anthropogenic acoustic trauma [5]. However, only a semiquantitative approach was avail-
able at the time. In the current study, we focused on stereological estimates of validated
neuronal and glial proteins in the inferior colliculus (IC) and ventral cochlear nucleus
(VCN) of a bottlenose dolphin and outline a workflow that could be used in further studies
of these and other brain areas. A similar approach was taken by Nieder and colleagues
(2022) [13] when examining neuronal numbers in the lateral superior olivary nucleus of
short-beaked common dolphins (Delphinus delphis).

We refer to 7T-MRI and DTI data to assess the volumes and connectivity of the auditory
nuclei of two bottlenose dolphins, one of which was used for quantitative immunohisto-
chemical assessment. This multimodal approach may help to circumvent artifacts due to
the opportunistic nature of cetacean brain recovery and sampling, particularly with respect
to effects of processing-induced tissue shrinkage.

Neuronal proteins, such as amyloid-β (Aβ) protein, associated with human neurode-
generative diseases, such as Alzheimer’s disease (AD), have already been used in previous
cetacean brain studies. They are conversely linked to tolerance to hypoxia [5,14], and
are quantified herein alongside TAR DNA-binding protein 43 (TDP-43)—another protein
aggregating in diseases such as amyotrophic lateral sclerosis, Parkinson’s disease, and fron-
totemporal dementia [15]—and the extracellular matrix protein fibronectin. TDP-43 was
previously observed in the brains of seven common dolphins with known methylmercury
and cyanotoxin intoxication [4]. Fibronectin was primarily intended to visualize vascular
and capillary networks, as it is an important constituent of the extracellular matrix of the
vascular basal membrane [16,17], and capillary length and density are known to change
under metabolic stress conditions such as hypoxia [18,19]. Fibronectin also plays a role in
the extracellular matrix surrounding neurons and facilitates repair following injury [20].

SMI-312, an antibody targeting phosphorylated medium and heavy neurofilament
fibers, was used to quantify axon length and density, while Iba-1 and GFAP were used
to quantify microglial and astrocytic cells, respectively. Furthermore, qualitative trends
between fibronectin expression in human CTE are observed in comparison to dolphin and
healthy human tissues.

The aim of this study was to provide the first quantitative estimates of neuronal,
axonal, and glial cell populations within the dolphin IC and VCN, outlining a protocol for
stereological probe design and limitations that could serve as a platform for standardized
quantitative comparisons between different individual animals and species.
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2. Materials and Methods
2.1. Specimens

The brains from bottlenose dolphins used in this study were obtained from the Peter J.
Morgane Collection on the Cetacean Brain. Marine 0116 was a 15-year-old female from an
aquarium whose death in 1995 was associated with liver disease and pancreatitis. Its brain
consisted of both hemispheres cut mid-sagittally and was stored in 4% paraformaldehyde
solution at 4 ◦C. The left hemisphere was available from another animal, Marine 0142,
and was stored in 10% neutral-buffered formalin at 4 ◦C. No further information was
available on Marine 0142′s history, but the size of the brain was somewhat larger than
that of Marine 0116, implying that it was extracted from an adult dolphin. A separate
bottlenose dolphin brain (Dolphin 2) was studied using archived coronal Nissl-stained
and celloidin-embedded sections (for more information, refer to Hof and Van der Gucht,
2006 [21]). Neuronal morphology was assessed using Nissl-stained sections in all three
dolphins, and in Marine 0116 and 0142 the MRI scans were assessed, yielding no obvious
pathology. No animals were euthanized for this study.

Archived tissues from three human brains were used for comparisons and as controls:
one healthy male individual (74 years, 5 h post-mortem interval, Clinical Dementia Score
0 (=control), Braak NFT stage I), one with AD and severe cognitive impairment (male,
85 years old, 11 h post-mortem interval, Clinical Dementia Rating 3, Mini-Mental State
Exam 11, Thal amyloid stage 4, Braak tangle stage V), and one with advanced CTE and
moderate hypoxic-ischemic encephalopathy (male, 69 years old, 9 h post-mortem interval,
moderate cerebrovascular disease and athero-arteriolosclerosis; severe post-mortem au-
tolysis). Further information on these specimens is detailed in Ackermans and colleagues
(2022) [22].

2.2. MRI and DTI

Image acquisition was performed using a whole-body 7T MRI scanner (Magnetom,
Siemens Healthineers, Erlangen, Germany) and a 1-channel-transmit 32-channel-receive
radiofrequency head coil (Nova Medical, Wilmington, MA, USA).

The fixed hemispheres, while still immersed in formalin, were exposed to a vacuum
of −1 bar and agitated for 30 min. The hemispheres were then removed from formalin
and placed together into a custom-built 7T ex vivo brain-imaging vessel [23]. The vessel
was filled with Fluorinert (FC-770, TMC industries, Waconia, MN, USA), the vessel lid was
secured with machine screws and Kapton tape, two vent ports in the lid were opened, and
the container was again exposed to a vacuum of −1 bar and agitated for 10 min. Following
this, residual formalin was drained off, the Fluorinert level was topped off, and the vent
ports were closed and sealed with Kapton tape. The specimen container was placed into
the radiofrequency coil with the brain in an orientation consistent with head-first supine
orientation in a human, and inserted into the scanner. Localizer images were acquired, and
iterative magnetic field shimming was performed by 3D phase mapping.

High-resolution anatomical images were acquired with 3D phase-cycled balanced
steady-state free precession (PC-bSSFP) and 3D multi-echo gradient echo (ME-GRE) with
root-sum-of-squares echo recombination. The PC-bSSFP acquisition parameters were:
field of view (FOV) = 196 × 156 × 128 mm, voxel resolution = 250 µm3 isotropic, rep-
etition time (TR) = 8.01 ms, echo time (TE) = 4.01 ms, flip angle (FA) = 30◦, bandwidth
(BW) = 277 Hz/pixel, parallel imaging acceleration by generalized autocalibrating par-
tially parallel acquisition (GRAPPA) [24] with acceleration factor R = 2, 2 acquisitions per
phase increment, phase increment cycle = {0◦, 180◦, 90◦, 270◦}, scan time = 67 min, and
recombination of individual phase increment images by root-sum-of-squares. ME-GRE ac-
quisition parameters were: field of view = 192 × 156 × 134 mm, voxel resolution = 380 µm
isotropic, TR = 38 ms, TE = {5, 10, 15, 20, 25, 30} ms with bipolar readouts, FA = 18◦,
BW = 260 Hz/pixel, GRAPPA R = 2, 1 signal average, scan time = 47 min 56 s, and recombi-
nation of individual echo images by coregistration using FSL FLIRT [25,26] followed by
root-sum-of-squares.
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Diffusion-weighted imaging was performed using diffusion-weighted 3D steady-state
free precession (DW-SSFP) [27] with the following acquisition parameters: field of view
= 204 × 179 × 150 mm, voxel resolution = 850 µm isotropic, TR = 29 ms, TE = 21 ms,
FA = 24◦, BW = 393 Hz/pixel, echo-planar imaging factor = 3, echo spacing = 3.09 ms,
diffusion encoding gradient amplitude = 52 mT/m and duration 13.56 ms for a q-value of
300 cm−1 (corresponding to an estimated b-value of 3594 s/mm2), 120 diffusion encoding
directions, six eddy-current-matched b = 0 acquisitions with diffusion encoding gradient
amplitude = 52 mT/m and duration = 0.92 ms for a q-value of 20 cm−1, and scan time = 12 h
36 min. Eddy-current correction was performed using FSL eddy [28], and preliminary
diffusion-tensor analysis was performed using FSL dtifit.

Diffusion tractography was performed using DSI Studio (http://dsi-studio.labsolver.
org, accessed on 22 May 2022). A deterministic fiber-tracking algorithm [29] was used.
Seeding, ending, and regions of interest (ROIs) were placed in the vestibulocochlear nerve
(AN), VCN, IC central nucleus and external cortex, IC brachium, and the medial geniculate
nucleus (MGN) using imported, manually segmented regions from the ITK-Snap software
(www.itksnap.org), which automatically calculated their volumes [30]. Seed-to-end, seed-to-
terminative and end-to-end connections were evaluated for each nucleus of the brainstem
and mesencephalic auditory pathway. The anisotropy threshold was 0.1. The angular
threshold was 60◦. The step size was randomly selected from 0.5 voxel to 1.5 voxels.
Tracks with a length shorter than 20 or longer than 300 mm were discarded. A total of
1,000,000 seeds were placed for each tract calculation.

2.3. Western Blot and BLAST

Brain tissue (about 30 mg) was homogenized in 0.1 M Tris HCl buffer pH 7.4, con-
taining 0.15 M NaCl, 5 mM EDTA, 1% Triton × 100/0.1% SDS and Halt protease and
phosphatase inhibitor cocktail (Pierce, Rockford, IL, USA). Protein concentration was deter-
mined with BCA reagent (Pierce). Protein samples (50 µg) were separated by SDS-PAGE
and blotted onto polyvinylidene difluoride (PVDF) membranes (Millipore-Sigma, Burling-
ton, MA, USA). Blots were blocked with 25 mM Tris HCl, pH 7.5, 0.15 M NaCl, 0.1%
Tween-20 (TBST), 5% nonfat dry milk and probed overnight with the relevant primary
antibody diluted in blocking solution. Primary antibodies used for Western blots were the
same as those for immunohistochemistry and are listed in Table 1. Blots were then incu-
bated for 1.5 h with the appropriate horseradish peroxidase (HRP) conjugated secondary
antibody (Cytiva, Marlborough, MA, USA: anti-rabbit NA934 and anti-mouse NA 931, and
ThermoFisher Scientific, Waltham, MA, USA: anti-rat A18749 antibodies, respectively) di-
luted in blocking solution (1:7500). The bands were visualized by ECL Prime (Cytiva, RPN
2232) and imaged with an ImageQuant 800 imaging station (Cytiva), with a Precision Plus
Protein All Blue prestained protein standard ladder (Biorad 1610373) on either side of the
samples. In case of inconclusive results with Western blot, the basic linear alignment search
tool (BLAST) was implemented as previously reported [5] to confirm antibody specificity.

2.4. Immunohistochemistry

Tissue blocks comprising the entire right (Marine 0116) and left (Marine 0142) IC and
VCN were sampled from the formalin-fixed brains. Only the left hemisphere was available
for Marine 0142, and the caudal part (about one-third) was missing. Brain sections from
Marine 0116 were discarded following the pilot studies due to tissue deformation when
drying on the slide. Following several washes in phosphate-buffered saline (PBS, pH 7.0),
the blocks were cut coronally into 50 µm-thick sections using a vibratome (Leica VT1000S)
and stored in solution with 0.1% sodium azide. Every 30th serial section of the LIC and
every 20th section of the VCN was used for testing different antibodies that had elicited an
immunoreactivity in pilot immunohistochemistry runs, which included dolphin primary
auditory cortex sections. Antibodies that were initially tested but then excluded due to
lack of reactivity can be found in Annex 1, Table A1. The antibodies chosen for stereology
included anti-Aβ (ThermoFisher Scientific, #700254, diluted 1:500), anti-fibronectin (Sigma-

http://dsi-studio.labsolver.org
http://dsi-studio.labsolver.org
www.itksnap.org
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Aldrich, St. Louis, MO, USA: #F3648, 1:200), anti-TDP-43 (Biolegend, San Diego, CA, USA:
#829901, 1:200) for neurons, antibody SMI-312 (Biolegend, #837904, 1:1000) against medium-
and heavy-chain phosphorylated neurofilament proteins (pNFP) in axons, anti-Iba-1 (Wako,
Neuss, Germany: #019-19741, 1:500) for microglia, and anti-GFAP (Dako, Düsseldorf,
Germany: #Z0334, 1:500) for astrocytes. Appropriate secondary antibodies—biotinylated
goat anti-rabbit (Vector Laboratories, Newark, CA, USA: #BA-1000-1.5) for Aβ, fibronectin,
GFAP and Iba-1, biotinylated goat anti-rat (Vector Laboratories; #BA-9400-1.5) for TDP-43
and biotinylated donkey anti-mouse (Jackson ImmunoResesarch, West Grove, PA, USA:
#715-065-150) for pNFP, respectively—were applied. Primary antibodies were omitted in
concomitant negative control sections.

Table 1. Antibodies validated for bottlenose dolphin brains using immunohistochemistry (IHC) and
Western blotting (WB) in this study.

Antibody Host Reactivity Clonality RRID Catalogue
Number

Dilution
IHC

Dilution
WB

Aβ rabbit rat, human, mouse,
bottlenose dolphin monoclonal AB_2532306 700254 1:500 1:500 1

fibronectin rabbit human polyclonal AB_476976 F3648 1:200 1:1000

TDP-43 rat human, Rat monoclonal AB_2750118 829901 1:200 1:1000

SMI-312 mouse human, mouse, rat monoclonal AB_2566782 837904 1:1000 1:1000

Iba-1 rabbit human, mouse, rat, other polyclonal AB_839504 019-1974 1:500 NA

GFAP rabbit cat, cow, dog, human,
mouse, rat, sheep polyclonal AB_10013382 Z0334 1:500 1:1000

1 Aβ-concentration in WB is derived from published work [5].

2.5. Microscopy and Stereology

Brightfield microscopy images and scans were taken on an Axiophot brightfield
microscope (Carl Zeiss Microscopy, Jena, Germany), with a 20×/0.8 Plan-Apochromat and
40×/1.3 Oil Plan-Neofluar objective for immunohistochemical sections, and a 40×/0.6 Korr
Plan-Neofluar objective for the archived Nissl sections using StereoInvestigator (version
11.03, MBF Bioscience, Williston, VT, USA).

Contours were traced around the whole of the left IC, and separate contours marked
the neuron-dense, putative central IC nucleus (CN) and the surrounding tectosomes or
external cortex (EC). The VCN was contoured in its entirety. The same procedure was
followed for the right IC and VCN of Dolphin 2, whose Nissl-stained, serial, 35 µm-thick
and celloidin-embedded coronal brain sections were assessed for differences in cell counts
and densities arising from alternative tissue processing.

The volume of each subnucleus was calculated using the Cavalieri probe as recently
reported by Nieder and colleagues (2022) [13], and the coefficient of error [31] calculated
for each subnucleus was less than 0.09. Obtained volumes from processed tissue and from
the MRI scans of the available brain hemispheres (left and right in Marine 0116; only left in
Marine 0142) is represented in Table 2.

Image stacks in a systematic random sampling grid were acquired with a Z-step
of 2 µm. The top of every sampling site was focused on manually. The optical frac-
tionator workflow probe in StereoInvestigator (grid size 2000 × 2000 µm for the IC and
1000 × 1000 µm for the VCN, SRS grid layout at 100% of the region of interest, optical
disector height 18 µm with 1-µm top and bottom guard zones, manual focus) was used
on a series of 30 sections for IC and 20 sections for VCN, each separated by 1500 µm in
the IC and 1000 µm in the VCN. For amyloid beta, TDP-43 and fibronectin, a counting
frame of 150 × 150 µm was used, and neurons with nuclear, cytoplasmic, both, or no
immunoreactivity were counted using different markers in StereoInvestigator. For Iba-1
and GFAP, a counting frame of 30 × 30 µm was used and cytoplasmic immunoreactivity
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of microglia and astrocytes, respectively, was counted. In the case of pNFP, the axonal
immunoreactivity and length density of the axons was recorded using a Spaceball probe
with a radius of 18 µm.

Table 2. Comparison of IC and VCN volumes available from three bottlenose dolphin specimens.

Specimen Auditory Nucleus Volume MRI
(mm3)

Volume Cavalieri
(mm3)

Marine 0142
LIC 1775 1362

LVCN 435 129 *

Marine 0116

LIC 1345 -
LVCN 387 -

RIC 1451 921
RVCN 378 285

Dolphin 2 ** RIC - 571
LVCN - 199

* This volume corresponds to the intact rostral two-thirds of the VCN. ** Dolphin 2 processed and embedded in a
different way from Marine 0142 and 0116. L and R indicate the nuclei from the left and right hemisphere, respectively.

2.6. Data Analysis

Data analysis was performed using Microsoft Excel (from the Microsoft 365 apps pack-
age) and R version 4.2.1. Bar charts were created using GraphPad Prism 8. Heatmaps of 3-
dimensional immunohistochemical marker distribution were generated following an R-script
from Ackermans and colleagues (2022) [22], publicly available on GitHub (https://github.
com/NLAckermans/Ackermans2022BovidTBI/blob/main/Muskox_heatmaps_220314.Rmd,
accessed on 18 June 2022).

3. Results
3.1. MRI

The 7T-MRI scans enabled the identification and in situ volume estimate of unpro-
cessed, formalin-fixed dolphin brain nuclei. Deterministic unihemispheric fiber tracking
revealed strong connectivity between the auditory nuclei (VCN and lateral lemniscus and
the cerebellum; Figure 1a), and the afferent auditory lemniscal pathway up to the IC, IC
tectosomes, collicular brachium, and medial geniculate nucleus. The IC and its brachium
were particularly rich in putative synaptic endings, corresponding to the former’s role
as a central integrative hub for sensory input processing, while the latter and the medial
geniculate nucleus stood out in terms of the number of passing tracts (Figure 2). Overall, the
cetacean auditory pathways described in historic works were recreated on the brainstem
and mesencephalic levels [32–34]. More fiber tracts were calculated when the nucleus
in question was considered as a region of interest (ROI) rather than as an ending point
(Figure 1b,d). End-to-end connections revealed the intricate wiring between the different
nuclei, such as the numerous tracts between the lateral lemniscus and the IC tectosomes
(Figure 1c) and within different regions of the same nucleus, such as between the IC central
nucleus and its tectosomes (Figure 1d).

3.2. Western Blot and BLAST

Western blots resulted in clear immunoreactivity against bottlenose and common
dolphin and human control brains for fibronectin (~200 kDa) and GFAP (~40–50 kDa).
SMI-312 revealed labeling against pNFP in all three tested species as well, showing a
band at ~200 kDa and a weaker one at ~150 kDa in the human, and several intense bands
between 150 and 200 kDa in bottlenose and common dolphins, corresponding to the weight
of the medium and heavy neurofilament chains this antibody targets. Membrane images
are provided in Appendix A, Figure A1.

https://github.com/NLAckermans/Ackermans2022BovidTBI/blob/main/Muskox_heatmaps_220314.Rmd
https://github.com/NLAckermans/Ackermans2022BovidTBI/blob/main/Muskox_heatmaps_220314.Rmd
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Figure 1. Fiber tracts between the brainstem and midbrain auditory nuclei using a deterministic
tracking algorithm [29]. Number of seeds was limited to 1,000,000 in each calculation. (a) End-to-end
connectivity between the left VCN and IC central nucleus. Total number of tracts: n = 63. The lateral
lemniscus to accentuate the lemniscal pathway. Lateral perspective; (b) Fibers (n = 1652) calculated
to end in the lateral lemniscus, with the whole brain considered as a seeding region. Caudolateral
perspective. MGN (*) and IC brachium (**) are visualized for reference; (c) End-to-end fibers (n = 46)
between the lateral lemniscus and the IC external cortex (***). Caudal perspective; (d) Fibers (n = 7456)
calculated to pass through or end in the lateral lemniscus as a ROI, with the whole brain considered
as a seeding region. A higher number of tracts is calculated in comparison with (b). Caudolateral
perspective; (e) End-to-end fibers (n = 362) between the IC central nucleus and its external cortex (not
shown to better visualize fibers). Lateral perspective.
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Nucleus L_AN L_VCN L_LL L_IC CN L_IC EC L_Brachium L_MGN

L_AN NA 10,275 1,458 2,023 636 224 6

L_VCN 3,990 NA 2,255 9,382 545 257 2

L_LL 41 21,553 NA 209,522 13,062 5,839 438

L_IC CN 1 3,801 102,948 NA 73,043 53,266 3,310

L_IC EC 1 3,379 36,366 256,602 NA 46,687 3,015

L_Brachium 0 44 2,570 157,946 98,229 NA 10,013

L_MGN 0 0 0 107,473 23,863 170,078 NA

Nucleus L_AN L_VCN L_LL L_IC CN L_IC EC L_Brachium L_MGN

L_AN NA 5,790 43 526,077 526,077 526,077 526,077

L_VCN 423,519 NA 458,304 471,679 471,679 471,679 471,679

L_LL 578,322 556,501 NA 485,482 531,809 576,179 578,325

L_IC CN 453,041 453,041 374,458 NA 253,621 352,316 440,863

L_IC EC 369,924 369,924 364,115 174,086 NA 276,873 354,561

L_Brachium 719,650 719,650 718,951 619,578 661,183 NA 516,932

L_MGN 972,942 972,942 972,942 971,207 972,420 920,253 NA

Nucleus L_AN L_VCN L_LL L_IC CN L_IC EC L_Brachium L_MGN

L_AN NA 0 0 0 0 0 0

L_VCN 0 NA 12 63 11 1 0

L_LL 0 12 NA 988 46 32 0

L_IC CN 0 63 988 NA 362 380 37

L_IC EC 0 11 46 362 NA 56 17

L_Brachium 0 1 32 380 56 NA 3

L_MGN 0 0 0 37 17 3 NA

SEED to END

SEED to TERMINATIVE

END to END

Figure 2. Calculated fiber tracts for seed-to-end, seed-to-terminative (ends all tracts regardless of
their anatomical endings), and end-to-end connectivity of brainstem and midbrain auditory nuclei.
The number of tracts is less indicative than their relative differences between the different nuclei, as
their number does not correspond to the number of axons and synaptic connections.

TDP-43 did not show any immunoreactivity in any of the tested species with the
antibodies used in this essay, and Iba-1 was not suitable for WB. A BLAST search confirmed
that proteins of very similar amino acid sequence are encoded in the dolphin genome.
Human TDP-43 (ABO32290.1) showed 97.83% identity with bottlenose dolphin TAR DNA-
binding protein 43 (XP_019786443.1, E-Value: 0), while human Iba-1 (BAA13088.1) showed
a 94.56% (E-Value: 1 × 10−96) homology with the dolphin allograft inflammatory factor 1
(XP_004311265.1). The Aβ antibody was tested by WB in our previous study [5] and was
considered validated in bottlenose dolphins.

3.3. Immunohistochemistry and Stereology

The six tested antibodies all showed clear immunoreactivity in the human control
and bottlenose dolphin IC and VCN tissue. Pre-and post-processing IC and VCN volumes
estimated from 7T-MRI scans and the Cavalieri probe from serial sections are reported
in Table 2. Cell densities below are reported in reference to the Cavalieri volumes in
Marine 0142.

Since the optical dissector probes for Aβ, fibronectin, and TDP-43 all considered non-
immunoreactive (ir) neurons and therefore yielded independent estimates of total neuronal
numbers and densities for the same nuclei, their results were averaged to obtain an estimate
of 6.13 million neurons with 3313 neurons/mm3 in the IC (4.85 million ± 754.58 thousand
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in the CN with a density of 3561/mm3; 1.28 million ± 159.71 thousand in the EC, with
2621/mm3), and 3.16 million ± 102.19 thousand neurons with 2455/mm3 in the VCN.
The calculations of the percentages and densities of neurons with different types of im-
munoreactivity (nuclear/cytoplasmic/both nuclear and cytoplasmic) are reported in full
in Supplementary Table S1, and all number estimates from StereoInvestigator probes are
summarized in Table A2. Neuronal numbers and densities according to the observed types
of immunoreactivity are visualized in Figure 3.
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Figure 3. Neuronal numbers and their densities for the left IC and VCN considering different
immunoreactivity patterns for Aβ, fibronectin (FN), and TDP-43. (a) Total number of neurons counted
in each IC probe compared to nuclear, cytoplasmic, or both nuclear and cytoplasmic immunoreactivity;
(b) Total density of neurons counted in each IC probe compared to nuclear, cytoplasmic, or both
nuclear and cytoplasmic immunoreactivity referring to the IC Cavalieri volume; (c) Total number
of neurons counted in each VCN probe compared to nuclear, cytoplasmic, or both nuclear and
cytoplasmic immunoreactivity; (d) Total density of neurons counted in each VCN probe compared
to nuclear, cytoplasmic, or both nuclear and cytoplasmic immunoreactivity referring to the VCN
Cavalieri volume.



Vet. Sci. 2022, 9, 692 10 of 26

The main types of immunoreactivity observed in the tested dolphin tissues are dis-
played in Figure 4.
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ectin (Figure 5a). Fibronectin coated the capillary walls and could be observed in most 

Figure 4. Immunohistochemical patterns of the antibodies tested in this study in the bottlenose
dolphin brain. Scale bar: 50 µm. (a) Aβ reactivity in neuronal nuclei and in the neuropil of the
IC; (b) Nuclear (top left) versus cytoplasmic (bottom right) neuronal immunoreactivity to TDP-
43 in IC neurons; (c) Perivascular immunoreactivity TDP-43 in the IC; (d) pNFP-immunolabeled
thinner axonal fibers of the IC central nucleus alternating with much thicker external cortex axons;
(e) Perivascular and intraparenchymal GFAP-expressing astrocytes in the IC; (f) Though the ramified
morphology prevailed, few rod-shaped Iba-1-ir microglia were present in the VCN.
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3.3.1. Aβ

Aβ was observed in 71% of the neuronal nuclei of the IC central nucleus (Figure 4a)
and in 7% of its external cortex neurons, where most of its immunoreactivity was present si-
multaneously in the nucleus and cytoplasm (48%). In total, 56% of all IC neurons displayed
immunoreactivity in the nucleus, 14% in both nucleus and cytoplasm, and 0.9% only in the
cytoplasm. In the VCN, only 18% of neurons showed only nuclear immunoreactivity, 26%
nuclear and cytoplasmic, and 4% cytoplasmic alone. Mild diffuse pericapillary immunore-
activity was too faint to be quantified. A few glial cells also appeared IR, although without
confocal microscopy, it was not possible to define whether these were micro- or macroglia.

3.3.2. Fibronectin

Fibronectin appeared only in the cytoplasmic or nuclear and cytoplasmic compart-
ments simultaneously in the examined dolphin. The former pattern was seen in 23%,
17%, and 18%, and the latter in 14%, 13%, and 14% of the IC central nucleus, its external
cortex, and the VCN, respectively. A total of 36% of IC and 32% of VCN neurons showed
fibronectin immunoreactivity. Some glial cell nuclei were also fibronectin-ir. A human
cortical section (Brodmann area 11) from a control case was used as a positive control for
fibronectin (Figure 5a). Fibronectin coated the capillary walls and could be observed in most
glial and a few neuronal cell nuclei. Unexpectedly, a comparable immunohistochemical
pattern was observed in cortical samples from the bottlenose dolphin (Figure 5b; primary
auditory cortex) and a human with CTE (Figure 5; superior frontal cortex) revealing very
weak capillary immunoreactivity, little (bottlenose dolphin) or no (human with CTE) glial
immunoreactivity, and mostly neuronal cytoplasmic and nuclear signal.
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Figure 5. Fibronectin immunoreactivity in dolphin and human brain cortex. (a) Vascular and glial
immunoreactivity in a healthy human brain; (b) Neuronal cytoplasmic and nuclear immunoreactivity
in the primary auditory cortex of a healthy bottlenose dolphin brain; (c) Predominantly neuronal and
very little vascular immunoreactivity in the blood vessels of a human brain with CTE.

3.3.3. TDP-43

As with Aβ, TDP-43 immunoreactivity was observed in neuronal nuclei or cytoplasm
alone (Figure 4b), or in both compartments simultaneously. Predominant nuclear im-
munoreactivity was observed in the IC central nucleus (67%), external cortex (53%), and
VCN (55%), followed by simultaneous nuclear and cytoplasmic immunoreactivity at 17%,
26%, and 19% and a cytoplasmic pattern in 7%, 7%, and 8% of the cells, respectively. Few
vessels displayed mild perivascular immunoreactivity (Figure 4c).
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3.3.4. pNFP

The axons of the VCN and IC external cortex appeared as very thick, pNFP-ir filamen-
tous structures (Figure 4d). The IC central nucleus mostly consisted of thinner and shorter
filaments. Axonal length was estimated to be 2299.47 m in the IC central nucleus, 1058.09 m
in its external cortex and 195.31 m in the VCN, corresponding to the structures’ different
volumes (Figure 6a). Axonal length density was, respectively, 1.69 m/mm3, 2.17 m/mm3,
and 1.52 m/mm3 in the IC central nucleus, external cortex, and VCN (Figure 6b). The
higher length density of the IC external cortex corresponds to the assumption that many
afferent fibers reach the IC from here [33,35].
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Figure 6. Axonal length and their densities for the left IC central nucleus (CN) and external cortex
(EC) and VCN. (a) Total axonal length in the LIC CN and EC, and in the VCN; (b) Total length density
of axons counted in the LIC CN and EC, and in the VCN, referring to the IC Cavalieri volume.

3.3.5. Iba-1

Iba-1 was localized in all parenchymal microglia (intravascular monocytes were not
counted). The numbers counted in the IC central nucleus, external cortex and VCN totaled
405.63 million, 316.30 million, and 39.36 million, with their respective densities calculated
at 297.85 thousand, 648.62 thousand, and 305.44 thousand microglia/mm3 (Figure 7a).
On average, the total microglial density in the IC is 390.33 thousand/mm3. As such, it
is in the same order of magnitude as that of the VCN (Figure 7b). Most of the observed
microglia displayed a filamentous to dendritic morphology, suggesting that the animal did
not display evident neuropathology, although few rod-shaped microglia were present in
both IC and VCN (Figure 4f).

3.3.6. GFAP

GFAP-expressing astrocytes made up a population of 717.04 million (IC central
nucleus), 394.37 million (IC external cortex), and 77.23 million (VCN) cells (Figure 7a).
Their density in the three regions amounted to 526.51 thousand, 808.72 thousand, and
599.39 thousand astrocytes/mm3, respectively, and as with Iba-1, the averaged IC density
(600.92 thousand/mm3) was comparable to that of the VCN (Figure 7b).
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Figure 7. Glial numbers and their densities for the left IC and VCN. (a) Total number of GFAP-containing
astrocytes and Iba-1-ir microglia in the left IC and VCN; (b) Total density of GFAP-expressing astrocytes
and Iba-1-ir microglia in the left IC and VCN referring to the IC Cavalieri volume.

3.4. Marker Distributions

With the use of stereological data, it was possible to create heatmaps from 3-dimensional
data to visualize the distribution of the immunolabeled neurons, axons, and glia in Marine
0142 (Figure 8 for the IC, Figure 9 for the VCN).

Most of the IC neurons were concentrated in the dorsomedial segment of the IC cen-
tral nucleus, and this was reflected in the distribution of the neuron-associated markers
(Figure 8a,c,e). In the VCN, this distribution was somewhat more homogeneous
(Figure 9a,e) for Aβ and TDP-43, and reflected the glove-like morphology of the VCN
surrounding the incoming cochlear nerve fibers. Fibronectin appeared to be concentrated
in the dorsomedial VCN segment (Figure 9c).

Regarding the different immunoreactivity patterns, intranuclear Aβ was mostly re-
stricted to the IC central nucleus, and less abundant in the external cortex and the VCN.
Fibronectin immunoreactivity was observed mostly in the IC central nucleus, particularly
with regards to its cytoplasmic expression. VCN distribution was homogenous.

TDP-43, on the other hand, was equally distributed between the central nucleus
and external cortex of the IC and the VCN, with comparable nuclear and cytoplasmic
immunoreactivity between the three subnuclei (58% nuclear; 21% nuclear and cytoplasmic;
7% cytoplasmic out of all the counted neurons).

pNFP appeared concentrated in the dorsomedial and ventrolateral regions of the IC
central nucleus (Figure 8b), but also in the dorsal and lateral segments of the tectosomes,
likely reflecting the main afferent and efferent fibers of the IC, which corresponds to the
fiber tracks observed in the DTI data (Figure 1d,e). In the VCN, pNFP-ir fibers appeared
interspersed with the neuronal somata, although it must be kept in mind that this nucleus
was not complete in the examined specimen.

Glial distributions (Figure 8d,f and Figure 9d,f) lacked large concentration gradients,
being somewhat denser in the dorsomedial segments of both auditory nuclei.
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Figure 8. Heatmaps of marker distributions in the left IC of Marine 0142 in the coronal plane (caudal
perspective). In light blue—the average contour surrounding the putative IC central nucleus area
every 30th serial section, while the light pink contour represents the putative IC external cortex.
Lighter colors of the heatmaps represent a higher marker density. Scale bar: 2 mm (a) Heatmap
of all Aβ-containing neurons. Turquoise points—neurons with nuclear immunoreactivity. White
points—neurons with simultaneous cytoplasmic and nuclear immunoreactivity. (b) Heatmap of
pNFP-ir axons. (c) Heatmap of all fibronectin-ir neurons. Orange points—neurons with cytoplasmic
immunoreactivity pattern. (d) Heatmap of GFAP-expressing astrocytes. (e) Heatmap of all TDP-43-
containing neurons. Points as in (a,c). (f) Heatmap of Iba-1-expressing microglia.
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Figure 9. Heatmaps of immunohistochemical marker distributions in the left VCN of Marine 0142 in
the coronal plane (caudal perspective). In green—the average contour surrounding the putative VCN
area from every 20th serial section. Lighter colors of the heatmaps represent a higher marker density.
Scale bar: 2 mm. (a) Heatmap display total Aβ-containing neurons, regardless of immunoreactivity
type. Turquoise points—neurons with nuclear immunoreactivity. White points—neurons with simul-
taneous cytoplasmic and nuclear immunoreactivity. (b) Heatmap of pNFP-ir axons. (c) Heatmap of
all fibronectin-ir neurons. Orange points—neurons with cytoplasmic immunoreactivity pattern.
(d) Heatmap of GFAP-ir astrocytes. (e) Heatmap of all TDP-43-ir neurons. Points as in (a,c).
(f) Heatmap of Iba-1-ir microglia.
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3.5. Intra- and Interspecies Comparisons

To our knowledge, this is the first stereological estimates of neurons and glia ir against
the investigated antibodies in the bottlenose dolphin IC and VCN. While the two hemi-
spheres of Marine 0116’s brain yielded high-quality 7T-MRI scans, the tissue quality made
it unsuitable for immunohistochemistry. The celloidin-embedded Nissl-sections of the right
IC and VCN of Dolphin 2 (a bottlenose dolphin; [36]) and the right VCN of a striped dolphin
(Stenella coeruleoalba) were analyzed for comparison. Values for cochlear nucleus numbers
(subdivisions in a dorsal and VCN are indistinct) have previously been reported for healthy
individuals versus people with presbycusis by Hinojosa and colleagues (2011) [37], and
the former number and density is presented in Figure 10 in comparison with the cetaceans.
At 91.47 thousand neurons, human values are about a third (31%) of Marine 0142’s VCN
(316.38 thousand). The difference is exorbitantly greater when comparing Marine 0142,
which was processed minimally and embedded using DPX, to Dolphin 2 (2.15 million neu-
rons), whose brain volume presumably shrunk by at least 50% due to celloidin embedding,
thus reflecting on the neurons observed per counting frame and density estimates. While
the striped dolphin’s brain was processed similarly to Dolphin 2’s, its numbers (personal
communication, Ava Akbarian, Hof laboratory) are similar to those of Marine 0142, despite
its physiologically, species-characteristic smaller brain volume [38].
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Figure 10. Intra- and interspecies comparison of numbers and densities for the VCN. Human values
were taken from existing literature [37]. * Bottlenose Dolphin 2 and the striped dolphin (Stenella) VCN
neurons were counted using archived, Nissl-stained, celloidin-embedded sections. (a) Total number of
neurons counted in the VCN; (b) Total density neurons referring to the VCN Cavalieri volume.

IC neuronal numbers were only available for Marine 0142 and Dolphin 2 (8.30 million—IC
central nucleus, 1.76 million—external cortex, 2.15 million—VCN), and revealed 2-7 times higher
values in the celloidin-embedded bottlenose dolphin tissue.

4. Discussion

This study reports a multimodal and quantitative approach to assessing cetacean
auditory nuclei, expanding the knowledge of neurochemical signatures and brain connec-
tivity. Stereological probes for systematic random sampling yielded reliable cell counts
with coefficients of error (CEs) < 10% for most of the tested markers with regards to
total immunoreactivity.
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Following our previous work, markers of interest were chosen according to their
relevance in the neurodegenerative and neuroprotective processes, as well as in plasticity.
Aβ was consistently observed in the nuclei of IC and VCN neurons in 21 bottlenose dolphins
(including the specimens from Orekhova and colleagues, 2022 [5]), and the present work
shows that intranuclear Aβ is present in 71% of IC central nuclear cells, pointing to a
widespread, potentially physiological pattern in a healthy dolphin and matching findings
in other cetacean species [14].

As previously described by these authors, a potential neuroprotective role of nuclear
Aβ oligomer may facilitate nuclear degradation of misfolded proteins [39,40], particularly
assuming repetitive exposure to mild hypoxia that may be experienced by animals with
dive intervals of up to ~8 min [41,42]. This hypothesis is worthy of further investigation, as
extracellular Aβ aggregation is correlated with AD and used for staging of the disease [43],
yet no clear causality has been described [44].

In this context, the localization of fibronectin is of particular interest. Contrary to
the expected capillary reactivity, as it was seen in the healthy human control tissue, the
bottlenose dolphins examined for this study displayed neuronal cytoplasmic (with and
without nuclear signal) and limited glial immunoreactivity in the IC, VCN, and auditory
cortex. This corresponded to the pattern seen in a human CTE brain.

As a component soluble in the extracellular matrix (ECM) and insoluble when built
into vascular basal membranes, fibronectin is secreted by endothelial, pericytic, and as-
troglial cells [16]. It may also be expressed on the neuronal cell surface along with other
adhesive glycoproteins as part of the ECM, enabling integrin-associated signal transduction
and thus reflecting the activity of neuronal, glial, and vascular cells that are responsible for
its proteolytic degradation [45]. Following neuronal insults such as stroke and traumatic
brain injury (TBI), the hybrid ECM proteins are shown to be acutely down- and chronically
upregulated within the scar tissue, shifting from the perivascular to the perineuronal com-
partment and putatively enabling plastic adaptations to take place. As such, perineuronal
immunoreactivity is expected in a CTE brain.

Wang and colleagues (2013) attribute a key neuroprotective role to the “fibronectin-
integrin-growth factor receptor-signal transduction-gene and protein expression cascade”,
highlighting its capacity to compensate TBI-induced synaptic deficits by modulating
neuron-glial extrasynaptic transmission [20]. Furthermore, ECM homeostasis is thought to
be disturbed as a consequence of hypoxia in fibrotic breast, mesenchymal stem cells, and
other tissues [46,47] as well as ischemic conditions, although in the latter case, immunoreac-
tivity is largely restricted to perivascular and diffuse parenchymal and not cell-associated
immunoreactivity pattern [48,49]. Moreover, hypoxia may also be a driver of neuroin-
flammation by promoting Aβ build-up and disrupting calcium homeostasis when the
tissue is exposed chronically, although intermittent and acute exposure tends to induce
neuroprotective mechanisms [50].

Considering this together with higher myelination [9] and antioxidant protein lev-
els [10] in deeper- and thus longer-diving cetacean species, and generally higher neu-
roglobin levels in cetaceans versus terrestrial mammals and seals [51], perineural fibronectin
appearance in a healthy dolphin brain concurrently with intranuclear Aβ is remarkable
and suggests that a neurochemical signature reminiscent of hypoxia may be physiological
in dolphins. However, a reliable vascular marker would still be important despite the lack
of immunoreactivity in the antibodies tried in this study (Appendix A, Table A1), as TBI
may cause chronic vessel-associated neuroinflammation [52].

TDP-43 appeared on average in 87% of counted auditory nuclei neurons, mostly in
nuclear (58%), followed by nuclear and cytoplasmic (7%), and only cytoplasmic (21%)
patterns. In a recent study on the brains of seven free-ranging common dolphins variably
exposed to β-N-methylamino-L-alanine (BMAA) and methylmercury, all the specimens
were observed to have neuronal cytoplasmic inclusions morphologically reminiscent of AD
disease in humans, widespread in different cortical areas and layers independent of BMAA
exposure levels, but potentially associated with a synergistic pathology in combination
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with high methylmercury levels [4]. Furthermore, TARDBP, the gene encoding for TDP-43,
was found to be upregulated in these dolphins [4]. However, no quantitative assessment
was available for the protein-expression data.

In humans with Guamanian Parkinsonism-dementia complex, hippocampal CA1
neuronal loss was correlated with significantly lower numbers of neurons expressing
nuclear TDP-43 and higher numbers of cytoplasmic TDP-43. Healthy controls displayed
43.7% of positive nuclei compared to 22% in this diseased cohort [53]. While human values
for the IC and cochlear nuclei are unavailable, the intranuclear 58% in Marine 0142 auditory
nuclei may reflect the lack of neuropathological changes in this dolphin, as confirmed by
microscopic examination.

Qualitative descriptions of TDP-43 neuronal mislocalization from the nucleus to
the cytoplasm in various neurodegenerative disorders abound [54,55], and thus it may
be a protein with a similar apoptosis-heralding dynamic, but potentially more chronic
expression in the dolphin than the previously described diacylglycerol-ζ [5].

While antibodies against cytoskeleteal neurofilament have successfully been used in
cetaceans (SMI-32—[13,56]; NF200—[5,57]), they mostly visualize somatic and dendritic
elements. Here we used pNFP to analyze axonal length and density, targeting heavily
phosphorylated axonal epitopes [58], which may thus serve as a reference for comparison
with other individuals and species in an evolutionary and pathophysiological context.

Validating pNFP for cetaceans may help assess oxidative axonopathy by assessing the
ratio of phosphorylated neurofilaments to total neurofilament proteins (using NF200). This
has been shown in an acute loss of phosphorylation, quantifying the loss of axonal function
in acute oxidative injury [59] and correlating with the duration of some neurodegenerative
diseases such as multiple sclerosis [60].

GFAP-expressing astrocyte and Iba-1-expressing microglial numbers and densities may
also serve as a baseline, as both cell types are involved in the response to pathogen- [61,62],
toxin- [63], age-related, and immune-mediated neuroinflammation [64], and have even been
involved in acoustic trauma [65–67]. Future studies may focus on quantifying proteins such
as Aβ and fibronectin in glial cell populations using confocal/multiplexing methods, as
their involvement has been verified in neurodegeneration and neuroprotection [20,68–70].

Cetaceans display remarkable cognitive abilities, including complex social relation-
ships, mirror self-recognition, the ability to pass along cultural behaviors such as specialized
hunting techniques, and even the use of different dialects, traditions, and tools [71–74].
In this regard, comparison of the reported protein expression to individuals with known
cognitive decline or deafness, especially in dolphins from aquaria where behavioral assess-
ments are available, would be very valuable venue for upcoming research. Ethically sound
functional studies in live, trained dolphins, such as using fMRI, are very difficult due to a
variety of logistical and training challenges. Nevertheless, they are likely to become feasible
with time, providing unique insight and validation for post-mortem assessments.

While stereological estimates of the above markers are a useful baseline for future
comparisons with other individuals and species, cell numbers, and especially densities,
depend heavily on the way the tissue was fixed, processed, and probed. While MRI scans
do not allow a precise border delineation using cell morphology, they can be helpful to
assess in situ volumes as a reference for stereological assessment. In the case of Marine
0142, relatively little processing was performed as opposed to paraffin-embedded tissue.
Nevertheless, Cavalieri volume estimates were 77% (IC) and 30% (VCN) of their in situ
correlates from the 7T-MRI scans. The difference in the VCN is likely owing to macroscopic
damage of the caudal part of the nucleus, which prevented us from obtaining serial sections
from its caudal third. For Marine 0116, whose IC and VCN were complete in both scans
and sections, Cavalieri volume estimates amounted to 84% and 75% of the MRI-based
volume estimates, implying that the volumes inferred from processed brain sections are
systematically underestimated.

The comparison to Dolphin 2, a celloidin-embedded, archived bottlenose dolphin spec-
imen, showed that that a processing tissue shrinkage of about 50% can create an artificial
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concentration of neuronal numbers of 288%, which increases the average neuronal density
by 498%. Therefore, species comparisons must also be undertaken with care. Historic stud-
ies have reported quantitative cochlear nucleus volumes and neuronal numbers [75–77] in
harbor porpoise (Phocoena phocoena), fin whale (Balaenoptera physalus), beluga whale (Del-
phinapterus leucas), and common dolphin, revealing that volumes ranged from 6–30 times
that of human, and the neurons numbered 6–17 times the average healthy human value.
However, many details including age, gender, and history and tissue preparation behind
the whale and human specimens are variable or unknown.

In our case, VCN Cavalieri volumes were observed to be 8.4–18.5 times that of the
most recent human study [37], 12.9–28.5 times comparing to the volumes of human cochlear
nuclei in Hall’s (1967) [75] study, and 23–52 times those from Gandolfi and colleague’s VCN
averages (1980) [78]. Neuronal numbers were between 4.5–70.6 times those of the adult
human VCN (3.3–23.5 times that of both cochlear nuclei) compared to the above studies.

Preliminary values for the striped dolphin (celloidin-embedded) are best compared
to bottlenose Dolphin 2 due to similarities in processing, and comprise 46% of its vol-
ume, 13% of neuronal numbers, and 28% of the total packing density, which may reflect
the fact that its brain mass (880.01 g on average) is around 57% that of the bottlenose
dolphin (1549.9 g; [79]). This variability highlights that, while quantitative estimates of
morphological and neurochemical properties are desirable, many more specimens need
to be examined in future using the most tissue-sparing techniques possible, and that a
multimodal approach such as used here may be of great use to offset potential artifacts.

Not as much literature is available for the comparison between IC volumes and
numbers. The intraspecies trend of a concentration in both neuronal numbers and densities
is repeated between Marine 0142 and Dolphin 2 as a likely consequence of celloidin-
embedding, and human volumes appear to be between 3.5 to 28 times lower than in the
bottlenose dolphins [80]. We could not differentiate a dorsal from an external IC cortex in
our specimens; thus, comparisons to these structures were not possible [81].

Furthermore, 7T-MRI-based volumes confirmed that tissue processing caused a shrink-
age of 15–25% in these specimens and, as such, the DTI results reported in this study
must be seen as preliminary. Connectivity from the VCN and IC of the two bottlenose
dolphin hemispheres largely recreated the known delphinid auditory pathway between
the brainstem and midbrain nuclei [32,34,38,77,82]. Regarding the high quality of the scans
and notwithstanding the limitations of evaluating single hemispheres separately, these
specimens merit further detailed connectivity studies that are beyond the scope of the
present paper.

As is often the case in marine mammal science, very low sample sizes limit the signif-
icance of the acquired data, and scant information on the animals’ history, age, sex, and
circumstances of death limit health assessments and the interpretation of histopathological
data. Cetacean sample acquisition is opportunistic due to ethical and logistic constraints,
and is inherently affected by high variability in fixation times and methods, sample in-
tegrity, and processing (see Ijsseldijk and colleagues, 2019 [83] for the current protocols
of general post-mortem procedures and Orekhova and colleagues, 2022 [5] for VCN, IC,
and vestibulocochlear-nerve sampling protocols). Further studies should aim to process
tissues in the most sparing way available to enable future comparisons to the quantitative
assessments provided in this and other recent studies [4,13].

5. Conclusions

The quantitative, multimodal assessment of the IC and VCN of this study expand the
available knowledge on cetacean auditory nuclei neurochemical signature and connectivity,
facilitating the recognition of artifacts. The stereological estimates obtained herein heighten
the translational potential of dolphins to model the pathophysiology of the human brain,
although different responses to neurodegenerative disease may be possible in species
evidently adapted to a high-pressure, low-temperature underwater environment. They may
also serve as a baseline for stranded cetaceans where pathological findings are inconclusive
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and acoustic trauma is suspected [84], as a support to the examination of the fragile inner
ear [5,85]. Cumulative and acute toxicity from environmental and anthropogenic sources
may also be better quantified [4].

Further studies using similar validatory and multimodal approaches are necessary to
solidify the results, allow for functional intra- and interspecies comparisons between other
marine and terrestrial animals and create a deeper understanding of cetacean neuroanatomy,
physiology, and pathology.
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Appendix A

Table A1. Antibodies tried in bottlenose dolphin brains using immunohistochemistry (IHC) in the
pilot study.

Antibody 1 Host Reactivity Clonality RRID Catalogue
Number

Lowest
Dilution IHC

AT-8 Mouse Human, Mouse, Rat (etc.) Monoclonal AB_223647 MN1020 1:1000

CD-31 Rabbit Human Polyclonal AB_726362 ab28364 1:100

Collagen IV Rabbit

Mouse, Rat, Hamster, Cow, Dog,
Human, Pig, Zebrafish, African green

monkey, Chinese hamster, Syrian
hamster

Polyclonal AB_445160 ab6586 1:300

Collagen IV Rabbit Mouse Polyclonal AB_445160 ab19808 1:300

Collagen IV Rabbit Human Monoclonal AB_2801511 ab214417 1:500

CP-13 Mouse Human Monoclonal AB_2314223 Davies Lab 1:1000

dMBP Rabbit Human, Rat Polyclonal AB_2140351 ab5864 1:500

GFAP Rabbit Mouse, Rat, Human Monoclonal AB_880202 ab68426 1:1000

Isolectin B4 2 Bandeiraea
simplicifolia Non-immune origin

Unspecific
binding of

glycoproteins
NA L2140 1:40

https://www.mdpi.com/article/10.3390/vetsci9120692/s1
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Table A1. Cont.

Antibody 1 Host Reactivity Clonality RRID Catalogue
Number

Lowest
Dilution IHC

MAP-2 Rabbit Human Polyclonal AB_1853945 HPA008273 1:200

MMP-9 Mouse Human, Mouse, Rat Monoclonal Not available NBP2-80855 1:300

MOAB-2 Mouse Human Monoclonal AB_2895168 MABN254 1:200

NeuN Mouse
Avian, Chicken, Ferret, Human,

Mouse, Pig, Rat,
Salamander

Monoclonal AB_2298772 MAB377 1:200

PHF1 Mouse Human Monoclonal AB_2315150 Davies Lab 1:500

SMI-32 Mouse Human, Mouse, Rat Monoclonal AB_2715852 801701 1:1000

Vimentin Mouse Human, Rat Monoclonal AB_306239 ab8069 1:200

1 Antibodies yielding inconsistent or no evident immunoreactivity were tested in morphologically healthy
dolphin brain tissues. Potential immunoreactivity in pathological specimens were not excluded, but these
antibodies require validation in cetaceans. 2 Isolectin B4 is not an antibody, but only a protein that can agglutinate
cells/glycoproteins/some complex carbohydrates. It agglutinated to vascular glycoproteins in the human and
dolphin sections, but the signal was too weak for further use.

Table A2. Full table of all the coefficients or error for the stereological markers counted in this study.

Data File Marker
Total

Markers
Counted

Number of
Sampling

Sites

Estimated
Population

Using Mean
Section

Thickness with
Counts

CE
(Gundersen),

m = 0

CE
(Gundersen),

m = 1

1st Estimated
CE

(Schmitz-
Hof)

2nd
Estimated CE

(Schmitz-
Hof)

Amyloid-β

LIC CN Non-ir 162 239 960,000.06 0.11 0.08 0.099 0.079

LIC CN Nuclear 484 239 2,868,148.5 0.06 0.05 0.057 0.045

LIC CN Cytoplasmic 7 239 41481.48 0.38 0.38 0.470 0.378

LIC CN Nuclear +
cytoplasmic 33 239 195,555.56 0.20 0.18 0.202 0.174

LIC CN All markers 686 239 4,065,185.25 0.05 0.04 0.046 0.038

LIC EC Non-ir 14 153 82,962.96 0.28 0.27 0.370 0.267

LIC EC Nuclear 82 153 485,925.94 0.16 0.11 0.172 0.110

LIC EC Cytoplasmic 1 153 5925.93 1.00 1.00 1.000 1.000

LIC EC Nuclear +
cytoplasmic 95 153 562,963 0.12 0.10 0.157 0.103

LIC EC All markers 192 153 1,137,777.88 0.1 0.07 0.109 0.072

LVCN Non-ir 45 137 44,444.45 0.21 0.15 0.312 0.149

LVCN Nuclear 128 137 126,419.76 0.13 0.09 0.105 0.088

LVCN Cytoplasmic 11 137 10,864.20 0.34 0.30 0.343 0.302

LVCN Nuclear +
cytoplasmic 65 137 64,197.54 0.14 0.12 0.129 0.124

LVCN All markers 249 137 245,925.94 0.1 0.07 0.083 0.063

Fibronectin

LIC CN Non-ir 594 235 3,520,000.25 0.05 0.04 0.049 0.041

LIC CN Cytoplasmic 217 235 1,285,926.13 0.09 0.07 0.085 0.068

LIC CN Nuclear +
cytoplasmic 129 235 764,444.5 0.12 0.09 0.100 0.088

LIC CN All markers 940 235 5,570,370.5 0.04 0.03 0.045 0.033

LIC EC Non-ir 147 100 871,111.19 0.10 0.08 0.123 0.082
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Table A2. Cont.

Data File Marker
Total

Markers
Counted

Number of
Sampling

Sites

Estimated
Population

Using Mean
Section

Thickness with
Counts

CE
(Gundersen),

m = 0

CE
(Gundersen),

m = 1

1st Estimated
CE

(Schmitz-
Hof)

2nd
Estimated CE

(Schmitz-
Hof)

LIC EC Cytoplasmic 35 100 207,407.41 0.19 0.17 0.192 0.169

LIC EC Nuclear +
cytoplasmic 28 100 165,925.92 0.22 0.19 0.222 0.189

LIC EC All markers 210 100 1,244,444.5 0.09 0.07 0.103 0.069

LVCN Non-ir 300 145 296,296.31 0.12 0.06 0.099 0.058

LVCN Cytoplasmic 77 145 76,049.38 0.12 0.11 0.133 0.114

LVCN Nuclear +
cytoplasmic 62 145 61,234.57 0.14 0.13 0.137 0.127

LVCN All markers 439 145 433,580.28 0.1 0.05 0.072 0.048

TDP-43

LIC CN Non-ir 555 248 3,288,889 0.07 0.04 0.051 0.042

LIC CN Nuclear 74 248 438,518.59 0.12 0.12 0.118 0.116

LIC CN Cytoplasmic 60 248 355,555.56 0.16 0.13 0.170 0.129

LIC CN Nuclear +
cytoplasmic 140 248 829,629.63 0.12 0.09 0.108 0.085

LIC CN All markers 829 248 49,12593 0.05 0.04 0.044 0.035

LIC EC Non-ir 130 106 770,370.5 0.14 0.09 0.150 0.088

LIC EC Nuclear 35 106 207,407.41 0.19 0.17 0.218 0.169

LIC EC Cytoplasmic 17 106 100,740.75 0.24 0.24 0.253 0.243

LIC EC Nuclear +
cytoplasmic 63 106 373,333.34 0.16 0.13 0.161 0.126

LIC EC All markers 245 106 1,451,852 0.12 0.07 0.11 0.064

LVCN Non-ir 151 140 149,135.81 0.14 0.09 0.112 0.081

LVCN Nuclear 47 140 46,419.76 0.19 0.15 0.150 0.146

LVCN Cytoplasmic 22 140 21,728.40 0.22 0.21 0.217 0.213

LVCN Nuclear +
cytoplasmic 53 140 52,345.68 0.29 0.15 0.148 0.137

pNFP

LIC CN Axonal 3970 213 2,299,468,544 0.06 0.02 - -

LIC EC Axonal 1795 76 1,058,085,632 0.09 0.03 - -

LVCN Axonal 1988 115 195,308,656 0.13 0.04 - -

Iba-1

LIC CN Microglial 2738 227 405,629,632 0.06 0.02 0.035 0.019

LIC EC Microglial 2135 122 316,296,320 0.08 0.03 0.047 0.022

LVCN Microglial 1594 139 39,358,024 0.09 0.03 0.055 0.025

GFAP

LIC CN Astrocytic 4840 229 717,036,992 0.05 0.02 0.03 0.014

LIC EC Astrocytic 2662 96 394,370,400 0.08 0.03 0.058 0.019

LVCN Astrocytic 3128 137 77,234,568 0.08 0.02 0.043 0.018
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Figure A1. Western blot membranes from fibronectin, SMI-312, and GFAP. Top: Annotated
membranes from Western blots of fibronectin, pNFP, and GFAP for C.d. = common dolphin;
B.d. = bottlenose dolphin; H. = human control. Values in kDa. Bottom: original uncropped and
unlabeled source images.
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