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Abstract: The complex manifestations of COVID-19 are still not fully decoded on the molecular level.
We combined quantitative the nuclear magnetic resonance (NMR) spectroscopy serum analysis of
metabolites, lipoproteins and inflammation markers with clinical parameters and a targeted cytokine
panel to characterize COVID-19 in a large (534 patient samples, 305 controls) outpatient cohort of
recently tested PCR-positive patients. The COVID-19 cohort consisted of patients who were predomi-
nantly in the initial phase of the disease and mostly exhibited a milder disease course. Concerning
the metabolic profiles of SARS-CoV-2-infected patients, we identified markers of oxidative stress and
a severe dysregulation of energy metabolism. NMR markers, such as phenylalanine, inflammatory
glycoproteins (Glyc) and their ratio with the previously reported supramolecular phospholipid
composite (Glyc/SPC), showed a predictive power comparable to laboratory parameters such as
C-reactive protein (CRP) or ferritin. We demonstrated interfaces between the metabolism and the
immune system, e.g., we could trace an interleukin (IL-6)-induced transformation of a high-density
lipoprotein (HDL) to a pro-inflammatory actor. Finally, we showed that metadata such as age, sex
and constitution (e.g., body mass index, BMI) need to be considered when exploring new biomarkers
and that adding NMR parameters to existing diagnoses expands the diagnostic toolbox for patient
stratification and personalized medicine.
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1. Introduction

Almost three years after the first infection with a novel virus, which shortly after
was entitled “Severe Acute Respiratory Syndrome-Coronavirus 2” (SARS-CoV-2), the
impact of the resulting pandemic is slowly decreasing, although Coronavirus Disease
2019 (COVID-19) will remain part of everyday life in the foreseeable future [1]. Although
SARS-CoV-2 and the resulting pandemic became an early focus of research from a wide
range of disciplines, the resulting disease is still not fully understood. Among a large variety
of genetic and immunology-based investigations, the use of quantitative nuclear magnetic
resonance (NMR) spectroscopy, along with other techniques such as mass spectrometry,
offers the chance to obtain novel insights into the specific alterations and disturbances
of the metabolisms of infected persons and might be a helpful tool for deciphering the
disease–host response on a molecular level [2]. Furthermore, the successful application of
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such analytical instruments might play a pivotal role in combating future (infectious or
non-infectious) diseases and advancing the field of personalized medicine [3–5].

1.1. Metabolomics in COVID-19 Research

Previous NMR metabolomics research has shown that COVID-19 is associated with
specific and multifaceted changes in the metabolite and lipid profiles of infected pa-
tients [6,7], highlighting the disease’s systemic implications. The metabolic fingerprint of
COVID-19 in serum is characterized by a disturbance in amino acid metabolism, which
is, among other parameters, expressed by decreased levels of glutamine [8–10]. On the
other hand, increases in phenylalanine and glutamic acid have also been detected [8–11].
Regarding other amino acids, such as the branched-chain amino acids (BCAAs) leucine,
isoleucine and valine, reports are less consistent, especially when considering results based
on mass spectroscopy. Some studies have reported elevated levels [12,13], whereas another
stated decreased concentrations, with an accompanying decrease in the so-called Fischer’s
ratio (BCAAs divided by the sum of phenylalanine and tyrosine) [14]. Sporadic changes in
the concentrations of threonine and N, N-dimethylglycine [15], as well as histidine, lysine,
tyrosine and ornithine [10], have also been described.

Apart from this, high blood glucose (hyperglycemia) [10,12,14], which was also found
with techniques other than NMR [16], low levels of citric acid [15,17] and an elevation in
ketone bodies [10,15] seem to be consequences of viral infection. Furthermore, the effects
of COVID-19 infection include a decrease in trimethylamine-N-oxide (TMAO) and an
elevation in pyruvic acid [10] as well as in succinic acid [10,15].

The lipid profile of SARS-CoV-2-infected patients has been reported to consist most
predominantly of reduced levels of Apolipoproteins A1 and A2 [14,18,19], which are
exclusive to high-density lipoprotein (HDL) and increased amounts of very low-density
lipoprotein (VLDL) and intermediate-density lipoprotein (IDL) Apolipoprotein B [6,19].
Additionally, levels of triglycerides (TG) in blood serum are elevated [6]. In contrast,
decreases in serum cholesterol (CH) levels have become apparent [6,10]. This decline is
particularly pronounced in HDL-4, the HDL with the highest density [8,10,13,14]. On the
other hand, TG levels have been shown to be elevated exceptionally in large low-density
lipoprotein (LDL-1, -2) and VLDL [7,10].

1.2. Usage of Novel NMR Markers

In addition to quantifying the above-mentioned parameters, NMR spectroscopy also
allows for the determination of values for the composite biomarkers of glycoproteins (Glyc),
which have been shown to be valuable inflammation markers [20]. The GlycA signal is
more prominent and originates mainly from N-acetylglucosamine residues on proteins
such as α1-acid glycoprotein [21], to which an immunological function is attributed [22].
Measuring Glyc parameters has become increasingly relevant in inflammatory disorders in
recent years [21].

The application of an IVDr (in vitro diagnostic research-only) system provides full,
validated and standardized NMR clinical research and screening [23–25]. Within a stan-
dardized IVDr NMR analysis, the Glyc signal is composed of two peaks, GlycA and GlycB,
which represent different glycosylated amino sugar residues on acute phase reactants [26].
Soon after the pandemic’s onset, these inflammatory markers were investigated in blood
serum concerning their association with COVID-19 [14]. Another recent finding was the
discovery of the supramolecular phospholipid composite (SPC) signal, which derives
from choline headgroups of HDL and LDL phospholipids [27]. They are markedly de-
creased in SARS-CoV-2-infected individuals [26]. Subsequently, the ratio of Glyc and SPC
was proposed to be an independent and highly specific biomarker of acute COVID-19
infection [26].
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1.3. Immunological Aspects of COVID-19 and Their Link to Metabolomics

Severe cases of COVID-19 are characterized by a dysregulated host immune re-
sponse [28]. This manifests itself in neutrophilia, lymphopenia, and an exaggerated release
of a myriad of different cytokines, predominantly interleukins IL-1, -2, -6, -8, -10, -18, in-
terferon (IFN)-γ, tumor-necrosis-factor (TNF)-α and monocyte chemoattractant protein-1
(MCP-1). This process is frequently referred to as a “cytokine storm” [29,30]. However,
cytokine levels during severe COVID-19 infection have been shown to be significantly
lower than those in other life-threatening conditions, such as septic shock, acute respiratory
distress syndrome (ARDS) or cytokine-release-syndrome (CRS) [31,32]. On the other hand,
delayed or reduced CD8+ T-cell responses [33,34] and CD4+- and CD8+ T-cell exhaus-
tion [35] seem to be hallmarks of the disease and are associated with severe COVID-19
infection in combination with higher levels of cytokines [36,37]. Additionally, it was shown
that early and robust upregulation of antiviral cytokines such as type I IFNs (IFN-α and
IFN-β) and IFN-γ seems to be crucial for general viral clearance [38] and a mild course
for the disease [39,40]. These mechanisms seem to be hampered by SARS-CoV-2, result-
ing in uncoordinated and ineffective immunological responses in severe life-threatening
cases [41,42].

The manifestations of COVID-19 are very complex, and host metabolism and the
immune system are closely interrelated in a rather complex manner [43]. Furthermore,
COVID-19 is a disease in which comorbidities such as diabetes and metabolic syndrome are
predisposed to severe disease. This fact has been attributed to insulin resistance in obese
and diabetic individuals, enabling a state of low-grade chronic inflammation, in which
SARS-CoV-2 can bring derailment [44].

1.4. Aims of the Study

Of note, most published NMR metabolomics research draws from its investigations
of samples of COVID-19 patients taken during hospitalization or at admission, which
provide insights into mainly moderate-to-severe disease courses. Initial comparisons of
metabolic profiles of patients differentially affected by the disease have shown interesting
results in hospitalized patients [11,18]. We want to build on these results to investigate
how transferable the findings mentioned above are to mild-to-moderate disease courses of
outpatients and earlier disease stages, and to investigate how they differ from more severe
disease courses in our cohort.

In addition, alterations in metabolism can also be attributable to influences related
to hospitalization, such as a higher stress level, fasting or changes in diet [45], especially
when hospitalized patients receive parenteral nutrition. These variables may need to be
considered when investigating the specific metabolic and lipoprotein profiles of the disease.

In this study, we quantified a selection of cytokines and chemokines (targeting in-
flammation) and combined them with the quantitative NMR spectroscopy of metabolites,
lipoproteins and inflammatory markers to correlate them with records from a study in
which an ambulatory care model for SARS-CoV-2-infected individuals was tested [46].

A total of 534 blood samples were all collected during home visits, and only 71 out
of 329 patients had to be hospitalized during the ongoing course of COVID-19 infection.
Additionally, we determined whether the novel NMR markers Glyc and SPC can be of
complementary use when interpreting them alongside well-established inflammatory
markers such as lymphocyte count, CRP or ferritin [47–49]. By utilizing these different
layers of information, we aim to gain a deeper pathophysiological understanding of mild-
to-moderate courses of COVID-19 infections to enable effective patient stratification.

2. Materials and Methods
2.1. Patient Recruitment and Sample Collection

Essentially, IVDr-based research in clinical metabolomics enables investigations of ob-
served changes across patient groups while correlating these results with clinical metadata
or other findings with a high degree of precision, particularly in the field of NMR spec-
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troscopy [50]. We also think it is feasible to identify potential disease-derived biomarkers
using a quantitative method for metabolomics analysis [51].

We performed analyses of 534 serum samples obtained from 334 COVID-19 patients
in the acute disease phase who underwent patient care in an ambulatory setting in the
Rhein-Neckar/Heidelberg (Germany) area. Blood was drawn once from 194 patients,
twice from 80 patients and three times from 60 patients within a couple of days after an
initial positive COVID-19 test. For patients who provided multiple samples, sampling
was performed within a maximum of 14 days. The study design is described elsewhere in
detail [46].

Of note, for this IVDr-based project, three major inclusion and exclusion criteria differ
from the cohort investigated by Lim et al. [46].

(1) Only patients with a biobanked serum sample were included in the IVDr cohort;
(2) In the IVDr cohort, 3 patients were included who had been hospitalized prior to study

inclusion due to COVID-19 (inclusion of these patients was performed at the release
timepoint for subsequent monitoring in an ambulatory setting after hospital release;
the first sampling was performed 1, 2 and 6 days after discharge from the hospital
and 2, 6 and 7 days after symptom onset);

(3) The IVDr cohort consisted both of patients who entered data into the application(which
was used for reports of symptoms and vital parameters) and of patients that didn’t.This
allowed patients who were unable to use the app to be included (e.g., due to high age,
no mobile device, etc.). Therefore, our IVDr cohort differs to a relevant extent from
the published analysis [46], in which only patients with ambulant parameters before
hospitalization were included.

The determination of virus variants was not performed. However, based on the data
collection period (September 2020–May 2021) and epidemiological reports, it can be assumed
that most cases were caused by the wild type and the alpha variant [52]. At the time of sample
collection, only 6 of the 329 patients had been vaccinated against SARS-CoV-2.

After quality control (2.2), the analyzed cohorts comprised 155 male and 174 female
COVID-19 patients and 305 sex- and age-matched controls. During the disease, 71 subjects
(21.6%), 46 males and 25 females, were hospitalized. A detailed description of baseline
characteristics can be found in the Supplementary Materials (Table S1).

Blood samples were collected throughout the morning during home visits by a nurse
when a clinical indication arose, e.g., worsening of symptoms or lab parameters. Accord-
ingly, because the subjects’ diets were not controlled, it seems unlikely that there is a
significant confounding effect as a result of fasting. After collection, blood samples were
stored in a Styrofoam box and were transported to the laboratory, where they were cen-
trifuged according to standard operating procedures. Isolated blood sera were frozen at
−80 ◦C and were transported on dry ice to the University Hospital of Tübingen, where they
were stored at −80 ◦C again until analysis. For each blood sample, conventional laboratory
parameters commonly used during the care of COVID-19 patients (e.g., (CRP), white blood
cell count (WBC) and ferritin) were collected as part of the medical care conducted in
Heidelberg. Furthermore, Lim et al., provided a detailed set of metadata, which yield
information regarding anthropometrics, medication, age, smoking status and the acute
symptoms of the infection. The usage of samples and data was approved by the Ethics
Commission of Heidelberg Medical University (S-324/2020), and all participants signed a
written informed consent according to the Declaration of Helsinki.

2.2. Quantitative NMR Spectroscopy

Raw NMR spectra were acquired using Bruker body fluid B.I. methods [53]. Sample
preparation was performed following the included standards of the procedure to ensure
reliable results. For quality control, the B.I. BioBankQCTM module was applied. For quan-
tification, the modules B.I. QUANT-PSTM for metabolites and B.I. LISATM for lipoproteins,
respectively, were applied (All B.I. modules: Bruker BioSpin GmbH, Ettlingen, Germany).
Blood serum samples were thawed for approximately 30 min at room temperature before



Metabolites 2022, 12, 1277 5 of 29

400 µL of each aliquot was pipetted into a 1.5 mL PTFE container and mixed with 400 µL of
a commercially prepared pH 7.4 sodium phosphate plasma buffer from Bruker. The mixture
was then shaken gently for 1 min before extracting 600 µL of it to fill a Bruker 5 mm NMR
tube. The SampleJet cooling setting was set to 279 Kelvin. Monodimensional 1H-NMR
spectra were acquired using a 5 mm triple resonance (TXI; 1H, 13C and 15N) room tempera-
ture probe on a Bruker IVDr Avance III HD 600 MHz system, which was operated using
Bruker’s standard NMR software TopSpin (Version 3.6.2, Bruker BioSpin GmbH, Ettlingen,
Germany). Five monodimensional 1H NMR spectra types were collected for each blood
sample with water peak suppression and varied pulse sequences to selectively observe
molecular components. First, a NOESY (Nuclear Overhauser Effect SpectroscopY) 32-scan
NMR experiment was used to show the NMR spectrum quality (via the B.I. BioBankQC™)
and to enable the quantification of metabolites (i.e., glucose, lactic acid and amino acids of
the B.I. BioBankQuant-PS™) and high-molecular-weight compounds, such as lipoproteins
(as shown in B.I. LISA™). Then, a 32-scan CPMG (Carr–Purcell–Meiboom–Gill, filtering out
macromolecular resonance signals) program was run, as well as 32-scan DIFF (DIFFusion
measurements of, primarily, macromolecular signal massifs [54]) and 64-scan PGPE (Pulsed
Gradient Perfect Echo, used primarily for Glyc and SPC quantification [55]). Moreover, a
two-dimensional NMR experiment, 2-scan JRES (J-RESolved spectroscopy), was included
with the IVDr methods and was performed to analyze J coupling constants. Additionally,
JRES can be useful for manual data look-up and represents a vital piece of the novel Bruker
PhenoRisk PACS™ software (Bruker BioSpin GmbH, Ettlingen, Germany). The NMR
experiments utilized a group of sample-dependent parameters, like the frequency offset O1
and 90◦ pulse P1 duration.

All recorded spectra were quantified in full automation. The parameters, GlycA,
GlycB and SPC, were subsequently determined with the B.I. PACSTM module. Previously
published work has enabled the standardization of the approach used in this project and
supports its reliability [26,56]. Exemplary annotations can be found in Supplementary
Material (Figure S1).

To obtain a meaningful and high-quality data set, we performed quality control prior
to analysis, resulting in the exclusion of 25 samples due to a linewidth of >2.3 Hz. The
vast majority of measurements yielded a high ρ, which quantifies the correlation of the
calculated fit with the metabolite signal. An overview of this can be found in Supplementary
Material (Figure S2). Accordingly, regarding the B.I. QUANT-PSTM module, no cut-off for
ρ was defined.

To enable the interpretation of the acquired metabolomics profiles in the serum of
COVID-19 patients using B.I. QUANT-PSTM and B.I. LISATM, Bruker BioSpin GmbH kindly
provided corresponding serum data of 305 healthy sex- and age-matched individuals (with-
out further information according to donor conditions). Accordingly, in Sections 3.1 and 3.2,
where comparisons are made with healthy controls, we work only with the parameters
from these modules.

2.3. Quantification of Cytokines

Cytokine analysis was performed on all samples from COVID-19 patients who were
found to show a CRP-value > 10 mg/L at some point during acute infection. This preselec-
tion process resulted in 309 samples from 171 patients enrolled for testing.

Targeted cytokine and chemokine levels were determined using LEGENDplex Human
Inflammation Panel 1 (13-plex) with the V-bottom Plate multiplex assay (#740809; BioLe-
gend). In brief, 15 µL of serum was diluted with 15 µL of assay buffer; from this diluted
serum, 25 µL was used for further processing in the assay. Standard curves were prepared
with a 4-fold serial dilution method for all cytokines and chemokines (standard with known
concentrations) with 7 data points to calculate the actual cytokine and chemokine levels in
each sample. Diluted samples (25 µL; 1:1) or standards (25 µL) were added in a 96-well
plate followed by 25 µL of assay buffer and 25 µL of capture beads before the plate was
incubated at room temperature for 2 h (on a plate shaker). After incubation, the plate was
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washed, and 25 µL of biotinylated detection antibodies was added to each well, followed
by incubation for 1 h. Furthermore, after incubation with the detection antibodies, 25 µL of
a streptavidin-phycoerythrin (SA-PE) antibody was added to each well, and the 96-well
plate was incubated for an additional 30 min. Finally, the 96-well plate was washed with
washing buffer 2 times before 150 µL of wash buffer was added, and the samples were
transferred to 5 mL flow cytometry tubes. Each sample was analyzed with a multi-color
flow cytometer (FACS BD LRSFortessa, Becton Dickinson, Franklin Lakes, NJ, USA). Flow
cytometry files were transferred to analysis software (Data Analysis Software Suite; LEG-
ENDplex cloud-based software), and the final analysis was performed according to the
manufacturer’s instructions.

2.4. Statistics and Data Illustration

All quantifications that withstood quality control were considered independently
in the statistical analysis, so results from patients who provided multiple samples (see
Chapter 2.1) were not treated differently. We decided to utilize this procedure because the
sample collection was performed when a clinical indication emerged, which suggested the
persistence of the acute disease. In addition, the samples were not taken at the exact same
time point in the acute disease phase (e.g., the two samples from Patient A could have been
taken 5 and 7 days after infection, and those from Patient B could have been taken 8 and
10 days after infection). We aimed to level this effect by considering all samples.

Statistical analysis was performed with the quantified parameters using the web-
based tool MetaboAnalyst 5.0 [57]. For all (2 group-) analyses, we excluded all features
that showed >50% missing values. The remaining missing values were estimated using
feature-wise k-nearest neighbor imputation, which showed robust effects in the context of
metabolomics data [58]. To correct for heteroskedasticity, which is not uncommon in this
context, as concentration magnitudes from metabolites, lipoproteins and other markers
vary strongly, we performed a logarithmic transformation. For univariate analysis, volcano
plots were generated, which are combinations of p-values generated from unpaired t-tests
and fold changes (FC). For figure generation, thresholds for the p-value and FC were
established at 0.05 and 1.2, respectively. The False Discovery Rate (FDR) was controlled
using the Benjamini–Hochberg correction to maximize statistical power [59]. For correlation
analyses, we focused on Pearson’s correlation coefficient.

Further analyses were conducted using multivariate approaches of unsupervised
principal component analysis (PCA) and supervised orthogonal partial least squares dis-
criminant analysis (OPLS-DA). PCA was performed to identify outliers, simplify the dataset
and assess an overview of the variation within. Besides that, OPLS-DA was used to assess
the discrimination between two groups and to identify the parameters that drive this sepa-
ration. MetaboAnalyst’s biomarker toolbox was used for further biomarker analysis [57].
The univariate analysis and the volcano and violin plots were illustrated using GraphPad
PRISM 9, and original figures from MetaboAnalyst were used to show the multivariate
analyses of PCA and OPLS-DA.

The consort diagram (Figure 1) was constructed using Microsoft PowerPoint 2019 MSO
(Version 2211, Microsoft, Redmond, WA, USA), and the diagrams illustrating the con-
founder analysis for the novel NMR markers were designed with Microsoft Excel 2019 (Ver-
sion 2211, Microsoft, Redmond, WA, USA). The depiction of the correlation analyses was
performed using R with modifications with Inkscape. Further editing of the figures was
performed using Adobe Acrobat Pro.
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Section 1

Comparison COVID-19  vs. 

Healthy Controls

Section 2
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Analysis

Section 4

Correlation analysis

Cytokines

Section 5

Investigation of novel NMR 

Parameters

Healthy Controls

NMR Data (305 samples) of Lipids and

Metabolites

COVID-19

NMR Data of Lipids + Metabolites + 

Glycoproteins, Lab Parameters (329 

patients, 509 samples)

170 patients (307 samples) with CRP > 

10mg/dl ➔

Legendplex Cytokine Panel

Figure 1. Consort diagram showing an overview of the performed analyses and the available data
(after quality control).

3. Results

B.I. QUANT-PSTM analysis provided quantified values for trimethylamine-N-oxide,
amino acids and derivatives, carboxylic acids, choline as an essential nutrient, keto acids
and derivatives, carbohydrates and derivatives, and dimethylsulfone as a sulfone. All
the resulting 38 parameters are defined in mmol/L. In addition, the B.I. LISATM analysis
yielded detailed information on the lipid profiles of the investigated samples, including
multiple parameters such as cumulative values of triglycerides (TPTG), cholesterol (TPCH)
and apolipoproteins (Apo) A1 (TPA1), A2 (TPA2) and B100 (TPAB). From these parameters,
the ratios of LDL-cholesterol (LDCH) to HDL-cholesterol (HDCH), which is LDHD, and
of Apo-B100 to Apo-A1 (ABA1), were calculated. Regarding TG, CH, free cholesterol (FC)
and phospholipids (PL), concentrations are indicated for each of the fractions (HDL, LDL,
IDL and VLDL). Moreover, for HDL, LDL, and VLDL, the results are also specified for
several subfractions. An increasing density defines this classification from subfractions
with a lower number (e.g., H1) to those with a higher number (e.g., H4). The HDL group
was divided into four subfractions, the VLDL group was divided into five subfractions and
the LDL group was divided into six subfractions. The same principle applies to Apo A1
and Apo A2 for HDL and Apo B100 for VLDL, IDL and LDL. Additionally, the total particle
number (TBPN) and the particle numbers of VLDL (VLPN), IDPN (IDPL) and LDL (LDPN)
were calculated from the concentration of ApoB100 in the sample. In the case of LDL, the
particle numbers are also specified for each subfraction. Besides details about the particle
number, which refer to a concentration range of mmol/L, all B.I. LISATM parameters are
defined in mg/dL.



Metabolites 2022, 12, 1277 8 of 29

3.1. Comparison of COVID-19 vs. Healthy Controls

In the serum of SARS-CoV-2-infected individuals, we found a distinctive profile, which
includes substantial changes in metabolites and lipoproteins and clear discrimination from
the profile of healthy controls. Figure 2 provides the results of the univariate analysis in the
form of a volcano plot with 17 significantly changed parameters from the B.I. QUANT-PSTM

analysis and 74 significantly altered parameters from the B.I. LISATM analysis. A positive
log2 (FC) value on the x-axis indicates upregulation of the corresponding parameter. In
contrast, a negative log2 (FC) value implies that the substance is found in a lower concentra-
tion in COVID-19 patients than in healthy controls. The logarithmized and FDR-adjusted
p-values (p < 0.05) are indicated on the y-axis. Higher concentrations of phenylalanine, N, N-
dimethylglycine, glutamic acid, sarcosine, creatine and ketone bodies (acetone, acetoacetic
acid and 3-hydroxybutyric acid) were determined in the sera of COVID-19 patients when
compared with the sera of healthy controls. In contrast, we measured lower concentrations
of glutamine, lysine, citric acid, histidine, leucine, ornithine, trimethylamine-N-oxide and
isoleucine upon COVID-19 infection. Furthermore, the glutamine/glutamic acid ratio and
the Fischer’s ratio, which quantifies the ratio of branched-chain amino acids (isoleucine,
leucine, valine) to aromatic amino acids (phenylalanine, tyrosine), were significantly lower
in the sera of COVID-19 patients than in the sera of individuals from the control cohort.
Regarding the detailed lipid profiles, we identified an increase in the concentration of
apolipoprotein B100 (Apo B) in the VLDL (VLAB) fraction but a decrease in Apo B and in
particle numbers of large LDL particles (L3AB, L4AB, L5AB; L3PN, PN and L5PN). Besides
that, we observed a strong decrease in apolipoprotein A1 (TPA1) and A2 (TPA2) in general
and in all HDL fractions (HDA1, HDA2, H1A1, H1A2, H2A1, H3A2, H4A1 and H4A2),
indicating the reduced presence of HDL in the blood of SARS-CoV-2-infected patients.
These changes were associated with an increase in the Apo A and Apo B100 (ABA1) ratio.
The increase in VLAB can be attributed to a general increase in the VLDL particle number
(VLPN). This also explains the increase in the VLDL (VLCH, V1CH and V2CH) cholesterol
fractions, although we determined a decrease in the total cholesterol (TPCH) plasma level.
The latter was also reflected in a significant decrease in the HDL (HDCH, H1CH, H2CH,
H3CH and H4CH) and LDL (LDCH, L1CH, L3CH, L4CH and L5CH) cholesterol levels.
The free cholesterol concentrations changed similarly and were reflected by an increase in
VLDL (VLFC, V1FC, V2FC V3FC and V5FC) and a decrease in HDL (HDFC, H1FC, H2FC,
H3FC and H4FC) and LDL (LDFC, L1FC, L3FC, L4FC, L5FC and L6FC), as well as in IDL
(IDFC) concentrations. In contrast, we determined an increased level of total triglycerides
(TPTG) in the sera of SARS-CoV-2-infected patients, which was mainly connected to up-
regulations in VLDL (VLTG, V1TG, V2TG, V3TG and V5TG) and intermediate-density
lipoprotein (IDTG) fractions. However, we also determined an increase in the content of
TG in the lowest-density LDL (L1TG). In addition, levels of phospholipids were elevated in
low-density VLDL (VLPL, V1PL and V2PL), whereas these were decreased in IDL (IDPL),
HDL (HDPL, H1PL, H2PL, H3PL and H4PL) and LDL (LDPL, L1PL, L3PL, L4PL and L5PL).
An overview of the absolute concentrations of parameters in B.I. QUANT-PS and B.I. LISA
in healthy and infected subjects is provided in Table S2. Using the multivariate approaches
of PCA and OPLS-DA, no outliers could be detected, and the disparity of the groups could
be demonstrated (Figure S3).

3.2. Comparison of the Outpatient Cohort vs. Healthy Controls

Next, we conducted identical analyses of the sera of patients who were not hospital-
ized during the disease but who remained in an ambulatory setting, and we once again
compared them with the healthy controls.

We hereby reproduced the described above results to a large extent but also found
some observable major differences. Figure 3 indicates that phenylalanine, one of the few
compounds that are elevated in hospitalized patients (Figure 2), was not significantly
changed in outpatients compared with healthy controls. This also explains why the Fis-
cher’s ratio did not yield a significant change in this comparison. Furthermore, in contrast
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to hospitalized COVID-19 patients, we determined no increase in succinic acid and ABA1
levels in the sera of ambulatory COVID-19 patients.
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Figure 2. Volcano plot showing the univariate comparison of the whole COVID-19 cohort with
healthy controls. The logarithmized fold change (FC > 1.2) is plotted on the X-axis, whereas the
Y-axis indicates the significance in the form of the logarithmized p-value (FDR; p < 0.05). In the upper
right, exemplary violin plots show the differences in significantly altered parameters. Four asterisks
indicate a p-value of <0.0001.



Metabolites 2022, 12, 1277 10 of 29

-1.0 -0.5 0.0 0.5 1.0

50

100

Gln/Glu

Citric acid

Trimethylamine-N-oxide

Lysine

L4CH
L4PL

H2FC

L3CH

H1A2

H3FC

H1FC

Glutamine

H2CH

H3CH

L4AB
H1CH
L5CH

L4PN

H4CH

H2A2

L3PL
H1PL

HDCH

L4FC

TPA2

LDCH

H4A2

H4FC

H3PL

L1CH

L1FC

L5PL

HDPL

H4PL

H3A2

H2A1

H1A1

H2PL
Histidine

HDA2

TPA1

L5FC

L5PN
L5AB

LDPL

TPCH

HDA1

Leucine

H4A1

H3A1

L3AB

Ornithine L3PN

L1PL

L3FC

IDPL

IDFC

LDFC

VLCH

Glutamic acid

Dimethylsulfone

L1TG

VLPL
V2CH

V3FC

VLFC

V2PL

Acetoacetic acid

VLPN
VLAB

V3TG

TPTG

V1FCAcetone

VLTG

V2TG

V1PL

V2FC

V5FC

IDTG

V1CH

V1TG

N-Dimethylglycine

log2(FC)

-l
o

g
1
0

(p
)

CONTROL

amb. COVID-19
0

50

100

150

H4A1

✱✱✱✱

CONTROL
amb. COVID-19

0

100

200

300

400

V1TG

✱✱✱✱

CONTROL

amb. COVID-19
0.0

0.1

0.2

0.3

0.4

Citric acid

✱✱✱✱

CONTROL

amb. COVID-19
0.0

0.2

0.4

0.6

0.8

Glutamic acid

✱✱✱✱

Figure 3. Volcano plot showing the univariate comparison of the COVID-19 patients who were not
admitted to the hospital with the healthy controls. The logarithmized fold change (FC > 1.2) is plotted
on the X-axis, whereas the Y-axis indicates the significance in the form of the logarithmized p-value
(FDR p < 0.05). In the upper right, exemplary violin plots show the differences in significantly altered
parameters. Four asterisks indicate a p-value of <0.0001.

In addition, it is noticeable that CH levels in total (TPCH) and HDL (HDCH) were not
decreased as strongly as in the analysis of hospitalized COVID-19 patients. In addition,
in contrast to hospitalized patients, we were unable to determine significantly altered
fractions of free cholesterol, HDFC, LDFC and L6FC in the sera of COVID-19 patients in an
ambulatory setting.

As reflected in Figure 3 and the Supplementary Materials (Table S3), the ketone
bodies were less elevated in the sera of COVID-19 patients who stayed in home care when
compared with the results we obtained from the comparison of the whole COVID-19 cohort
with healthy controls (Table S4). In this context, the FC of acetone declines from 1.76 to
1.42. The FC of 3-hydroxybutyric acid falls below our established threshold of 1.2. OPLS-DA
showed good discrimination of the two groups, and PCA identified no outliers (Figure S4).
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3.3. Comparison of Hospitalized Sub-Cohort with the Sub-Cohort That Stayed in Outpatient Care

After comparing COVID-19 patients with healthy individuals, we next focused on
more in-depth analyses within the COVID-19 cohort. In addition to the NMR data on
lipoproteins and metabolites, we included laboratory parameters from routine clinical
practice as well as cytokine values. We used these data to compare the profiles of patients
hospitalized at some point before or after sample acquisition and the subjects that stayed at
home. In this context, it is important to emphasize that the sampling of hospitalized patients
was still exclusively performed during home visits, in most cases before an admission
occurred and rarely after hospitalization. Because we already have shown the comparisons
of the whole COVID-19 cohort and exclusively of the patients who stayed in home isolation
with the healthy controls, some of the results are redundant. Nonetheless, we aimed to
show how the NMR parameters from B.I. QUANT-PSTM and B.I. LISATM can be combined
with the novel B.I. PACSTM module and the clinical parameters. Figure 4 represents the
results of this analysis.
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Figure 4. Volcano plot (FDR p < 0.05) showing the univariate analysis of the patients who were
admitted to the hospital with patients who stayed confined at home. Blue dots indicate clinical
parameters, whereas green dots represent IVDr-based NMR parameters.
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Figure 5 displays the analysis of cytokine levels in the sera of SARS-CoV-2-infected
patients. Most importantly, we determined cytokine levels exclusively in the sera of patients
with a CRP > 10 mg/L at some point during the disease.
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Figure 5. Volcano plot showing the univariate analysis of cytokines in patients who were admitted to
the hospital against patients who stayed confined at home. The black rectangle on the right encloses
the cytokines that showed significance (FDR p < 0.05) and a fold change of more than 1.2.

Although the two compared groups both consisted of COVID-19 patients, several
significantly changed parameters were particularly noticeable. As illustrated in Figure 4,
the ketone bodies acetoacetic acid and acetone were elevated in patients who exhibited
COVID-19 more severely. 3-Hydroxybutyric acid also revealed an increase just below our
FC threshold of 1.2 in hospitalized patients, as shown in Supplementary Material (Table S5).
Besides that, phenylalanine and succinic acid were increased in this regard. Likewise, the
clinical laboratory parameters ferritin, LDH, CRP, creatinine, AST, urea and d-dimers were
increased in COVID-19 patients. A closer inspection of the plot indicates that the Glyc-to-
SPC ratio increased when compared with the ambulatory COVID-19 cohort. Interestingly,
acetoacetic acid did not emerge significantly in the first analysis of COVID-19 patients
against healthy controls, although a fold change of 1.98 was determined.

Several features regarding the lipoprotein profiles were significantly altered between
the two investigated groups. Interestingly, IDTG, V1FC, V1CH and V1TG were down-
regulated in the sera of more severe COVID-19 cases compared with milder cases. In
the primary comparison (Section 3.1.), we determined elevations of these parameters ex-
clusively in COVID-19 patients but not in healthy individuals. Besides that, significant
decreases can be observed in the denser subfractions of LDL (L4CH, L4FC, L4PL, L4AB,
L4PN, L3CH and L3PL) and HDL (H4FC, H3FC, H1FC and H1A2). Complementarily,
we determined downregulations of the clinical blood concentrations of iron, transferrin,
transferrin saturation and lymphocyte count.

Because many more men (n = 46) than women (n = 25) were hospitalized, we aimed
to identify a potential bias by repeating the comparison of hospitalized patients against
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patients who stayed in an ambulatory setting for the acute disease course for the two
sexes separately. The relevant tables are displayed in the Supplementary Materials (Tables
S6 and S7). Essential features are evident in both analyses, including upregulations of
3-hydroxybutyric acid, Glyc/SPC, phenylalanine, CRP, ferritin and LDH and downregula-
tions in iron levels in the sera of COVID-19 patients. Many of the parameters that showed
significance (FDR < 0.05) and an FC of >1.2 in only one comparison yielded uniform
changes in the other group but fell below our FC threshold or fell victim to FDR. This was
evident for transferrin and lymphocyte count, which were significant in the comparison of
hospitalized females against female patients who remained in ambulatory care. This was
also evident for acetone, Fischer’s ratio, H4A1, H4CH, H4FC, H4PL, L3CH, creatinine and
transferrin saturation in the analysis of hospitalized males against male COVID-19 patients
who stayed in an outpatient setting. Nonetheless, some evident discrepancies became
visible by comparing the two analyses: AST and GGT were only elevated in the comparison
of female COVID-19 patients, and changes in choline (down) and succinic acid (up) were
exclusively identified in the comparison of male patients. Furthermore, downregulations
in the lipoprotein profile, e.g., in H4A2, VLFC, VLTG and TPTG, only became apparent in
the comparison of male patients. It is apparent from Figure 5 that, regarding the cytokine
profile, we found significant upregulations in IFN-α2, IL-10, IL-18, IFN-γ and IL-6 in the
sera of COVID-19 patients when compared with samples of patients who were hospitalized
during their COVID-19 disease course (at some point before or after sample obtainment).

Besides sex, age was another predisposing factor for hospitalization, as hospitalized
patients were older (mean age 59.1 yrs. to 53.5 yrs). To address this potential bias, we
performed a sex-specific stratification of the patient cohort with age (two strata, threshold:
60 years). Details can be found in the Supplementary Materials (Tables S6 and S7). The
prominent findings of this stratification were that ferritin was not significantly elevated in
hospitalized male patients under the age of 60, and Glyc/SPC (FC = 1.19; FDR p = 0.26) and
iron were not significantly altered in female patients under the age of 60 years. Furthermore,
phenylalanine showed significant alterations in males >60 years but remained under the
fold change threshold of 1.2. H4A1 showed significance in males and females but not in
the sub-analyses of female patients. These results should be interpreted cautiously due to
the changing cohort sizes.

3.4. Biomarker Analysis

To compare the prognostic abilities and applicability of the NMR-based parameters
with the values obtained from the standard clinical laboratory, we performed several
univariate biomarker analyses, which are displayed in Figure 6. When evaluating the
performance of a biomarker, the area under the receiver characteristic curve (AUROC) is
an often-used measure. Here, we summarize the relationships between true positives and
false positives for each possible classification threshold. An area under the ROC curve
(AUC) of 0.5 implies no association of the parameter with hospitalization, whereas an
AUC of 1 implies a perfect predictive parameter. As indicated in Figure 6a, an increase
in CRP yielded the strongest performance associated with hospitalization in our cohort
(AUC = 0.78), closely followed by iron (AUC = 0.762; Figure 6b), ferritin (AUC = 0.739;
Figure 6c) and LDH (AUC = 0.732; Figure 6d). Increases in the NMR-based parameters
Glyc/SPC (AUC = 0.73; Figure 6e), GlycA (AUC = 0.718; Figure 6f), Glyc (AUC = 0.716;
Figure 6g) and phenylalanine (AUC = 0.716; Figure 6h) exhibited a similar performance
to the compared clinical laboratory parameters. Furthermore, it is worth mentioning that
HDA1 and H4A1 showed decent predictive abilities, with an AUC of 0.712 and an AUC of
0.703, respectively. Details can be found in the Supplementary Materials (Table S8).
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Figure 6. Top ten parameters established from univariate biomarker analysis for hospitalization. For
each biomarker, a comparison of the individual values of the respective parameters is shown on the
right, and receiver operating characteristic (ROC) curves are found on the left. ROC curves illustrate
the number of true positives and false positives for each possible threshold, and the trade-off of these
values is quantified in the area under the curve (AUC). An AUC of 0.5 implies a random distribution
with no association of the parameter with, in this case, hospitalization, whereas an AUC of 1 implies
a perfect predictive model. The parameters are sorted by AUC, with the top parameter can be found
under (a) and the AUC decreases steadily until (j). The red dots on the curves indicate the ideal
classification thresholds. For example, an iron threshold of 6.55 (subfigure (b)) can correctly identify
70% of the hospitalized COVID-19 patients in our cohort and can correctly classify 80% of the patients
who were not admitted to the hospital.
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3.5. Cytokine Correlation Analysis

Next, we focused on the correlation analysis of serum cytokines with clinical and NMR
parameters, as shown in Figure 7. The analysis is based on a comparison of the COVID-19
patients, as the control cohort did not include such information, and no remaining serum
aliquots were available. In addition, we would regardless expect minimal or no detectable
cytokine concentrations in the sera of healthy individuals.

a) b) 

c)

a) b)

c)

Figure 7. Analysis of correlations between different NMR and clinical parameters and cytokines. The
different significance levels are color-coded (see legend on the right). Red dots indicate a positive
correlation, and blue dots indicate a negative correlation. One asterisk implies a p-value of <0.05, two
asterisks are equivalent to a p-value of <0.01 and three asterisks indicate a p-value of <0.001. On the
left side, under (a), the figure shows the correlations of the measured cytokines with acute phase
proteins, Glyc and SPC, ketone bodies, amino acids and other parameters from B.I. QUANT-PS™,
as well as parameters from the clinical laboratory. On the right, under (b), the figure shows the
correlations of the cytokines with the main parameters from the lipid fraction, as well as with all the
markers from the HDL subfraction. The correlations of cytokines with the remaining markers from
the other lipid subfractions are displayed under (c). A list of used abbreviations can be found in the
Supplementary Materials (Table S9).
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In our comparison of hospitalized patients with patients who stayed in an ambulatory
setting, IL-6, IL-10, IFN-γ and IFN-α2 emerged as markers of a more severe course of
COVID-19 infection. Figure 7a shows correlations of increased IL-6 and IL-8 values with
the values of the acute-phase proteins CRP and ferritin, Glyc and ketone bodies. Glyc
levels correlated negatively with IFN-α2 levels, whereas SPC exhibited exclusively neg-
ative correlations with all determined cytokines. Glutamine, one of our cohort’s most
explicit markers for COVID-19 infection, yielded highly significant negative correlations
with IL-6 and IL-10 levels. In addition, we found correlations of cytokines with clinical
laboratory parameters. For example, increased IL-6 values correlated positively with lactate
dehydrogenase (LDH) values, a cell death marker, and negatively with iron, lymphocyte
count and glomerular filtration rate (GFR). Figure 7b shows that monocyte chemoattractant
protein-1 (MCP1) represents the only cytokine in our analysis that correlates positively
with the main parameters from the lipid fraction or HDL parameters. Strikingly, TPTG,
despite its increase in COVID-19, shows only negative correlations with the increasing
cytokines IL-6 and IL-10, which are prominent in our hospitalization analysis. Significant
negative correlations were also found between apolipoproteins A1 and A2 and various
cytokines. IL-6 correlated negatively with ApoA1 of HDL in the sera of our COVID-19
patient cohort. This was more prominent in dense HDL (H4A1) than that in less dense
subfractions. The least dense HDL (H1A1) subfraction showed no correlation with IL-6.
The remaining correlations of cytokines with lipid subfractions are shown in Figure 6c.
Interestingly, IL-6, IL-10 and IFN-α2 showed highly significant negative correlations with
the parameters in high-density LDL (LDL6). Moreover, there was a positive correlation
of IL-6, IL-8 and IL-10 with V5CH and V5FC, and there were negative correlations with
V2CH and the remaining VLDL parameters. The longitudinal trajectories of IL-6 and IFN-γ
for patients who were hospitalized and for patients who cured themselves at home can be
found in the Supplementary Materials (Figure S5). Interestingly, the levels of IFN-α2 and
IFN-γ decreased steadily in patients who remained in outpatient care. IFN-γ was barely
detectable the third sampling time. In hospitalized patients, the levels remained elevated.

3.6. Investigation of Novel NMR-Based Inflammation Parameters in the Context of COVID-19

Finally, we addressed the potential susceptibility of the NMR inflammatory markers
Glyc and SPC to age, BMI and sex, which we identified as potential confounders. As
indicated in Figure 8, BMI showed a positive correlation with Glyc (Figure 8b) r = 0.25)
and a negative correlation with SPC (Figure 8d) r = −0.21). In contrast, older age seemed
to be only markedly associated with higher Glyc values (Figure 8a) r = 0.21) but not with
strongly altered SPC values (Figure 8c) r = −0.1). Sex influences also appeared probable
when looking at Figure 8a, as Glyc and especially SPC were found in higher values in males.
These effects seemed to accumulate in the Glyc/SPC ratio. Additionally, we correlated Glyc
to CRP to approximate the inflammatory significance of this parameter, and we found a
strong correlation with a Pearson’s r of 0.64. (Figure 8e). As shown in Figure 8c, we tested
the application of a nonlinear trend line, which seems to represent the relationship between
CRP and Glyc better.
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Figure 8. Relationship of 1H-NMR inflammation markers Glyc (sum of glycoprotein A and B) and SPC
with possible confounders of age (a,c) and BMI (b,d). In subfigures (e,f), we examined the correlation
of Glyc with CRP. The red line, which represents the trend line in subfigures (a–f), represents a
linear correlation in subfigure (e) and a nonlinear correlation in subfigure (f). Correlation coefficients
(Pearson) are given in the upper left corner of the subfigures with an analysis of linear correlation.
(g) A possible correlation also exists between Glyc and SPC with the respective sex. Asterisks describe
the significance level of a sex-specific distinction (** = p ≤ 0.01, **** = p ≤ 0.0001).
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4. Discussion

Using different commercial quantitative NMR spectroscopy modules and a targeted
cytokines & chemokines assay, we compared the metabolic, lipoprotein and inflamma-
tory profiles of a large cohort of SARS-CoV-2-infected individuals alongside more than
300 healthy control samples. Although 71 participants were administered to the hospital
during their disease course, our results mainly characterize the phenotype of a mild-to-
moderate COVID-19 disease. Adding clinical parameters to the analysis, we discriminated
patients who were hospitalized from those who cured themselves in an ambulatory setting.
Of note, changes in clinical laboratory parameters must be viewed cautiously, because
many hospital admissions were presumably conducted due to pathological changes in
these parameters [46]. To further characterize metabolic, lipoprotein and inflammatory
disruptions in COVID-19, we first compared our data to previously reported results and
then linked them to our determined cytokine values.

4.1. Abnormalities in Energy and Amino Acid Metabolism Might Indicate Viral Intervention and
Host Response and Might Have Immunological Implications

Interestingly, one of the frequently highlighted findings in studies of hospitalized
patients, which we could not reproduce in our analyses, is hyperglycemia. Hyperglycemia
might play an essential role in the development of COVID-19, as diabetes mellitus (DM), be-
sides obesity and arterial hypertension, has been identified as an apparent risk factor for in-
fection and a severe disease course [60,61]. Additionally, hyperglycemia and poor glycemic
control are independently associated with severe infections [62] and a worse outcome
in COVID-19 patients [16,63,64]. Furthermore, the question of whether SARS-CoV-2 can
trigger the onset of DM in apparently healthy individuals was raised [65]. As mechanisms
driving this development, direct pancreatic destruction by the virus [66] and persistent
influences of strongly elevated proinflammatory cytokines [67,68] were discussed. In our
comparison of hospitalized patients with patients who stayed in an ambulatory setting
(Section 3.3), we found a tendency toward discretely elevated glucose levels (FC 1.08,
FDR 0.06) (data not shown in Results section). We hypothesize that hyperglycemia may
be a feature of advanced disease rather than mild-to-moderate progression. Supporting
this notion, Correia et al., also observed increased glucose levels with increased disease
severity [11]. On the other hand, a mildly altered glucose metabolism might be masked by
increased consumption due to the mechanisms described below.

Hyperglycemia was reported to favor SARS-CoV-2 thriving in infected monocytes
from bronchoalveolar lavage in vitro by sustaining increased glycolysis levels in aerobic
situations [69]. The authors attributed this upregulation of aerobic glycolysis to the effects
of hypoxia-inducible factor 1-α (HIF-1 α), a transcription factor stabilized by hypoxia [9],
and reactive oxygen species (ROS). The production of ROS in the mitochondria was found
to be elevated in SARS-CoV-2-infected monocytes, and treatment with antioxidants (to
neutralize ROS) was found to inhibit HIF-1α stabilization, viral replication and IL-1β
expression [69]. These findings support the idea of a switch in metabolism similar to the
Warburg effect [9,70]. The Warburg effect was first described in cancer research and refers
to a high level of glycolysis despite sufficient oxygen levels, which can typically enable the
usage of oxidative phosphorylation. This might be a product of the viral intervention itself
or a result of present hypoxia [9].

The Warburg effect can lead to decreased introduction of pyruvate into the mitochon-
dria and thus into the Krebs cycle, and it can lead to increased activation of the enzyme
citrate lyase [70]. This downregulation of the Krebs cycle might be indicated by a decrease
in citric acid [71], as observed in our cohort and as commonly observed in other stud-
ies [17,18]. Moreover, other substrates for the Krebs cycle seem to accumulate, as other
research has found elevated levels of pyruvate and α-ketoglutarate [11,72]. We did not
determine upregulation in pyruvate, which might be due to our cohort’s overall milder
disease severity, as pyruvate has been proposed as a potential predictor for a severe disease
course [72]. Inhibition of the Krebs cycle might favor increased fatty acid biosynthesis
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via an excess of acetyl-CoA, the results of which might be reflected in the lipid profiles
we observed.

In this context, decreases in leucine, isoleucine, histidine and lysine might be signs of
general amino acid catabolism to compensate for dysregulated energy metabolism [9]. The
elevation of α-ketoglutarate, described by Ceperuelo et al., might be a result of accelerated
glutamine metabolism [70,72], besides skeletal muscle breakdown [14]. This might be
influenced by hypoxia and could explain elevations in glutamic acid as a byproduct of
this process [9]. Independently from why glutamine levels are so downregulated, it likely
has relevant consequences for the course of the disease [73,74]. Glutamine is an essential
nutrient for immune cells [75], which might implicate immunosuppression due to worse
functionality and the degradation of lymphocytes in cases of glutamine deprivation [76],
leading to COVID-19 aggravation.

Supporting the theory of increased amino acid catabolism, we found decreased levels
of ornithine. This non-proteinogenic amino acid functions as an essential player in the urea
cycle to dispose of excess of nitrogen, which results from amino acid catabolism. Indeed,
in our study, urea levels were elevated; however, in conjunction with elevated creatinine
levels, we see this more as a sign of kidney function impairment.

Such metabolic reprogramming has been linked to the promotion of viral replica-
tion [70] and might have further immunological implications, because SARS-CoV-2-infected
monocytes were shown to express higher levels of glycolysis, pro-inflammatory cytokines
and hypoxia (HIF-1α expression) which leads to overall T-cell exhaustion [69], and impaired
CD4+- and CD8+ T-cell proliferation. Additionally, the Warburg effect might promote the ac-
tivation of neutrophils and pro-inflammatory M1 macrophages, whereas anti-inflammatory
M2 macrophages seem to rely on oxidative phosphorylation [70]. We hypothesize that
metabolic reprogramming may trigger or exacerbate immune response derailment in this
manner. Icard et al., also stated that the Warburg effect leads to various effects such as
the promotion of micro-vessel thrombosis, which could explain the elevation in d-dimers
in COVID-19.

Interestingly, we observed signs of disturbed iron metabolism in the group that was
hospitalized (low levels of iron (hypoferremia), low transferrin, low transferrin saturation,
high levels of ferritin and an average count of red blood cells and hemoglobin), which is in
line with the findings we published previously [77]. Because ferritin and transferrin are
parts of the acute-phase reaction, their alterations should be seen with caution in inflam-
mation. SARS-CoV-2 was postulated to rely on iron uptake from hemoglobin to produce
ROS to protect itself from elimination by the immune system [78]. The resulting ROS might
link these findings to the development of the postulated Warburg effect in COVID-19 [70].
Because we found no difference in the amount of hemoglobin in the comparison of hospi-
talized patients with outpatients, we hypothesize that this mechanism, if present, is only
reflected in a mild form in this cohort. The predictive value of hypoferremia in COVID-19
is not only apparent in this study but was also discussed in a study whose cohort did
not overlap with the population in this investigation [77]. A higher presence of ROS in
COVID-19 might also be a valid explanation for rises in phenylalanine, which has been
linked to extensive immune activation in ovarian cell carcinoma [79]. The authors of that
study hypothesized the impairment of 5,6,7,8-tetrahydrobiopterin, an essential cofactor in
the conversion of phenylalanine to tyrosine, due to oxidation by ROS. It was suggested
that these ROS might be induced by various cytokines, such as IFN-γ or IFN-α2 [80]. Be-
cause we only detected a correlation between phenylalanine and IL-6, which both behave
stage-dependently in a similar manner, we consider a viral influence likely.

More importantly, in this study, SARS-CoV-2 infection was also found to cause an
elevation in the ketone bodies 3-hydroxybutyric acid, acetoacetic acid and acetone, which
discriminated hospitalized patients from those who stayed in ambulatory care. Generally,
an elevation in ketone bodies indicates a catabolic state, which can be seen as a mechanism
employed by the host to battle a viral infection [81]. Of note, because samples were obtained
from individuals confined at home, in which their diets were not controlled, we consider
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an influence by fasting unlikely. Instead, we conclude that the observed increase in ketone
bodies might be an expression of the disease, as stated before by Bruzzone et al. [10].

The immunological relevance of ketone bodies in the context of viral infections was
discussed previously in general [82]. As growing evidence suggests that SARS-CoV-2
hampers the synthesis and release of ketone bodies, which restricts potential alternative
energy sources for immune cells [83], even interventional ketone body diets or supplemen-
tation have been discussed as countermeasures against COVID-19 [84]. Interestingly, it has
been shown that the attenuated functionality of CD8+ T-cells obtained from SARS-CoV-2-
infected individuals [33,34,36] can be improved by a ketogenic diet [85]. We found highly
significant correlations between IL-6 and IL-10 with acetoacetic acid, 3-hydroxybutyric
acid and acetone. Thus, we hypothesize that increases in ketone bodies might be a part of
immunological host responses, either mediated or accompanied by a rise in inflammatory
cytokines. Augmented ketogenesis might be enabled by an excess of acetyl-CoA in the liver,
which results from upregulated adipose tissue lipolysis, which is common during the acute
phase response in infection [86] to increase VLDL packaging and secretion. Increases in
VLDL and the TG fraction of IDL—which develops from the decomposition of VLDL in the
blood circulation, as observed in our cohort—may be related to this. Besides this, we deter-
mined a decrease in Fischer’s ratio, which resulted from elevations in aromatic amino acids
(phenylalanine and tyrosine) and decreases in BCAAs. This finding has previously been
interpreted as a sign of liver impairment [14], a finding that is typical in COVID-19 [87,88]
and that is attributed partly to systemic inflammation and to the influence of IL-6 [89].

4.2. Profound Lipoprotein Alterations Might Be Attributable to Effects of the Virus, and
Pro-Inflammatory Effects of IL-6 Are Reflected in Specific HDL Profiles

Like other groups, we reported an association of COVID-19 with severe disruption
in the lipoprotein profiles of infected individuals [6,10,13,14,90]. In addition to the before-
mentioned elevations in VLDL and IDL, one of our key findings was a substantial elevation
in the total amount of TG and a strong decrease in the total amount of cholesterol in plasma,
which was more pronounced in hospitalized patients. Interestingly, the total amount of
triglycerides (TPTG) only showed negative correlations with cytokines, despite both TPTG
and IL-6, for example, rising strongly in COVID-19. We hypothesize that the elevation in
TPTG might be primarily attributed to the viral intervention to fuel itself and less to the
host response. Hereby, a more detailed analysis sheds light on alterations in the fraction
of HDL: ApoA1 and ApoA2 were both strongly downregulated (FC 0.76), and cholesterol
in HDL showed an even stronger decrease (FC 0.72) with relative upregulation in free
cholesterol (FC 0.82). HDL particles were enriched with TG, as the absolute amount did not
change compared with the healthy controls. These findings are consistent with the work of
other groups with hospitalized COVID-19 patients [7,13]. HDL, which originally exerts
beneficial antioxidant and anti-inflammatory properties, can take on a proinflammatory
role when the functionality of ApoA1 is impaired during general inflammation with a
chronic, acute-phase reaction [91]. This is the case in metabolic disorders such as diabetes,
where CH is increasingly transferred from HDL to other lipoproteins with the opposing
transfer of TG [92]. Our study’s composition of HDL raises the question of whether HDL in
COVID-19 is concordantly altered into a dysfunctional and proinflammatory agent, as these
particles show the same profile that we demonstrated in our cohort [92]. A recent study
using mass spectrometry to investigate the composition of HDL reported elevations of the
acute-phase proteins α1-antitrypsin and serum amyloid A in addition to decreased ApoA1.
The authors suggested that ApoA1 is either less synthesized by the liver or is replaced by
serum amyloid A, and they demonstrated decreased anti-inflammatory activity [93]. This
conversion was attributed to the influence of proinflammatory cytokines, such as IL-6 [93].
In our correlation analysis, we found negative associations of IL-6 with ApoA1 especially
but also with other HDL parameters, confirming similar results reported before [7]. In our
investigation, this correlation was particularly present in the subfraction of dense HDL
(H4A1). The prominence of HDL4 makes sense, because individual particles decrease in
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density due to the intake of TG and the release of cholesterol. At this point, it should be
emphasized that downregulations in H4A1 were found to be independent of sex in our
study. This is noteworthy, because SARS-CoV-2-infected men in our study exhibited more
substantial changes in their lipoprotein profile than in that of women. This imbalance was
reported before [94].

We showed that TG-rich and CH-poor lipid profiles are also reflected in the fraction
of LDL. We found decreases in a wide variety of parameters except for TG content, which
was elevated in large LDL (L1TG) and unaltered; thus, relatively upregulated in the other
subfractions. Interestingly, our correlation analysis found uniform negative correlations
of IL-6 (p-value in correlation with L6TG only 0.051), IFN-α-2 and especially IL-10 with
all the parameters of dense LDL (LDL6). IL-10 has been causally linked to increasing the
macrophage intake of HDL and LDL [95], which might be another reason explaining the
complex interactions of inflammatory and metabolic profiles.

4.3. Several Clinical Parameters and Cytokines Indicate More Severe Disease Courses

Besides the metabolic and lipoprotein profiles of COVID-19, we had a closer look at
the NMR-based inflammation markers Glyc and SPC and how they might be able to predict
hospitalization in an ambulatory cohort. Indeed, some standard clinical and cytokine
parameters have been assigned prognostic values before by indicating an increased amount
of inflammation or incipient organ damage. Several of these parameters, such as d-dimers,
CRP, ferritin, LDH, lymphocyte count and elevations in IL-6 and IL-10 [47,96], also stood out
in our hospitalization analysis. In addition to IL-6 and IL-10, we found relatively elevated
levels of IFN-α 2 and IFN-γ in hospitalized patients. A closer look at the development
of IFN-α2 (S13) in patients who gave a longitudinal set of three samples revealed that
this cytokine showed a decrease in patients who stayed at home.In contrast, it stayed
at similar levels in hospitalized patients. This results in overall elevation in IFN-α2 in
hospitalized patients, demonstrating the ineffectiveness of this IFN-I response in severe
cases, as reported before [41]. IFN-γ showed similar development, as its expression nearly
diminished in the samples from the third time point in ambulatory patients. Moreover, it
was still high in hospitalized patients, indicating a prolonged immune response.

4.4. Pre-Existing Conditions and Obesity Complicate the Identification of Possible Biomarkers

It is worth illuminating that our cohort of 329 COVID-19 patients included 134 patients
with pre-existing arterial hypertension. A total of 34 of these patients were additionally
already diagnosed with diabetes mellitus. This must be interpreted together with the fact
that 68.4% of the patients in our cohort showed a BMI > 25 kg/m2, and 35.9% even exhibited
obesity with a BMI > 30 kg/m2. On average, 54% of adults in Germany are overweight
(BMI > 25), and 18.1% exhibit obesity [97]. This could act as a confounder in comparison to
healthy individuals, especially when evaluating the altered lipoprotein profile we found in
SARS-CoV-2-infected subjects. In our hospitalization analyses (Section 3.3), the difference
in BMI between hospitalized and outpatients was only moderate (mean: 29.0 vs. 28.5).
However, it should be noted that the cohorts differed slightly in age (mean: 59.1 years vs.
53.4 years) and comorbidities. Of the 71 hospitalized patients, 33 were already diagnosed
with arterial hypertension (46.5%), and 101 out of the 258 patients (39.1%) who remained in
outpatient care during the whole acute disease phase exhibited this condition. Considering
our results and related studies, we postulate that the lipid constellation of specifically
altered HDL composition and high TG in COVID-19 presents itself in a similar manner to
the profile of metabolic syndrome [92]. The boundaries appear to blur in some places, as
preexisting conditions, such as DM or obesity and COVID-19, appear to aggravate each
other, not only causing a higher risk in the acute phase of the disease, but also causing
persistent limitations in quality of life in the form of long-COVID-19 [98]. This statement
does not discount the significance of our and other groups’ findings, as several NMR-based
parameters were shown to be reliable indicators of infection and predictive markers of a
more severe course with hospitalization.
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4.5. NMR Biomarkers Perform Well in Stratifying COVID-19 Patients

In the following, we discuss the NMR parameters of Glyc/SPC ratio, GlycA, TPA1/HDA1
and phenylalanine, because these parameters showed similar prognostic capabilities to the
clinical parameters of CRP, LDH and ferritin. Of note, regarding the biomarker analysis, it
is essential to keep in mind that we are comparing sub-cohorts of the COVID-19 cohort (as
NMR inflammatory parameters, cytokines and clinical laboratory values were not available
for the control samples); hence, very high AUCs, with strong predictive power (approximately
AUC > 0.85), were not to be expected. In addition, it is worth noting that the discussed NMR
parameters are not exclusively informative concerning COVID-19, as most of them have also
been associated with several other conditions.

Firstly, we want to highlight the potential clinical relevance of phenylalanine. This
marker showed significant elevations in the comparison of all COVID-19 patients with
the healthy controls (Section 3.1.) with a determined fold change of 1.29 (1.34 in females
and 1.27 in males). In the corresponding analysis of ambulatory patients and the healthy
controls (Section 3.2.), phenylalanine showed slight but highly significant elevations. It
showed strong upregulations in the analysis of hospitalization and good prognostic values
in the biomarker analysis, with an AUC of 0.716. Phenylalanine was associated before
with increased mortality in patients with acute respiratory distress syndrome [99] and
was found to be elevated stage-dependently in patients with ovarian carcinoma, as men-
tioned before [79]. Additionally, the relationship between phenylalanine and COVID-19
was investigated by Luporini et al., who found the parameter to be a robust marker of
disease severity [100], which has similarly been seen in two recent studies [11,18]. The
relationship between phenylalanine and immune system activation is underlined by the
correlation we demonstrated with IL-6, which is consistent with results from the litera-
ture [19]. Apolipoprotein A1 in the HDL fraction (HDA1) showed an AUC of 0.712 in
our biomarker analysis. Interestingly, apolipoprotein A1 in the H4 subfraction (H4A1)
performed slightly worse, with an AUC of 0.703. As already discussed, we suspect an
ongoing transformation of HDL to a proinflammatory and dysfunctional phenotype that is
present in the early phase of COVID-19 and in mild-to-moderate disease, respectively.

4.6. Glyc and SPC Reliably Indicate COVID-19 Severity and Offer Exciting Possibilities for the
Assessment of Inflammatory Activity

Finally, we want to discuss the NMR markers Glyc and SPC in more detail. GlycA
was found to possess predictive value in the treatment of HIV [101] and rheumatoid
arthritis [102]. It shows elevations in lupus erythematodes [103] and enables the tracking of
disease severity in inflammatory bowel disease [104], where it reflects mucosal recovery.
Because it is primarily understood as an inflammatory marker, GlycA was related to CRP
and partly also to IL-6 in the context of diabetes mellitus [105] and in prediction models
of cardiovascular incidents [106], where it proved to have considerable expressive power.
GlycA is also associated with metabolic syndrome, obesity and insulin resistance [107,108].
Because the NMR signal of GlycA arises from modifications in the glycan branches of
glycoproteins that are known as acute-phase reactants [21], it is not surprising that we
found correlations of Glyc with CRP (Pearson’s R 0.64) and with IL-6, which mediates
the acute-phase response [109]. Interestingly, we found a more significant correlation of
IL-6 with the Glyc/SPC ratio (Pearson’s R 0.24, p-val < 0.0001) than with Glyc directly.
However, the potential value of Glyc should not be underestimated and limited to its
relationship with other parameters, such as CRP [20]. Ritchie et al. (2015) showed that
GlycA elevations are often chronic and indicate low-grade chronic inflammation in the
sense of elevated cytokine levels and increased neutrophil activity. Furthermore, it was
used to predict the risk of severe (respiratory) infections in a large population-based study
of apparently healthy individuals [110]. Moreover, in an Estonian-population-based study,
α1-glycoprotein, the main contributor to the GlycA signal, emerged as a predictor for death
from all causes [111]. In relation to the current pandemic, an association of pre-existing
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elevated Glyc levels with severe COVID-19 courses was demonstrated [112]. Additionally,
an increase in Glyc with disease severity was previously demonstrated by Ghini et al. [18].

As mentioned before, SPC, a newly discovered NMR marker derived from LDL and
HDL subfractions [113], shows additional power in identifying SARS-CoV-2-infected in-
dividuals. We demonstrated the prognostic value of the Glyc/SPC ratio in stratifying
COVID-19 patients, as it showed significantly higher values in hospitalized patients com-
pared with those who cured themselves at home, and it showed an AUC of 0.73 in our
biomarker analysis. Interestingly, the ratio of Glyc/SPC also shows elevations in the
post-acute phase of COVID-19, making it a compelling marker for post-acute COVID-19
syndrome [26]. To assess the susceptibility of these parameters to possible confounders,
we correlated Glyc and SPC with BMI and age and checked for eventual sex-specific dif-
ferences. We were able to show that a higher BMI is associated with higher Glyc and
lower SPC, and higher age is primarily associated with higher Glyc. We demonstrated
sex-specific differences in these parameters in our cohort, including higher SPC in females
and higher Glyc in males. These effects accumulate when the Glyc/SPC ratio is formed. It
is difficult to say whether different reference values must be established for different sexes
and for different BMI or ages. However it must be considered that immune mechanisms
are affected by obesity, old age and male sex, because they constitute risk factors for a
severe disease course in COVID-19 [114]. At this point, we must state that our cohort was
composed of more men than women with a severe course (hospitalization). Despite sex-
and age-specific influences, Glyc/SPC showed significant changes in the comparison of
hospitalized patients against outpatients in men over 60 years of age, in men under 60 years
of age and in women over 60 years of age. In females under the age of 60, Glyc/SPC was
not elevated in hospitalized patients, but because only 17 patients were admitted to the
hospital, this result must be seen with caution.

In summary, we postulate that Glyc, independently and in combination with SPC,
shows exciting potential both in and outside COVID-19 research, which makes further
validation and investigation in the coming years necessary. These steps might enable future
translation into clinical practice and can help achieve progress in the field of personalized
medicine. From a practical point of view, this seems more feasible than ever, because it has
been demonstrated lately that the determination procedure works reliably not only with
cost-extensive high-field spectrometers but also with low-field NMR benchtop systems [55].

5. Conclusions

From the results of our study, we can infer that COVID-19 is inextricably associ-
ated with specific changes in immunometabolism. We largely reproduced the metabolic
profile of COVID-19 characterized by other groups through studies of hospitalized pa-
tients, demonstrating that most findings are indeed an expression of the disease and do
not necessarily include factors predisposing to a severe course. This metabolic and lipid
profile is characterized by the extensive dysregulation of energy metabolism, in which
we recognize similarities to the Warburg effect and specific changes in lipid profiles that
resemble metabolic dysfunction. COVID-19 seems to blur the lines between metabolically
healthy and diseased individuals, so further research is necessary to determine if some
of the observed alterations are attributable to derailments of pre-existing or newly onset
metabolic conditions and not to COVID-19 itself. We used the determined cytokines to
uncover possible interfaces of metabolism and the immune system on which quantita-
tive NMR spectroscopy had previously shed light. Finally, we investigated the novel
NMR parameters Glyc and SPC. We look forward to seeing what role these markers will
play in the characterization of post-acute COVID-19 syndrome and other inflammatory
and metabolic diseases, as well as in their use in the field of personalized medicine and
precision diagnostics.



Metabolites 2022, 12, 1277 24 of 29

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/metabo12121277/s1: Table S1: Baseline characteristics, Table S2:
Absolute concentrations of B.I. QUANT-PS and B.I. LISA in the COVID-19 cohort and healthy
controls, Table S3: Univariate analysis of ambulatory COVID-19 vs. healthy controls, Table S4:
Univariate analysis of COVID-19 vs. healthy controls, Table S5: Univariate analysis of hospitalized
sub-cohort vs. outpatient COVID-19 cohort, Table S6: Univariate analysis of hospitalized male
sub-cohort vs. male outpatient sub-cohort, Table S7: Univariate analysis of hospitalized female sub-
cohort vs. female outpatient sub-cohort, Table S8: Hospitalization Biomarker Analysis, Table S9: Lists
of abbreviations and units; Figure S1: One-dimensional 1H NMR spectral data of one of the blood
analyte solutions, Figure S2: Overview of the ρ-values in BI-QUANT-PSTM, Figure S3: Multivariate
analysis of COVID-19 vs. control; PCA and OPLS-DA, Figure S4: Multivariate analysis; PCA and
OPLS-DA, Figure S5. Box plots of cytokine trajectory.

Author Contributions: Conceptualization, C.T. and U.M.; methodology, C.T.; software, C.C.,
T.R. (Tony Reinsperger), H.S. and M.S.; validation, T.R. (Titus Rössler), G.B., Y.S., U.M. and C.T.; for-
mal analysis, T.R. (Titus Rössler), G.B. and Y.S.; investigation, T.R. (Titus Rössler), Y.S., C.T. and U.M.;
resources, C.T., U.M. and M.K.; data curation, T.R. (Titus Rössler), G.B., C.C., T.R. (Tony Reinsperger),
H.S. and M.S.; writing—original draft preparation, T.R. (Titus Rössler), C.T. and U.M.; writing—
review and editing, T.R. (Titus Rössler), G.B., Y.S., C.C., T.R. (Tony Reinsperger), H.S., M.S., M.K.,
U.M. and C.T.; visualization, T.R. (Titus Rössler) and G.B.; supervision, C.T., M.K. and U.M.; project
administration, C.T.; funding acquisition, C.T., U.M. and M.K. All authors have read and agreed to
the published version of the manuscript.

Funding: C.T. and G.B. report grants from Bruker BioSpin GmbH in the context of an advanced
research collaboration.

Institutional Review Board Statement: This study was conducted according to the Declaration of
Helsinki and was approved by the Ethics Committee of Heidelberg Medical University (protocol
code S/324/2020).

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available upon request from the
corresponding authors due to privacy or ethical restrictions.

Acknowledgments: We thank the Werner-Siemens Imaging Center with the Chair of Department
Bernd Pichler for the opportunity to conduct this research. We acknowledge support by Open Access
Publishing Fund of University of Tübingen.

Conflicts of Interest: C.T. and G.B. report research grants from Bruker BioSpin GmbH. All other
authors declare no conflict of interest.

References
1. Murray, C.J.L. COVID-19 will continue but the end of the pandemic is near. Lancet 2022, 399, 417–419. [CrossRef]
2. Mussap, M.; Fanos, V. Could metabolomics drive the fate of COVID-19 pandemic? A narrative review on lights and shadows.

Clin. Chem. Lab. Med. 2021, 59, 1891–1905. [CrossRef] [PubMed]
3. Li, B.; He, X.; Jia, W.; Li, H. Novel Applications of Metabolomics in Personalized Medicine: A Mini-Review. Molecules 2017,

22, 1173. [CrossRef] [PubMed]
4. Holmes, E.; Wilson, I.D.; Nicholson, J.K. Metabolic Phenotyping in Health and Disease. Cell 2008, 134, 714–717. [CrossRef]

[PubMed]
5. Letertre, M.P.M.; Giraudeau, P.; de Tullio, P. Nuclear Magnetic Resonance Spectroscopy in Clinical Metabolomics and Personalized

Medicine: Current Challenges and Perspectives. Front. Mol. Biosci. 2021, 8, 698337. [CrossRef] [PubMed]
6. Schmelter, F.; Föh, B.; Mallagaray, A.; Rahmöller, J.; Ehlers, M.; Lehrian, S.; Von Kopylow, V.; Künsting, I.; Lixenfeld, A.S.;

Martin, E.; et al. Metabolic and lipidomic markers differentiate COVID-19 from non-hospitalised and other intensive care patients.
Front. Mol. Biosci. 2021, 8, 1091. [CrossRef]

7. Lodge, S.; Nitschke, P.; Kimhofer, T.; Coudert, J.D.; Begum, S.; Bong, S.H.; Richards, T.; Edgar, D.; Raby, E.; Spraul, M.; et al. NMR
Spectroscopic Windows on the Systemic Effects of SARS-CoV-2 Infection on Plasma Lipoproteins and Metabolites in Relation to
Circulating Cytokines. J. Proteome Res. 2021, 20, 1382–1396. [CrossRef]

8. Masuda, R.; Lodge, S.; Nitschke, P.; Spraul, M.; Schaefer, H.; Bong, S.H.; Kimhofer, T.; Hall, D.; Loo, R.L.; Bizkarguenaga, M.; et al.
Integrative Modeling of Plasma Metabolic and Lipoprotein Biomarkers of SARS-CoV-2 Infection in Spanish and Australian
COVID-19 Patient Cohorts. J. Proteome Res. 2021, 20, 4139–4152. [CrossRef]

https://www.mdpi.com/article/10.3390/metabo12121277/s1
https://www.mdpi.com/article/10.3390/metabo12121277/s1
http://doi.org/10.1016/S0140-6736(22)00100-3
http://doi.org/10.1515/cclm-2021-0414
http://www.ncbi.nlm.nih.gov/pubmed/34332518
http://doi.org/10.3390/molecules22071173
http://www.ncbi.nlm.nih.gov/pubmed/28703775
http://doi.org/10.1016/j.cell.2008.08.026
http://www.ncbi.nlm.nih.gov/pubmed/18775301
http://doi.org/10.3389/fmolb.2021.698337
http://www.ncbi.nlm.nih.gov/pubmed/34616770
http://doi.org/10.3389/fmolb.2021.737039
http://doi.org/10.1021/acs.jproteome.0c00876
http://doi.org/10.1021/acs.jproteome.1c00458


Metabolites 2022, 12, 1277 25 of 29

9. Páez-Franco, J.C.; Torres-Ruiz, J.; Sosa-Hernández, V.A.; Cervantes-Díaz, R.; Romero-Ramírez, S.; Pérez-Fragoso, A.; Meza-
Sánchez, D.E.; Germán-Acacio, J.M.; Maravillas-Montero, J.L.; Mejía-Domínguez, N.R.; et al. Metabolomics analysis reveals a
modified amino acid metabolism that correlates with altered oxygen homeostasis in COVID-19 patients. Sci. Rep. 2021, 11, 6350.
[CrossRef]

10. Bruzzone, C.; Bizkarguenaga, M.; Gil-Redondo, R.; Diercks, T.; Arana, E.; Garcia de Vicuna, A.; Seco, M.; Bosch, A.; Palazon, A.;
San Juan, I.; et al. SARS-CoV-2 Infection Dysregulates the Metabolomic and Lipidomic Profiles of Serum. iScience 2020, 23, 101645.
[CrossRef]

11. Correia, B.S.B.; Ferreira, V.G.; Piagge, P.M.F.D.; Almeida, M.B.; Assunção, N.A.; Raimundo, J.R.S.; Fonseca, F.L.A.; Carrilho, E.;
Cardoso, D.R. 1H qNMR-Based Metabolomics Discrimination of Covid-19 Severity. J. Proteome Res. 2022, 21, 1640–1653. [CrossRef]

12. Baranovicova, E.; Bobcakova, A.; Vysehradsky, R.; Dankova, Z.; Halasova, E.; Nosal, V.; Lehotsky, J. The Ability to Normalise
Energy Metabolism in Advanced COVID-19 Disease Seems to Be One of the Key Factors Determining the Disease Progression—A
Metabolomic NMR Study on Blood Plasma. Appl. Sci. 2021, 11, 4231. [CrossRef]

13. Ballout, R.A.; Kong, H.; Sampson, M.; Otvos, J.D.; Cox, A.L.; Agbor-Enoh, S.; Remaley, A.T. The NIH Lipo-COVID Study: A Pilot
NMR Investigation of Lipoprotein Subfractions and Other Metabolites in Patients with Severe COVID-19. Biomedicines 2021,
9, 1090. [CrossRef]

14. Loo, R.L.; Lodge, S.; Kimhofer, T.; Bong, S.-H.; Begum, S.; Whiley, L.; Gray, N.; Lindon, J.C.; Nitschke, P.; Lawler, N.G.; et al.
Quantitative In-Vitro Diagnostic NMR Spectroscopy for Lipoprotein and Metabolite Measurements in Plasma and Serum:
Recommendations for Analytical Artifact Minimization with Special Reference to COVID-19/SARS-CoV-2 Samples. J. Proteome
Res. 2020, 19, 4428–4441. [CrossRef]

15. Bizkarguenaga, M.; Bruzzone, C.; Gil-Redondo, R.; Sanjuan, I.; Martin-Ruiz, I.; Barriales, D.; Palacios, A.; Pasco, S.T.;
González-Valle, B.; Laín, A.; et al. Uneven metabolic and lipidomic profiles in recovered COVID-19 patients as investigated by
plasma NMR metabolomics. NMR Biomed. 2022, 35, e4637. [CrossRef]

16. Ceriello, A. Hyperglycemia and the worse prognosis of COVID-19. Why a fast blood glucose control should be mandatory.
Diabetes Res. Clin. Pract. 2020, 163, 108186. [CrossRef]

17. Pang, Z.; Zhou, G.; Chong, J.; Xia, J. Comprehensive Meta-Analysis of COVID-19 Global Metabolomics Datasets. Metabolites 2021,
11, 44. [CrossRef]

18. Ghini, V.; Meoni, G.; Pelagatti, L.; Celli, T.; Veneziani, F.; Petrucci, F.; Vannucchi, V.; Bertini, L.; Luchinat, C.; Landini, G.; et al.
Profiling metabolites and lipoproteins in COMETA, an Italian cohort of COVID-19 patients. PLoS Pathog. 2022, 18, e1010443.
[CrossRef] [PubMed]

19. Meoni, G.; Ghini, V.; Maggi, L.; Vignoli, A.; Mazzoni, A.; Salvati, L.; Capone, M.; Vanni, A.; Tenori, L.; Fontanari, P.; et al.
Metabolomic/lipidomic profiling of COVID-19 and individual response to tocilizumab. PLoS Pathog. 2021, 17, e1009243.
[CrossRef]

20. Fuertes, M.; Correig, X.; Vallvé, J.C.; Amigó, N. Human Serum/Plasma Glycoprotein Analysis by 1H-NMR, an Emerging Method
of Inflammatory Assessment. J. Clin. Med. 2020, 9, 354. [CrossRef]

21. Otvos, J.D.; Shalaurova, I.; Wolak-Dinsmore, J.; Connelly, M.A.; Mackey, R.H.; Stein, J.H.; Tracy, R.P. GlycA: A Composite Nuclear
Magnetic Resonance Biomarker of Systemic Inflammation. Clin. Chem. 2015, 61, 714–723. [CrossRef] [PubMed]

22. Hochepied, T.; Berger, F.G.; Baumann, H.; Libert, C. α1-Acid glycoprotein: An acute phase protein with inflammatory and
immunomodulating properties. Cytokine Growth Factor Rev. 2003, 14, 25–34. [CrossRef] [PubMed]

23. Raziani, F.; Ebrahimi, P.; Engelsen, S.B.; Astrup, A.; Raben, A.; Tholstrup, T. Consumption of regular-fat vs reduced-fat cheese
reveals gender-specific changes in LDL particle size—A randomized controlled trial. Nutr. Metab. 2018, 15, 61. [CrossRef]
[PubMed]

24. Giskeødegård, G.F.; Andreassen, T.; Bertilsson, H.; Tessem, M.-B.; Bathen, T.F. The effect of sampling procedures and day-to-day
variations in metabolomics studies of biofluids. Anal. Chim. Acta 2019, 1081, 93–102. [CrossRef] [PubMed]

25. Gafson, A.R.; Thorne, T.; McKechnie, C.I.J.; Jimenez, B.; Nicholas, R.; Matthews, P.M. Lipoprotein markers associated with
disability from multiple sclerosis. Sci. Rep. 2018, 8, 17026. [CrossRef]

26. Lodge, S.; Nitschke, P.; Kimhofer, T.; Wist, J.; Bong, S.H.; Loo, R.L.; Masuda, R.; Begum, S.; Richards, T.; Lindon, J.C.; et al.
Diffusion and Relaxation Edited Proton NMR Spectroscopy of Plasma Reveals a High-Fidelity Supramolecular Biomarker
Signature of SARS-CoV-2 Infection. Anal. Chem. 2021, 93, 3976–3986. [CrossRef]

27. Masuda, R.; Lodge, S.; Whiley, L.; Gray, N.; Lawler, N.; Nitschke, P.; Bong, S.-H.; Kimhofer, T.; Loo, R.L.; Boughton, B.; et al.
Exploration of Human Serum Lipoprotein Supramolecular Phospholipids Using Statistical Heterospectroscopy in n-Dimensions
(SHY-n): Identification of Potential Cardiovascular Risk Biomarkers Related to SARS-CoV-2 Infection. Anal. Chem. 2022,
94, 4426–4436. [CrossRef]

28. Lucas, C.; Wong, P.; Klein, J.; Castro, T.B.R.; Silva, J.; Sundaram, M.; Ellingson, M.K.; Mao, T.; Oh, J.E.; Israelow, B.; et al.
Longitudinal analyses reveal immunological misfiring in severe COVID-19. Nature 2020, 584, 463–469. [CrossRef]

29. Yang, L.; Xie, X.; Tu, Z.; Fu, J.; Xu, D.; Zhou, Y. The signal pathways and treatment of cytokine storm in COVID-19. Signal
Transduct. Target. Ther. 2021, 6, 255. [CrossRef]

30. Mulchandani, R.; Lyngdoh, T.; Kakkar, A.K. Deciphering the COVID-19 cytokine storm: Systematic review and meta-analysis.
Eur. J. Clin. Investig. 2021, 51, e13429. [CrossRef]

http://doi.org/10.1038/s41598-021-85788-0
http://doi.org/10.1016/j.isci.2020.101645
http://doi.org/10.1021/acs.jproteome.1c00977
http://doi.org/10.3390/app11094231
http://doi.org/10.3390/biomedicines9091090
http://doi.org/10.1021/acs.jproteome.0c00537
http://doi.org/10.1002/nbm.4637
http://doi.org/10.1016/j.diabres.2020.108186
http://doi.org/10.3390/metabo11010044
http://doi.org/10.1371/journal.ppat.1010443
http://www.ncbi.nlm.nih.gov/pubmed/35446921
http://doi.org/10.1371/journal.ppat.1009243
http://doi.org/10.3390/jcm9020354
http://doi.org/10.1373/clinchem.2014.232918
http://www.ncbi.nlm.nih.gov/pubmed/25779987
http://doi.org/10.1016/S1359-6101(02)00054-0
http://www.ncbi.nlm.nih.gov/pubmed/12485617
http://doi.org/10.1186/s12986-018-0300-0
http://www.ncbi.nlm.nih.gov/pubmed/30258469
http://doi.org/10.1016/j.aca.2019.07.026
http://www.ncbi.nlm.nih.gov/pubmed/31446969
http://doi.org/10.1038/s41598-018-35232-7
http://doi.org/10.1021/acs.analchem.0c04952
http://doi.org/10.1021/acs.analchem.1c05389
http://doi.org/10.1038/s41586-020-2588-y
http://doi.org/10.1038/s41392-021-00679-0
http://doi.org/10.1111/eci.13429


Metabolites 2022, 12, 1277 26 of 29

31. Kox, M.; Waalders, N.J.B.; Kooistra, E.J.; Gerretsen, J.; Pickkers, P. Cytokine Levels in Critically Ill Patients With COVID-19 and
Other Conditions. JAMA 2020, 324, 1565. [CrossRef]

32. Leisman, D.E.; Ronner, L.; Pinotti, R.; Taylor, M.D.; Sinha, P.; Calfee, C.S.; Hirayama, A.V.; Mastroiani, F.; Turtle, C.J.;
Harhay, M.O.; et al. Cytokine elevation in severe and critical COVID-19: A rapid systematic review, meta-analysis, and compari-
son with other inflammatory syndromes. Lancet Respir. Med. 2020, 8, 1233–1244. [CrossRef]

33. Bergamaschi, L.; Mescia, F.; Turner, L.; Hanson, A.L.; Kotagiri, P.; Dunmore, B.J.; Ruffieux, H.; De Sa, A.; Huhn, O.;
Morgan, M.D.; et al. Longitudinal analysis reveals that delayed bystander CD8+ T cell activation and early immune pathology
distinguish severe COVID-19 from mild disease. Immunity 2021, 54, 1257–1275.e8. [CrossRef]

34. Singh, Y.; Trautwein, C.; Fendel, R.; Krickeberg, N.; Berezhnoy, G.; Bissinger, R.; Ossowski, S.; Salker, M.S.; Casadei, N.; Riess, O.
SARS-CoV-2 infection paralyzes cytotoxic and metabolic functions of the immune cells. Heliyon 2021, 7, e07147. [CrossRef]

35. Diao, B.; Wang, C.; Tan, Y.; Chen, X.; Liu, Y.; Ning, L.; Chen, L.; Li, M.; Liu, Y.; Wang, G.; et al. Reduction and Functional
Exhaustion of T Cells in Patients With Coronavirus Disease 2019 (COVID-19). Front. Immunol. 2020, 11, 827. [CrossRef]

36. Luo, M.; Liu, J.; Jiang, W.; Yue, S.; Liu, H.; Wei, S. IL-6 and CD8+ T cell counts combined are an early predictor of in-hospital
mortality of patients with COVID-19. JCI Insight 2020, 5, e139024. [CrossRef]

37. Idiz, U.O.; Yurttas, T.T.; Degirmencioglu, S.; Orhan, B.; Erdogan, E.; Sevik, H.; Sevinc, M.M. Immunophenotyping of lymphocytes
and monocytes and the status of cytokines in the clinical course of Covid-19 patients. J. Med. Virol. 2022, 94, 4744–4753. [CrossRef]

38. Biron, C.A. Role of early cytokines, including alpha and beta interferons (IFN-α\β), in innate and adaptive immune responses to
viral infections. Semin. Immunol. 1998, 10, 383–390. [CrossRef]

39. Zhang, Q.; Bastard, P.; Liu, Z.; Le Pen, J.; Moncada-Velez, M.; Chen, J.; Ogishi, M.; Sabli, I.K.D.; Hodeib, S.; Korol, C.; et al. Inborn
errors of type I IFN immunity in patients with life-threatening COVID-19. Science 2020, 370, eabd4570. [CrossRef]

40. Chen, Y.M.; Zheng, Y.; Yu, Y.; Wang, Y.; Huang, Q.; Qian, F.; Sun, L.; Song, Z.G.; Chen, Z.; Feng, J.; et al. Blood molecular markers
associated with COVID-19 immunopathology and multi-organ damage. EMBO J. 2020, 39, e105896. [CrossRef]

41. Hadjadj, J.; Yatim, N.; Barnabei, L.; Corneau, A.; Boussier, J.; Smith, N.; Pere, H.; Charbit, B.; Bondet, V.; Chenevier-Gobeaux, C.; et al.
Impaired type I interferon activity and inflammatory responses in severe COVID-19 patients. Science 2020, 369, 718–724. [CrossRef]
[PubMed]

42. Galani, I.-E.; Rovina, N.; Lampropoulou, V.; Triantafyllia, V.; Manioudaki, M.; Pavlos, E.; Koukaki, E.; Fragkou, P.C.; Panou, V.;
Rapti, V.; et al. Untuned antiviral immunity in COVID-19 revealed by temporal type I/III interferon patterns and flu comparison.
Nat. Immunol. 2021, 22, 32–40. [CrossRef] [PubMed]

43. Buck, M.D.; Sowell, R.T.; Kaech, S.M.; Pearce, E.L. Metabolic Instruction of Immunity. Cell 2017, 169, 570–586. [CrossRef]
[PubMed]

44. Batabyal, R.; Freishtat, N.; Hill, E.; Rehman, M.; Freishtat, R.; Koutroulis, I. Metabolic dysfunction and immunometabolism in
COVID-19 pathophysiology and therapeutics. Int. J. Obes. 2021, 45, 1163–1169. [CrossRef]

45. Guasch-Ferré, M.; Bhupathiraju, S.N.; Hu, F.B. Use of Metabolomics in Improving Assessment of Dietary Intake. Clin. Chem. 2018,
64, 82–98. [CrossRef]

46. Lim, A.; Hippchen, T.; Unger, I.; Heinze, O.; Welker, A.; Kräusslich, H.-G.; Weigand, M.A.; Merle, U. An Outpatient Management
Strategy Using a Coronataxi Digital Early Warning System Reduces Coronavirus Disease 2019 Mortality. Open Forum Infect. Dis.
2022, 9, ofac063. [CrossRef]

47. Henry, B.M.; de Oliveira, M.H.S.; Benoit, S.; Plebani, M.; Lippi, G. Hematologic, biochemical and immune biomarker abnormalities
associated with severe illness and mortality in coronavirus disease 2019 (COVID-19): A meta-analysis. Clin. Chem. Lab. Med.
2020, 58, 1021–1028. [CrossRef]

48. Stringer, D.; Braude, P.; Myint, P.K.; Evans, L.; Collins, J.T.; Verduri, A.; Quinn, T.J.; Vilches-Moraga, A.; Stechman, M.J.;
Pearce, L.; et al. The role of C-reactive protein as a prognostic marker in COVID-19. Int. J. Epidemiol. 2021, 50, 420–429. [CrossRef]

49. Cheng, L.; Li, H.; Li, L.; Liu, C.; Yan, S.; Chen, H.; Li, Y. Ferritin in the coronavirus disease 2019 (COVID-19): A systematic review
and meta-analysis. J. Clin. Lab. Anal. 2020, 34, e23618. [CrossRef]

50. Teahan, O.; Gamble, S.; Holmes, E.; Waxman, J.; Nicholson, J.K.; Bevan, C.; Keun, H.C. Impact of Analytical Bias in Metabonomic
Studies of Human Blood Serum and Plasma. Anal. Chem. 2006, 78, 4307–4318. [CrossRef]

51. Wishart, D.S. Emerging applications of metabolomics in drug discovery and precision medicine. Nat. Rev. Drug Discov. 2016,
15, 473–484. [CrossRef]

52. Robert Koch Institut. Bericht zu Virusvarianten von SARS-CoV-2 in Deutschland. 26 May 2021. Available online: https://www.
rki.de/DE/Content/InfAZ/N/Neuartiges_Coronavirus/DESH/Bericht_VOC_2021-05-26.pdf?__blob=publicationFile (accessed
on 13 October 2022).

53. B.I. Methods—Enabling Standardization of IVDr by NMR: Using Bruker IVDr Methods for Urine/ Plasma/ Serum Quantification.
Available online: https://www.bruker.com/de/products-and-solutions/mr/nmr-clinical-research-solutions/b-i-methods.html
(accessed on 12 December 2022).

54. Wu, D.H.; Chen, A.D.; Johnson, C.S. An Improved Diffusion-Ordered Spectroscopy Experiment Incorporating Bipolar-Gradient
Pulses. J. Magn. Reson. Ser. A 1995, 115, 260–264. [CrossRef]

55. Nitschke, P.; Lodge, S.; Hall, D.; Schaefer, H.; Spraul, M.; Embade, N.; Millet, O.; Holmes, E.; Wist, J.; Nicholson, J.K. Direct Low
Field J-Edited DIffusional Proton NMR Spectroscopic Measurement of COVID-19 Inflammatory Biomarkers in Human Serum.
Analyst 2022, 147, 4213–4221. [CrossRef]

http://doi.org/10.1001/jama.2020.17052
http://doi.org/10.1016/S2213-2600(20)30404-5
http://doi.org/10.1016/j.immuni.2021.05.010
http://doi.org/10.1016/j.heliyon.2021.e07147
http://doi.org/10.3389/fimmu.2020.00827
http://doi.org/10.1172/jci.insight.139024
http://doi.org/10.1002/jmv.27917
http://doi.org/10.1006/smim.1998.0138
http://doi.org/10.1126/science.abd4570
http://doi.org/10.15252/embj.2020105896
http://doi.org/10.1126/science.abc6027
http://www.ncbi.nlm.nih.gov/pubmed/32661059
http://doi.org/10.1038/s41590-020-00840-x
http://www.ncbi.nlm.nih.gov/pubmed/33277638
http://doi.org/10.1016/j.cell.2017.04.004
http://www.ncbi.nlm.nih.gov/pubmed/28475890
http://doi.org/10.1038/s41366-021-00804-7
http://doi.org/10.1373/clinchem.2017.272344
http://doi.org/10.1093/ofid/ofac063
http://doi.org/10.1515/cclm-2020-0369
http://doi.org/10.1093/ije/dyab012
http://doi.org/10.1002/jcla.23618
http://doi.org/10.1021/ac051972y
http://doi.org/10.1038/nrd.2016.32
https://www.rki.de/DE/Content/InfAZ/N/Neuartiges_Coronavirus/DESH/Bericht_VOC_2021-05-26.pdf?__blob=publicationFile
https://www.rki.de/DE/Content/InfAZ/N/Neuartiges_Coronavirus/DESH/Bericht_VOC_2021-05-26.pdf?__blob=publicationFile
https://www.bruker.com/de/products-and-solutions/mr/nmr-clinical-research-solutions/b-i-methods.html
http://doi.org/10.1006/jmra.1995.1176
http://doi.org/10.1039/D2AN01097F


Metabolites 2022, 12, 1277 27 of 29

56. Jiménez, B.; Holmes, E.; Heude, C.; Tolson, R.F.; Harvey, N.; Lodge, S.L.; Chetwynd, A.J.; Cannet, C.; Fang, F.; Pearce, J.T.M.; et al.
Quantitative Lipoprotein Subclass and Low Molecular Weight Metabolite Analysis in Human Serum and Plasma by 1H NMR
Spectroscopy in a Multilaboratory Trial. Anal. Chem. 2018, 90, 11962–11971. [CrossRef]

57. Xia, J.; Psychogios, N.; Young, N.; Wishart, D.S. MetaboAnalyst: A web server for metabolomic data analysis and interpretation.
Nucleic Acids Res. 2009, 37 (Suppl. 2), W652–W660. [CrossRef]

58. Armitage, E.G.; Godzien, J.; Alonso-Herranz, V.; López-Gonzálvez, Á.; Barbas, C. Missing value imputation strategies for
metabolomics data. Electrophoresis 2015, 36, 3050–3060. [CrossRef]

59. Benjamini, Y.; Hochberg, Y. Controlling the False Discovery Rate—A Practical and Powerful Approach to Multiple Testing. J. R.
Stat. Soc. Ser. B-Stat. Methodol. 1995, 57, 289–300. [CrossRef]

60. la Pena, J.E.D.; Rasc, R.A.; Ascencio-Montiel, I.D.; Gonz, E.; Fern, J.E.; Medina-G, O.S.; Borja-Bustamante, P.; Santill, J.A.;
Borja-Aburto, V.H. Hypertension, Diabetes and Obesity, Major Risk Factors for Death in Patients with COVID-19 in Mexico. Arch.
Med. Res. 2021, 52, 443–449. [CrossRef]

61. Landstra, C.P.; de Koning, E.J.P. COVID-19 and Diabetes: Understanding the Interrelationship and Risks for a Severe Course.
Front. Endocrinol. 2021, 12, 649525. [CrossRef]

62. Critchley, J.A.; Carey, I.M.; Harris, T.; DeWilde, S.; Hosking, F.J.; Cook, D.G. Glycemic Control and Risk of Infections Among
People With Type 1 or Type 2 Diabetes in a Large Primary Care Cohort Study. Diabetes Care 2018, 41, 2127–2135. [CrossRef]

63. Liu, S.P.; Zhang, Q.; Wang, W.; Zhang, M.; Liu, C.; Xiao, X.F.; Liu, Z.D.; Hu, W.M.; Jin, P. Hyperglycemia is a strong predictor of
poor prognosis in COVID-19. Diabetes Res. Clin. Pract. 2020, 167, 108338. [CrossRef] [PubMed]

64. Li, H.; Tian, S.; Chen, T.; Cui, Z.; Shi, N.; Zhong, X.; Qiu, K.; Zhang, J.; Zeng, T.; Chen, L.; et al. Newly diagnosed diabetes is
associated with a higher risk of mortality than known diabetes in hospitalized patients with COVID-19. Diabetes Obes. Metab.
2020, 22, 1897–1906. [CrossRef] [PubMed]

65. Lim, S.; Bae, J.H.; Kwon, H.-S.; Nauck, M.A. COVID-19 and diabetes mellitus: From pathophysiology to clinical management.
Nat. Rev. Endocrinol. 2021, 17, 11–30. [CrossRef] [PubMed]

66. Wu, C.-T.; Lidsky, P.V.; Xiao, Y.; Lee, I.T.; Cheng, R.; Nakayama, T.; Jiang, S.; Demeter, J.; Bevacqua, R.J.; Chang, C.A.; et al.
SARS-CoV-2 infects human pancreatic β cells and elicits β cell impairment. Cell Metab. 2021, 33, 1565–1576.e5. [CrossRef]
[PubMed]

67. Rotter, V.; Nagaev, I.; Smith, U. Interleukin-6 (IL-6) induces insulin resistance in 3T3-L1 adipocytes and is, like IL-8 and tumor
necrosis factor-α, overexpressed in human fat cells from insulin-resistant subjects. J. Biol. Chem. 2003, 278, 45777–45784. [CrossRef]

68. Schultz, O.; Oberhauser, F.; Saech, J.; Rubbert-Roth, A.; Hahn, M.; Krone, W.; Laudes, M. Effects of Inhibition of Interleukin-6
Signalling on Insulin Sensitivity and Lipoprotein (A) Levels in Human Subjects with Rheumatoid Diseases. PLoS ONE 2010,
5, e14328. [CrossRef]

69. Codo, A.C.; Davanzo, G.G.; Monteiro, L.D.B.; De Souza, G.F.; Muraro, S.P.; Virgilio-Da-Silva, J.V.; Prodonoff, J.S.; Carregari, V.C.;
De Biagi Junior, C.A.O.; Crunfli, F.; et al. Elevated Glucose Levels Favor SARS-CoV-2 Infection and Monocyte Response through a
HIF-1α/Glycolysis-Dependent Axis. Cell Metab. 2020, 32, 437–446.e5. [CrossRef]

70. Icard, P.; Lincet, H.; Wu, Z.R.; Coquerel, A.; Forgez, P.; Alifano, M.; Fournel, L. The key role of Warburg effect in SARS-CoV-2
replication and associated inflammatory response. Biochimie 2021, 180, 169–177. [CrossRef]

71. Icard, P.; Lincet, H. The reduced concentration of citrate in cancer cells: An indicator of cancer aggressiveness and a possible
therapeutic target. Drug Resist. Updat. 2016, 29, 47–53.

72. Ceperuelo-Mallafré, V.; Reverté, L.; Peraire, J.; Madeira, A.; Maymó-Masip, E.; López-Dupla, M.; Gutierrez-Valencia, A.;
Ruiz-Mateos, E.; Buzón, M.J.; Jorba, R.; et al. Circulating pyruvate is a potent prognostic marker for critical COVID-19 outcomes.
Front. Immunol. 2022, 13, 912579. [CrossRef]

73. Rodas, P.C.; Rooyackers, O.; Hebert, C.; Norberg, Å.; Wernerman, J. Glutamine and glutathione at ICU admission in relation to
outcome. Clin. Sci. 2012, 122, 591–597. [CrossRef]

74. Matsuyama, T.; Yoshinaga, S.K.; Shibue, K.; Mak, T.W. Comorbidity-associated glutamine deficiency is a predisposition to severe
COVID-19. Cell Death Differ. 2021, 28, 3199–3213. [CrossRef]

75. Newsholme, P. Why Is L-Glutamine Metabolism Important to Cells of the Immune System in Health, Postinjury, Surgery or
Infection? J. Nutr. 2001, 131, 2515S–2522S. [CrossRef]

76. Cruzat, V.; Macedo Rogero, M.; Noel Keane, K.; Curi, R.; Newsholme, P. Glutamine: Metabolism and Immune Function,
Supplementation and Clinical Translation. Nutrients 2018, 10, 1564. [CrossRef]

77. Hippchen, T.; Altamura, S.; Muckenthaler, M.U.; Merle, U. Hypoferremia is Associated With Increased Hospitalization and
Oxygen Demand in COVID-19 Patients. HemaSphere 2020, 4, e492. [CrossRef]

78. Liu, W.; Li, H. COVID-19: Captures iron and generates reactive oxygen species to damage the human immune system. Autoimmu-
nity 2021, 54, 1–12.

79. Neurauter, G.; Grahmann, A.V.; Klieber, M.; Zeimet, A.; Ledochowski, M.; Sperner-Unterweger, B.; Fuchs, D. Serum pheny-
lalanine concentrations in patients with ovarian carcinoma correlate with concentrations of immune activation markers and of
isoprostane-8. Cancer Lett. 2008, 272, 141–147. [CrossRef]

80. Geisler, S.; Gostner, J.M.; Becker, K.; Ueberall, F.; Fuchs, D. Immune activation and inflammation increase the plasma
phenylalanine-to-tyrosine ratio. Pteridines 2013, 24, 27–31. [CrossRef]

http://doi.org/10.1021/acs.analchem.8b02412
http://doi.org/10.1093/nar/gkp356
http://doi.org/10.1002/elps.201500352
http://doi.org/10.1111/j.2517-6161.1995.tb02031.x
http://doi.org/10.1016/j.arcmed.2020.12.002
http://doi.org/10.3389/fendo.2021.649525
http://doi.org/10.2337/dc18-0287
http://doi.org/10.1016/j.diabres.2020.108338
http://www.ncbi.nlm.nih.gov/pubmed/32712122
http://doi.org/10.1111/dom.14099
http://www.ncbi.nlm.nih.gov/pubmed/32469464
http://doi.org/10.1038/s41574-020-00435-4
http://www.ncbi.nlm.nih.gov/pubmed/33188364
http://doi.org/10.1016/j.cmet.2021.05.013
http://www.ncbi.nlm.nih.gov/pubmed/34081912
http://doi.org/10.1074/jbc.M301977200
http://doi.org/10.1371/journal.pone.0014328
http://doi.org/10.1016/j.cmet.2020.07.007
http://doi.org/10.1016/j.biochi.2020.11.010
http://doi.org/10.3389/fimmu.2022.912579
http://doi.org/10.1042/CS20110520
http://doi.org/10.1038/s41418-021-00892-y
http://doi.org/10.1093/jn/131.9.2515S
http://doi.org/10.3390/nu10111564
http://doi.org/10.1097/HS9.0000000000000492
http://doi.org/10.1016/j.canlet.2008.07.002
http://doi.org/10.1515/pterid-2013-0001


Metabolites 2022, 12, 1277 28 of 29

81. Wilhelm, C.; Surendar, J.; Karagiannis, F. Enemy or ally? Fasting as an essential regulator of immune responses. Trends Immunol.
2021, 42, 389–400. [CrossRef]

82. Stubbs, B.J.; Koutnik, A.P.; Goldberg, E.L.; Upadhyay, V.; Turnbaugh, P.J.; Verdin, E.; Newman, J.C. Investigating Ketone Bodies as
Immunometabolic Countermeasures against Respiratory Viral Infections. Med 2020, 1, 43–65. [CrossRef]

83. Karagiannis, F.; Peukert, K.; Surace, L.; Michla, M.; Nikolka, F.; Fox, M.; Weiss, P.; Feuerborn, C.; Maier, P.; Schulz, S.; et al.
Impaired ketogenesis ties metabolism to T cell dysfunction in COVID-19. Nature 2022, 609, 801–807. [CrossRef] [PubMed]

84. Bradshaw, P.C.; Seeds, W.A.; Miller, A.C.; Mahajan, V.R.; Curtis, W.M. COVID-19: Proposing a Ketone-Based Metabolic Therapy
as a Treatment to Blunt the Cytokine Storm. Oxidative Med. Cell. Longev. 2020, 2020, 1–34. [CrossRef] [PubMed]

85. Hirschberger, S.; Gellert, L.; Effinger, D.; Muenchhoff, M.; Herrmann, M.; Briegel, J.M.; Zwißler, B.; Kreth, S. Ketone Bodies
Improve Human CD8(+) Cytotoxic T-Cell Immune Response During COVID-19 Infection. Front. Med. 2022, 9, 923502. [CrossRef]
[PubMed]

86. Khovidhunkit, W.; Kim, M.-S.; Memon, R.A.; Shigenaga, J.K.; Moser, A.H.; Feingold, K.R.; Grunfeld, C. Effects of infection and
inflammation on lipid and lipoprotein metabolism: Mechanisms and consequences to the host. J. Lipid Res. 2004, 45, 1169–1196.
[CrossRef] [PubMed]

87. Cai, Q.; Huang, D.; Yu, H.; Zhu, Z.; Xia, Z.; Su, Y.; Li, Z.; Zhou, G.; Gou, J.; Qu, J.; et al. COVID-19: Abnormal liver function tests.
J. Hepatol. 2020, 73, 566–574. [CrossRef]
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