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Abstract: Over the past few decades, antimicrobial resistance (AMR) has emerged as an important
threat to public health, resulting from the global propagation of multidrug-resistant strains of various
bacterial species. Knowledge of the intrinsic factors leading to this resistance is necessary to overcome
these new strains. This has contributed to the increased use of omics technologies and their extrapola-
tion to the system level. Understanding the mechanisms involved in antimicrobial resistance acquired
by microorganisms at the system level is essential to obtain answers and explore options to combat
this resistance. Therefore, the use of robust whole-genome sequencing approaches and other omics
techniques such as transcriptomics, proteomics, and metabolomics provide fundamental insights
into the physiology of antimicrobial resistance. To improve the efficiency of data obtained through
omics approaches, and thus gain a predictive understanding of bacterial responses to antibiotics, the
integration of mathematical models with genome-scale metabolic models (GEMs) is essential. In
this context, here we outline recent efforts that have demonstrated that the use of omics technology
and systems biology, as quantitative and robust hypothesis-generating frameworks, can improve the
understanding of antibiotic resistance, and it is hoped that this emerging field can provide support
for these new efforts.

Keywords: antibiotic resistance; omics approches; system biology; mathematical models; genome-
scale metabolic models

1. Introduction

Antibiotics have been an indispensable part of healthcare for years, enabling the
treatment of diseases caused by previously fatal bacterial infections [1]. Although antibiotics
remain essential in health care, their effectiveness has been compromised by the rapid rise
in the occurrence of resistance to them. Considering the important role of antibiotics in
society and the mechanisms and factors influencing antibiotic efficacy, there is an urgent
need for improved understanding.

The main targets and mechanisms of action of most antibiotics have been identified
and are well-studied [2]; however, it is increasingly evident that antibiotic efficacy is a highly
complex process occurring at the system level, where a network of events involving both the
mechanism of action of antibiotics and the physiology of stress generated by the presence
of the antimicrobial must be considered [3]. In this sense, systems biology is an approach
that is helping to improve the understanding of the processes involved in the acquisition of
resistance. Further, systems biology can be defined as the approach that integrates different
levels of omics technologies (i.e., from DNA, through RNA, proteins, and metabolites to
phenotypes) with genome-scale metabolic models (GEMs). The amalgamation of these
approaches has enhanced our understanding of a complex process in exquisite molecular
detail [4–6] The use of this novel approach allows us to obtain information on biological
questions, build testable hypotheses, and foster the engineering development of new
technologies and novel strategies to address these emerging challenges related to antibiotic
resistance (AR) [7].

By approaching systems biology as a tool in the investigation of antibiotic-related
questions, a holistic view is obtained that allows us to go beyond the traditional restrictive
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search focused on essential targets, thus being able to obtain a global view of antibiotic-
related resistance mechanisms, and the consequences of their acquisition for bacterial
cellular function.

The richness of using omics approaches is that they can provide answers on their own
and also when integrated with other omics or GEMs. Genomics, for example, enables the
discovery of novel resistance-related genes and the study of the phylogeny of isolates, in
addition to epidemiological traits, which are critical to help understand AR [8]. On the
other hand, the transcriptomic approach allows us to observe global changes that occur in
gene expression because of environmental variations, and are therefore highly appropriate
for providing a comprehensive image of microbial responses to antibiotic therapy. In
turn, proteomics, to a great extent, has been applied to further the comprehension of the
steady-state proteome of antibiotic-resistant clinical strains. Finally, metabolomics allows
us to obtain a global view of all the molecules involved in metabolic processes at each state,
which in turn is intrinsically related to the phenotype of the organism.

In this framework, the usefulness of data obtained from different omics can be max-
imized by integrating them into GEMs, either together or separately. Such integration,
based on the superimposition of omics data on predefined metabolic models to under-
stand molecular organization and function [9], facilitates the design of new experiments
and promotes more accurate predictions by providing robustness and precision to the
model. The great interest of this approach, in particular the use of GEMs, lies in the ability
to perform simulations that incorporate genome-wide data and can even add custom
constraints; this includes adjusting the flux through particular reactions (e.g., simulating
elimination) or the presence of specific nutrient requirements (e.g., modeling growth under
different conditions).

Therefore, the use of systems biology is expected to provide a holistic view of the
phenomena involved in resistance, because this approach helps to identify the hub genes
with their interaction partners that play a critical role at the molecular level in causing
resistance [10]. In this regard, in what follows, we provide a brief history of the development
of AR, as well as the mechanisms involved in this event. We also highlight the contribution
of omics technologies in advancing the understanding of antibiotic responses at the system
level. Importantly, we also address the extension of the methodologies employed in
simulations with GEMs, integrating experimental data, to improve our understanding of
the involvement of metabolism in the alterations caused by the presence of antibiotics.
Future perspectives and limitations in the application of systems biology approaches are
also addressed.

2. Antibiotic Resistance: A Complex and Multilevel Problem

The occurrence of AR represents a serious and multivariate issue. The World Health
Organization (WHO) has warned that the problem of AR must be adequately confronted
and contained, because if it is not, then the phenomenon has the potential to cause many
problems for the current healthcare system [11].

In 1943, acquired resistance of the genus Staphylococcus to penicillin was identified,
even before the widespread production of this antibiotic, highlighting that these bacteria
probably have an intrinsic predilection for resistance stored in their genome, which has
been progressing over the years [12]. Therefore, the acquisition of bacterial resistance to an-
tibiotics is a process that can occur naturally and independently of human intervention [13].
However, since the introduction of penicillin as a treatment for bacterial infections, the
aptitude of bacteria to acquire such resistance has been accelerated, selecting from natu-
rally resistant or more virulent bacteria, which—combined with the widespread abuse of
antibiotics in diverse environments, from humans to animals to agriculture—has rapidly
exacerbated this phenomenon.

A fundamental question has a focus on the factors leading to the increase in the phe-
nomenon of antibiotic resistance. Unconscious use of antibiotics is a determining factor in
the aggravation of this global problem; however, this is coupled with the poor development
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of innovative and new antibiotics, which play a key role in the global resistance scenario.
The current decline in antibiotic research and discovery is a complex and multifactorial
problem. Several of the largest pharmaceutical corporations have currently scaled back
or discontinued their antibiotic pipeline divisions due to a lack of cost-effectiveness. Re-
stricted use and shelf life, increasing regulatory fees, generic competition, and inevitable
resistance driving greater declines in usage of the drugs caused a risk–reward ratio that
is negative (Figure 1). The result in 2013 was that just four multinational pharmaceutical
companies still maintained antibiotic development divisions. Consequently, international
organizations have enacted programs to encourage companies to continue developing
antibiotics [11].
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Figure 1. Conceptual illustration of the multivariate issues involved in the phenomenon of antibi-
otic resistance.

Addressing the multifaceted problem of resistance requires addressing all factors
together, from hospital systems to the scientific society. It is critical to understand the
mechanisms involved in bacterial resistance to antibiotics, as well as how bacteria acquire
this residency, and then use these to seek novel tools with which to understand and
perhaps halt the advance of antimicrobial resistance (AR) and its implications for present
and future generations.

3. Mechanisms of Action and Resistance Acquisition

To understand the need to use techniques that provide a holistic and integrated
view of the events involved in antibiotic resistance, it is essential to know the molecular
mechanisms by which antibiotics induce cell death or inhibit growth, acting as bactericidal
or bacteriostatic drugs, respectively, as well as the genetic plasticity for the acquisition of
such resistance.

In this sense, knowledge of cell death due to the presence of antibiotics has traditionally
been associated with different events that may be related to damage to the cell wall. This
damage is due to the loss of cell wall structural integrity caused by inhibitors of its synthesis,
the arrest of DNA replication as a result of DNA gyrase inhibitors, the arrest of RNA
synthesis, or finally, alterations in the translation of proteins promoted by inhibitors of
their synthesis.
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However, beyond traditional knowledge, many studies have been carried out that
highlight the complex events involved in cell death caused by antibiotics, providing ev-
idence to support the theory that lethality could not be strictly excluded from the direct
effects of drug–target interaction, as traditionally postulated [2], and support the updat-
ing of the concept based on the antibiotic response characterized by the omics studies
reported by Brazas and Hancock [14], where more specifically, a range of observational
findings in numerous bacterial strains consistently suggest adverse roles for either indirect
effects (e.g., activation of stress response and adaptive metabolic responses) or secondary
effects (e.g., modification of regulatory and network interactions) in mortality arising due
to antibiotic treatment (Figure 2).
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Regarding the acquisition of antibiotic resistance, bacteria present an important genetic
adaptability that allows them to survive a wide range of environmental factors, even in
conditions that jeopardize their existence, such as the presence of antibiotic molecules. For
example, it is noteworthy that bacteria coexisting with antimicrobial-producing organisms
within common ambient interactions developed evolutionary mechanisms for resisting the
effect of the antibiotic molecule, and as a result, they have acquired an intrinsic resistance,
allowing them to flourish in the proximity of these organisms [15]. Regarding evolution,
bacteria have two main genetic approaches for adapting to the presence of antibiotics:
vertical (endogenous) evolution or horizontal (exogenous) evolution [1].

In the work of Laws and colleagues [1], the concept of vertical evolution is described
as the development of a spontaneous mutation in the bacterial genome that gives the
bacterium (and subsequently its progeny) enhanced resistance to a particular component.
The process of gaining such resistance is usually gradual, whereby the selective stress
of antibiotic presence leads to a starting mutation that enables the mutant bacterium
to survive, with subsequent additional mutations conferring a resistance benefit during
subsequent antibiotic treatment. Frequently, mutational changes leading to resistance have
large consequences for cellular homeostasis (i.e., a decrease in fitness), and are often not
conserved because they are necessary only in the presence of the antibiotic. In general,
mutations leading to antimicrobial resistance disrupt antibiotic action through different
mechanisms (see below). Therefore, resistance arising from acquired mutational changes is
diverse and ranges in complexity [15].

On the other hand, Laws and colleagues [1] provide a comprehensive review of
horizontal (exogenous) evolution. According to the authors, the transfer of a gene involved
in resistance to another susceptible bacterium is the definition of horizontal evolution.
This process represents a major motor of bacterial evolution and is usually the cause of
the evolution of antibiotic resistance. Three mechanisms may be involved in this process:
conjugation, transduction, and transformation. The first of these implies the transference,
between bacteria, of an R-plasmid (resistance-plasmid) carrying AR genes by means of
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a conjugative pilus. The second process, transformation, involves modification of the
bacterial genome due to the insertion of external DNA, and finally, transduction implies
the transfer of bacterial DNA provided via a viral vector. Unfortunately, these transfer
mechanisms permit a resistance gene, gained by relatively minor problematic bacterial
species, to be transferred to a potentially harmful bacterial strain, with potentially damaging
effects [1,16].

Overall, AR is a complex process involving different levels, and therefore, an approach
involving the development of a comprehensive and predictive understanding of both the
mode of action of antibiotics and the physiology of antimicrobial stress is needed, which
can be achieved through systems biology, by employing a synergistic integration of omics
at the multilevel, providing the framework for contextualizing the genetic and metabolic
changes involved to antibiotic resistance-related events.

4. Systems Level: The Increasing Use of the Post-Genomic Approach to Understanding
Antibiotic Resistance

The first genome to be sequenced was that of Haemophilus influenzae in 1995, and
since then, the progress in both experimental and computational technologies for the study
of biological systems has become enormous [17], leading to the emergence of systems
biology concepts [18]. Systems biology investigates the entire biological system arising
from individual biomolecules and their interactions [19]. Therefore, this approach has as
its paradigm the relationship between genetics and cellular functions in a hierarchical and
participatory manner. Cellular functions depend on the joint action of the products of a
large variety of genes. This coordination can be thought of as a “genetic circuit”. The term
“gene circuit” is designated as a set of various gene products that are jointly necessary to
perform a specific cellular role. Individual gene circuits do not operate singly, however, but
within other gene circuits. The ensemble of all these circuits performing together within
a genome results in cellular functions and drives the hierarchical breakdown of intricate
cellular processes (Figure 3).
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Figure 3. Schematic representation of the genetic circuitry that interconnects the relationship between
genetics and cellular functions in a multilayered hierarchy.

Using this concept in the specific case of antibiotic resistance, if a new AR gene would
be introduced, or AR mutations would occur in a bacterium, these changes would produce
profound effects on bacterial cellular function, altering the expression of many genes and
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consequently altering the bacterial proteome and its metabolism, having consequences on
the entire genetic circuitry. In addition, it should also be considered that depending on the
organism, a resistance gene mutation can have different effects.

In this sense, to obtain a complete picture of the mechanisms of AR and the impli-
cations of their acquisition for microbial cell function, and in turn, to understand these
processes at the level of the genetic circle, systems biology uses specialized bioinformatic
tools and approaches capable of analyzing the growing amount of information produced
in molecular biology, using—as mentioned above—multiomics technologies, including
genomics, transcriptomics, proteomics, and metabolomics. Although the implication of
each of the omics technologies mentioned here in relation to AR is discussed below, Table 1
summarizes some of the bioinformatic tools used for the analysis of the different omics
technologies.

Table 1. Bioinformatics tools.

Tool Reference

ARG-ANNOT [20]
CARD/RGI [21]

ARGs AMRFinder [22]
ResFinder [23]

PointFinder [24]

Fastp [25]
Preprocessing and

assembly-WGS SPAdes/ [26]

Flye [27]

Mzmine3 [28]
MetaboAnalyst 5.0 [29]

Metabolomic analysis MetFlow [30]
Omicsnet [31]

PaintOmics 3 [32]

DESeq [33]
edgeR [34]

General tools for
transcriptomic analysis

limma [35]
HTseq [36]
Rcount [37]

Cufflinks-Cuffdiff [38]

BioCyc [39]
BioMet ToolBox 2.0 [40]

GEM reconstruction Kegg [41]
GeneOntology [42]
Pathway-tools [43]

GEM analysis CobraToolbox [44]

The primary purpose of the collected information obtained from “-omics” is to obtain
simultaneous insights into the occurrence and identification of several thousand genes,
in order to examine their genetic linkage to other genes, as well as their expression levels
and the proteins encoded by those genes, and finally to measure cellular metabolites [45].
Because the amount of data generated can be enormous, and therefore very complicated
to interpret, genomic models (see below) have been developed that are able to collect the
enormous quantity of experimentally generated information into mathematical models so
as to comprehend it holistically [7,46,47].

In this context, in this part of the review, we highlight recent efforts that have shown
that the use of omics technology and systems biology as quantitative and robust hypothesis-
generating frameworks can improve the understanding of antibiotic resistance.
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4.1. Genomics: First Step to Identify Antibiotic Resistance Genes (ARG)

For a long time, studies about AR have been restricted to classical microbiology tech-
niques such as culture, isolation, identification of phenotypic characteristics, and finally
the determination of the chemical profile of isolates [48]. After identification, the ability
to survive at different concentrations of antibiotics could be inferred by determining the
minimum inhibitory concentrations [49]. In general, classical culture-based microbiology
techniques allow for the characterization of isolates; however, they are limited by speed and
scale [50]. Consequently, the characterization of many samples, both environmental and
hospital, can become very time-consuming and expensive [50]. Currently, both microbio-
logical research and diagnostic studies combine traditional methods and next-generation
sequencing (NGS). Progress in NGS performance associated with the reduced cost of these
technologies has enabled whole-genome sequencing (WGS) of a wide variety of microor-
ganisms. WGS analyses are making it possible to identify novel ARGs [51] and study the
phylogeny of isolates, in addition to epidemiological traits, which is critical in helping to
understand AR [8].

Utilization of WGS to identify novel ARGs has been described in the literature. For
example, Grad et al. [52,53] used WGS analysis of Neisseria gonorrhoeae bacteria and iden-
tified a new penA allele in mosaic and mtrR mutations in mosaic that confer resistance
of this microorganism to cefixime and azithromycin, respectively. On the other hand,
Marques et al. [54] sequenced the genome of 17 Helicobacter pylori strains from pediatric
patients and observed single and combined mutations located in the 23S rRNA gene
(A2142C and A2143G), which are linked to resistance to clarithromycin. In another work,
Zhu et al. [55] studied the possible horizontal transfer of florfenicol resistance (floR) gene-
related sequences in Proteus strains by WGS. That work revealed that the Proteus cibarius
G11 strain harbored two copies of the floR gene: one on the chromosome and the other on a
plasmid (pG11-152). In another plasmid (pG11-51), the presence of the chloramphenicol–
florfenicol resistance (cfr) gene was observed, flanked by two IS26. With this bundle, those
authors demonstrated the importance of mobile genetic elements in the replication of
the floR gene, and in the horizontal transfer of the resistance gene. Along the same lines,
Wu et al. [56] sequenced the genome of multidrug-resistant (MDR) Staphylococcus lentus
strain H29, and found 11 genes conferring resistance to this microorganism, with one
copy encoded on the plasmid and the other on the chromosome. Among the genes found,
two copies of the mobile genetic element (MGE)-related floR genes cfr (IS256-cfr) and fexA
(radC-tnpABC-hp-fexA) were included. Finally, Zhang et al. [57] identified, via genome
sequencing of tetracycline-resistant Arthrobacter nicotianae OTC-16, eight genes related to
antibiotic resistance, three of them located nonplasmidically, with obvious mobile features.

As mentioned above, the use of WGS enables the rapid identification of AR-related
genes, in addition to providing greater discriminatory ability regarding the genomic epi-
demiology and antimicrobial resistance determinants of different strains. In this regard,
many studies targeting the epidemiology of microorganisms exhibiting resistance genes are
being reported in the literature. For example, Boiko et al. [58] elucidated the WGS-based
epidemiology and characterized AMR determinants in 150 strains of N. gonorrhoeae that
spread in Ukraine between the years 2013 and 2018. Overall, those authors found isolates
resistant to ciprofloxacin, tetracycline, and benzylpenicillin. The results of phylogenomic
analysis highlighted six major groups, the majority of which were associated with the MDR
gonococcal lineage. The presence of GyrA S91F and ParC S87R mutations was associated
with resistance to ciprofloxacin; on the other hand, mutations in rpsJ V57M and tetM, were
revealed to be involved in resistance to tetracyclines; the penA-34.001 mosaic with penicillin,
and finally, the presence of mtrR, PorB1b, and G101D genes; and PBP1 L421Pla mutations
with resistance to β-lactamases.

In line with the above, Rokney et al. [59] also used WGS to study the occurrence and
genetic basis of AMR in 263 Campylobacter jejuni isolates recovered from a national collection
during 2003 and 2012. The results obtained with genome sequencing were compared with
experimentally determined phenotypic resistance. The most prevalent resistance-related
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genes found were cmeABC (related to efflux pumps); tet(O) (tetracycline resistance gene);
aadE (streptomycin resistance gene); and finally, a quinolone resistance-point mutation,
gyrA T861. The highlight of their study is that they detected 12 genes conferring resistance
to β-lactams in 241 isolates, with blaOXA-580, blaOXA-461, and blaOXA-193 being the most
prevalent. Thus, global correlation rate between WGS-based genotypic prediction and
phenotypic resistance was 98.8%.

In another study by Onofrio et al. [60], 24 clinical isolates of colistin MDR strains
(1 Enterobacter aerogenes, 8 Acinetobacter baumannii, 1 Enterobacter cloacae, and 14 Klebsiella
pneumoniae) were collected from 4 different hospitals located in Croatia during the period
from 2013 to 2018. The study aimed to analyze the molecular epidemiology and mech-
anisms of colistin resistance by WGS of all isolates. It was observed that 12 strains of K.
pneumoniae were widely resistant to colistin, but on the other hand, they found blaOXA-48
(carbapenem resistance gene most prevalent in Croatia and other places in Europe) in 63%
of the isolates. All A. baumannii isolates possessed OXA-23 type oxacillin hydrolyzing
carbapenemases, and five were pandrug-resistant. Most likely, colistin resistance was
chromosome-mediated. Moreover, previously reported mutations that are associated with
colistin resistance were identified (PmrB, PhoP, PhoQ, and MgrB). In the overall phylogenetic
analysis, the DNA mutations causing the MgrB protein mutations were mainly present
in the lineages comprising the colistin-resistant strains, and the second most prevalent
mutation (K3X) was also found in the strains.

Furthermore, Lee et al. [61] employed WGS as a screening tool in the surveillance of
1025 bloodstream-infection-associated Enterococcus faecium isolates collected across Aus-
tralia from 2015 to 2017. WGS analysis identified three distinct clusters of isolates with
additional subgroups. One cluster harbored mainly non-CC (clonal complex), while others
were dominant for the vanA and vanB operons. In addition, different dominant subclusters
were observed in each region of Australia. According to the authors, these results may help
to place future surveillance data in a broader perspective that includes the detection of new
E. faecium strains in Australia and the dissemination and evolution of each strain.

Finally, Butin et al. [62] compared genetic, microbiological, epidemiological, and
clinical characteristics among linezolid-resistant Staphylococcus capitis (LZR) isolates from
ICUs in France and other European countries. The genetic relationship between 21 LZR
isolates (1 from Finland, 9 from France, and 11 from Greece) was investigated by WGS.
All microorganisms studied were resistant to both aminoglycosides and methicillin. In
addition, the authors identified a G2576T mutation in 23S rRNA in every strain (cfr and
optrA genes were absent). WGS analysis identified at most 212 SNPs across the central
genomes of the LZR strains. Finally, their efforts identified and characterized an LZR clone
of S. capitis spread across three different sites in Europe, harboring the common multiple
resistance and a G2576T mutation in 23S rRNA.

4.2. Emerging Discoveries through Transcriptomics Approach

Transcriptomic analyses highlight overall alterations in gene expression in response
to environmental events, providing a snapshot of the genes that act under a given con-
dition. In the case of antibiotic resistance, this picture is the result of variation in gene
expression patterns, which provides insight into the mechanism of action of a particular
antimicrobial being studied, as well as the general physiological responses of bacteria to
stress related to the presence of such molecules. Further understanding of the mechanism
of action of known antibiotics could help to reveal new strategies to contain the spread of
resistance genes [14]. Thus, in recent years, important advances have been made in efforts
to understand AR using this technology.

For example, Pseudomonas aeruginosa is known to be one of the main bacteria causing
morbidity and mortality in the hospital setting, in addition to being the main cause of naso-
comial infections. A recent study reported the resistance of a strain of this microorganism to
ceftazidime/avibactam (CZA), ceftolozane/tazobactam (C/T), and piperacillin/tazobactam
(P/T). On the one hand, they showed that a single-nucleotide variation, causing the G183D
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mutation in the β-lactamase AmpC, was responsible for resistance to CZA and C/T. On
the other hand, resistance to P/T was related to DNA methylation because transcriptomic
analysis revealed that methylation involved 14 genes that were differentially regulated.
Since upregulation of opdQ gene, responsible for the OprD protein (from the porin family),
was observed, those authors suggested that P. aeruginosa susceptibility to P/T might be due
to epigenetic regulation of opdQ expression (Huang et al., 2020). In another study, oprD
mutation combined with ampC upregulation was shown to contribute to the increased
carbapenem resistance in the isolate IRP41 [63]. The efflux pump mechanism related to AR
has also been described in the Pseudomonas aeruginosa strain [64].

As for Salmonella, Li et al. [65] investigated the resistance mechanism of Salmonella
Typhimurium ATCC13311 (AT) to polymyxin. RNA-seq and RT-qPCR showed increased ex-
pression of the two-component system (phoP, phoQ), and consequently, loss of the phoP gene
in the AT-P128∆phoP mutant decreased polymyxin resistance by 32-fold. This fact suggests
that the two-component phoPQ system performs a critical role in polymyxin resistance in
Salmonella. In another work, Zhang et al. [57] elucidated the molecular mechanisms behind
the mode of action of CpxAR, and efflux pumps were found to synergistically enhance
the antibiotic susceptibility of S. typhimurium to colistin. Thus, deletion of cpxR and tolC
causes significantly increased susceptibility of S. typhimurium to colistin. In another study,
it was also shown by RNA-seq that loss of the AcrB protein, related to the AcrAB-TolC
operon (multiple drug resistance efflux (RND) system in Gram-negative bacteria), causes
loss of virulence in Salmonella enterica serovar Typhimurium [66]. Nghiem et al. [67] ex-
amined the resistome characteristics of Salmonella spp. from different pollution samples
collected in Hanoi, Vietnam. RNA-seq analysis showed the presence of 107 overexpressed
ARG, among which 8 related to quinones, 22 to β-lactams, 7 to chloramphenicol, 46 to
aminoglycosides, and 6 to tetracyclines, as well as 6 sulfamide-trimethoprim resistance
genes, and finally another 12 genes related to undefined antimicrobial resistance. Moreover,
mutations in the parC gene (S80R and the new A628S mutations) and in gyrA (S83F and
D87G) have also been shown to contribute to ciprofloxacin resistance in Salmonella indiana.
Finally, Gu et al. [68], by analyzing transcriptomic profiles of Salmonella enterica serovar
Enteritidis (S. Enteritidis), demonstrated that purBCDFHKLMNT were the core genes for
fluoroquinolone (CF) resistance.

In Staphylococcus aureus, a comprehensive RNA-seq analysis to investigate the gene ex-
pression profile after exposure of different strains to vancomycin revealed 99 overexpressed
genes related to antibiotic resistance, which were then compiled to create a multiresistance
of 25 known and novel genes identified as playing an important role in antibiotic resis-
tance. Among the known genes, agr and other virulence factors were highlighted, that
together help in activating the detection of quorum-sensing (qs) systems [69]. Recently,
Wang et al. [70] studied a series of compounds with strong antimicrobial activity, obtained
from endotype B polycyclic acylphloroglucinols (PPAP). One of the derivatives, PPAP 23,
was selected for screening of its bactericidal characteristics and mode of action. The an-
timicrobial mechanism of PPAP 23 was investigated by RNA-seq in methicillin-resistant
Staphylococcus aureus (MRSA). The results of this technique demonstrate that PPAP 23 indi-
cated iron depletion in bacterial cells, since genes implicated in iron transport appeared to
be downregulated and the iron storage gene was upregulated.

Recently, transcriptional studies have also been performed on Escherichia coli. Cho
et al. [71] characterized compensatory mutations acquired from the lack of the major
antibiotic efflux pumps AcrEF and AcrAB with mapping in four regulatory genes (rpoB,
baeS, hns, and crp). These mutations may activate alternative pathways, thus increasing
antibiotic resistance. Results obtained with transcriptome sequencing (RNA-seq) indicated
that DNA and protein biosynthesis pathways were downregulated, while pathways to
combat various stresses were upregulated. Those authors highlighted that compensatory
mutations may interact synergistically to promote AR to a degree comparable to that of the
efflux pump-competent parental strain.
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Resistance of A. baumannii is a major barrier to the treatment of clinically relevant
infection. In this regard, Alkasir et al. [72] cultured A. baumannii ATCC 19606, which
was grown at 50 times the minimum inhibitory concentration of certain antibiotics, and
the transcriptome of cells grown in this condition (persister cells) was carried out. The
data obtained showed that there was a significant increase in two toxin/antitoxin systems:
GP49 (HigB)/Cro (HigA) and DUF1044/RelB. In addition, cultivation of A. baummannii
in a persister condition altered the metabolism of this microorganism, which had genes
related to tricarboxylic acid (TCA) cycle, electron transport, and adenosine triphosphate
[ATP] downregulated during growth in this condition, while genes for degradation of
aromatic compounds were upregulated. These findings strongly support the involvement
of aromatic compound degradation genes in persister growth and maintenance. In another
work, the efflux pumps, craA, involved in chloramphenicol resistance were elucidated
using the transcriptomic approach [73]. The influence of environmental conditions, in
the case of nutrient restriction in downregulating the expression of the two promoters
of the craA gene, was seen. This fact shows that downregulation of craA gene regulators
conditions the cells to be more sensitive to chloramphenicol.

4.3. Recent Trends in Proteomics

Although transcriptomics is the most widely used technique with which to investigate
bacterial responses to antibiotic stress, proteomics has been widely employed to progress
the comprehension of the steady-state proteome of antibiotic-resistant clinical isolates [74].
In recent years, many researchers have focused their efforts on identifying and designing
protein biomarkers related to susceptibility or resistance. These advances are being made
possible by improved technologies applied to proteomics, such as matrix-assisted laser
desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS).

Multiple methods based on MALDI-TOF MS for rapid detection of antimicrobial
resistance have been proposed. In this context, an early application of MALDI-TOF MS
related to AR was the observation of the decline of the peak related to the β-lactam class
antibiotic, and the apparition of peaks corresponding to their hydrolysis products upon
the exposure of β-lactamase-producing bacteria (aerobic and anaerobic) to those β-lactam
antibiotics [75]. In another study on the application of this methodology, Singh et al. [76]
reported the determination of 27 proteins in clinical isolates of M. tuberculosis whose
abundance was specifically increased in MDR isolates.

Although MALDI-TOF MS-based methods have been used successfully for ARG detec-
tion, there has been a growing trend toward label-free quantification using spectral counts
or chromatogram peak areas, such as liquid chromatography–tandem mass spectrometry
(LC-MS2) analysis. For example, Uddin et al. [77] used this approach to compare the
proteomic profile of three important pathogens resistant to different antibiotics: laboratory-
derived and clinically isolated S. typhimurium, K. pneumonia, and S. aureus. Those authors
highlight that the most significant finding of their study is that not only were proteins
related to AR identified, but also other bacterial membrane proteins that were not initially
associated with the development of AR in these bacteria. In another similar example of the
use of this methodology in studies related to antibiotic resistance, Kittisenachai et al. [78]
evaluated the prevalence of clarithromycin and metronidazole resistance in the pathogen
H. pylori, as well as dual resistance to both antibiotics. The authors suggested a link of rpoB
to metronidazole sensitivity and of FBPAII to sensitivity to the other antibiotics studied.

The use of proteomics allows for a more holistic molecular view of AR in comparison
to conventional methods; however, in many cases, the use of these approaches is asso-
ciated with other types of omics, and the association with WGS is observable in several
studies. For example, Foudraine et al. [79] performed a systematic analysis of resistance
to different antibiotics (meropenem, third-generation cephalosporins, aminoglycosides,
and ciprofloxacin) in 187 isolates of K. pneumoniae and E. coli that harbored different AR
mechanisms. Those authors showed that proteins of different antimicrobial resistance
mechanisms can be screened by a proteogenomic analysis using a bottom-up LC-MS2 pro-
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teogenomic approach. The authors also stated that although not all ARG mechanisms were
determined at the protein level, resistance could be accounted for by the proteins identified
in most of the isolates studied. Similarly, Li et al. [80] used liquid chromatography–tandem
mass spectrometry (LC-MS2) coupled to metabolomics to systematically compare the pro-
files of a mutant in a maltose-specific channel porin (∆lamB) and their wild-type strain of
E. coli, with and without the presence of ciprofloxacin (CFLX). Their efforts demonstrated
that suppression of lamB in the presence of the antibiotic resulted in downregulation to a
variety of important metabolic pathways. Many proteins related to pyrimidine metabolism,
as well as amino acid-tRNA biosynthesis, were not modified in the ∆lamB strain; however,
they were decreased in the presence of CFLX. Those authors highlighted a downreg-
ulation of lamB-modifying intracellular metabolism, leading to an increase in bacterial
resistance to antibiotics.

4.4. Accelerated Growth in the Use of Metabolomics

Bacterial metabolism carries a significant role in AR and may contribute to its acquisi-
tion or change due to exposure to these antimicrobials [81]. For example, high metabolic
activity is essential to favor resistance events, as it is necessary to activate a broad molec-
ular machinery, such as cell wall modifications, mutation stabilization, transport, energy
generation, and overexpression of efflux pumps (Figure 4). In this sense, understanding the
metabolic processes involved in this mechanism could help to strategically modify bacterial
metabolism with the aim of resensitizing it to treatment.
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Through approaches such as metabolomics, it is possible to obtain a global view of
all the molecules implicated in metabolism, which in turn is intrinsically connected to
the phenotype of the organism. Knowledge of this snapshot of the molecules involved
in metabolic processes reveals the early responses to antibiotic stress and the adapta-
tions necessary to maintain AR mechanisms. Metabolomics approaches are indispensable
tools for understanding the relationships between the mechanisms involved in AR and
bacterial metabolism.

As with other omics technologies, metabolomics can be employed with different
methodologies and approaches. In general, the most widely employed approaches for
metabolite detection are mass spectrometry (MS) and nuclear magnetic resonance (NMR)
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spectroscopy, with a huge variety of combinations of analytical tools that can be combined
with mass spectrometry. In terms of approaches, these can be differentiated generally into
untargeted metabolite profiling and guided methods. Nontargeted methods aim for a
broad coverage of metabolites but may not allow for complete identification of molecular
structures. Targeted metabolomic methods have the goal of quantitative analysis of a
metabolite pool, with a higher structural resolution of the selected metabolites identified.

Regarding including targeted metabolomics in the topic of antibiotic resistance, a wide
range of studies have employed these approaches associated with mass spectrometry and
coupled to different analytical tools [82,83]. Although mass spectrometry is the most widely
used methodology in the study of resistance, some studies have used NMR [84]. In a recent re-
port in which the targeted metabolomics approach was applied to antibiotic resistance, Schelli
et al. [85] studied the metabolic alterations caused in two isogenic strains of S. aureus, with
different susceptibility to methicillin, in the presence of norfloxacin, kanamycin, and ampicillin.
A Thermo Scientific Ultimate 3000 HPLC coupled with a TSQ Quantiva Triple Quadrupole
mass spectrometer was used in this study. A hydrophilic interaction chromatography (HILIC)
column was purchased from Waters Corporation (Milford, MA, USA). The authors reported
that depending on the presence or absence of methicillin, there were more metabolic variations
between the two strains in the different antibiotics, especially in the metabolism of amino
acids, pyrimidines, and purines. In addition, the authors observed metabolic differences
between the two isolates in the presence of the same antibiotic, suggesting that the susceptible
and resistant strains have a different stress response mechanism.

In contrast, nontargeted metabolomics allows us to explore and characterize a wide
variety of metabolites. The use of this approach allows us to obtain a comparatively fast
metabolic fingerprint, which can be employed to detect metabolic adjustment upon ARG
development under a broader range of different conditions with a larger throughput [81].
Because of this feature, this approach has been widely used in the field of AR [86–88].
An example is the recently reported work by Han et al. [89], where they used untargeted
metabolomics to provide insight into the molecular mechanisms behind P. aeruginosa-related
polymyxin resistance. To do so, the authors used LC/MS to compare the metabolite changes
that occurred in two Pseudomonas aeruginosa strains—one polymyxin-susceptible (PAK) and
one resistant (PAKpmrB6)—when exposed to polymyxin B. A total of 1297 metabolites
were identified, and the most significant metabolic changes occurred after 1 h of exposure
to the antibiotic studied. In both strains studied, polymyxin produced osmotic stress, as
reflected by an elevation of the trehalose-6-phosphate level. In addition, the polymyxin-
susceptible strain revealed a considerable reduction in lipopolysaccharide and peptidoglycan
synthesis. The authors claim that these results could be used in the further development of a
next generation of polypeptide antibiotics [89]. In another study, using the same approach,
Zampiere et al. [90], demonstrated that early metabolic changes observed in E. coli after
treatment exposure to a wide variety of antibiotics may reflect the mechanisms of drug action
and reveal the relationship between metabolism and its role in the primary stress response to
antimicrobials. Furthermore, the authors suggest that modification of bacterial metabolism
may be a strategy to disrupt the primary response to antibiotic treatment, and thereby
decrease the likelihood of survival and subsequent progression of antibiotic resistance.

Notwithstanding the two approaches mentioned above, targeted and nontargeted
metabolomics are widely used to infer metabolic changes under stress conditions, such
as antibiotic exposure. Both have their advantages and disadvantages, so the decision as to
which approach should be employed will depend on the objectives of the study. In this regard,
the use of targeted metabolomics has the disadvantage of requiring prior knowledge of the
metabolites to be determined [81]. Another limitation of this approach is the coverage of the
metabolites determined. Since it is necessary to define the metabolites to be identified in ad-
vance, it is possible that some metabolites that are important for the process being studied may
be missed. On the other hand, the targeted approach has the advantage that the data obtained
are easier to handle, in addition to being an excellent strategy for the determination of specific
processes. As for nontargeted metabolomics, this approach allows for the determination of
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unusual metabolites, such as in the case of chemical processing of antimicrobials, or if the
range of metabolites is complex to identify. This approach is suitable for the determination of
novel metabolic pathways and in the case of not knowing in depth the metabolic processes
involved in the exposure of microorganisms to environmental stress conditions.

Considering these limitations, both approaches are suitable to be used in studies
related to antimicrobial resistance, but experimental planning is necessary when deciding
which of the two approaches is the most suitable to obtain the desired answers about the
involvement of antimicrobials in bacterial metabolism.

4.5. Metabolic Models to Expand the Comprehension of Mechanisms Associated with
Antibiotic Resistance

It is known that the development of resistance affects bacterial metabolism, mainly
altering growth. This is due to the high energetic cost necessary to maintain the events
involved in resistance, but it is not only that, because often the expression of several genes,
which are sometimes not associated to the acquisition of the resistance phenotype, is also
altered. These alterations could provide many clues about the effects and mechanisms
involved in resistance.

As mentioned above, the use of different omics approaches has provided a large and
valuable amount of information on genetic modifications and gene and protein expression,
as well as metabolite variations in the field of antibiotic resistance. However, the information
obtained through these approaches is disconnected, and integration with GEMs allows us to
obtain a holistic view of the events associated with antibiotic resistance. In this sense, GEMs
interconnect genes, enzymes, proteins, metabolites, and finally metabolic reactions. Further,
these models can make predictions of possible metabolic responses by coupling transcriptional
responses with phenotypes, a very important feature for understanding antibiotic resistance.

With the sequencing of the first whole-genome sequences during the mid-1990s [17],
in principle, the possibility of identifying every gene product implicated in complex biolog-
ical functions in a wide variety of organisms became feasible. Biochemical knowledge of
metabolic processes allowed for the reconstruction, at the genome scale, of the metabolic net-
works of a particular organism in a biochemically complex manner [91,92]. These metabolic
networks, or GEMs, are currently the only approach that allows the metabolism of an organ-
ism to be modeled and analyzed through a global analysis [93]. The construction of GEMs
is tedious work. Thiele and Palsson [94] defined 96 steps to obtain a high-quality metabolic
model; however, these can be summarized in four principal steps—draft reconstruction,
manual curation, mathematical model conversion, and network analysis (Figure 5).
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The first step is to obtain a draft reconstruction that is supported by the target organism
genome annotation and different biochemical databases. This first draft is usually obtained
in an automated way, and there are a variety of databases that allow one to download
models based on genome annotation; therefore, it is a compilation of metabolic reactions
encoded in the genome. As these are automatic annotations, there may be errors such as
incomplete, erroneous, and missing annotations. The second step of the process is based
on the trimming and refinement of the components of the model. Metabolic functions and
reactions contained in the preliminary reconstruction draft are tested separately against the
organism-specific literature. Inclusion of non-organism-specific reactions potentially im-
pacts the performance of the resulting models in terms of predictive behavior. In addition,
during this stage, detailed data about biomass components, maintaining parameters, and
growth conditions are gathered, serving as input for the simulations. In the third stage, the
initial reconstruction is represented in SBML (Systems Biology Markup Language) format,
and the simulation conditions are defined, i.e., the input and output. In this conversion,
a stoichiometric matrix (S) is generated that corresponds to the connection between the
metabolites (rows) and the metabolic reactions (columns) involved in the reconstruction.
The numerical values that compose this matrix correspond to the stoichiometry of the
consumption and/or production of a metabolite in each reaction, i.e., a positive num-
ber represents the production of the metabolite, while a negative number represents its
consumption. The mathematical matrix is the basis of the metabolic models, in which
the conservation of masses is considered, and for its resolution, the equation (S.v = b) is
considered, where S is the matrix, b is the accumulation of the metabolite, and v is the
vector of reaction fluxes. When using, for example, flux balance analysis (FBA) to solve
the system of differential equations, it is essential that the organism is in a stable state of
growth (steady state) so that b = 0, resulting in a linear system of equations [95]. Thus, the
system can present a large solution space, and that is why the fluxes are limited to using
upper and lower constraints on each reaction individually (vi): vi lower ≤ vi ≤ vi upper. These
bounds allow the reconstruction to be used to simulate specific conditions. It is noteworthy
that the model generated initially may differ, both in scope and limits, from the model
obtained at the end, which is due to the multiple validation and refinement performed to
obtain a robust model capable of simulating the phenotypic behavior with a high degree of
correspondence with that obtained in vivo [96]. The fourth and final step of the process of
obtaining the reconstruction consists of the evaluation followed by the validation of the
network. The final model generated in the third step is systematically evaluated, checking,
among other things, its capacity for “growth”, i.e., for its ability to synthesize compounds
such as amino acids, nucleotide triphosphates, and lipids, which are the precursors of
biomass. This assessment often results in the determination of the remaining metabolic
functions missing in the reconstruction, termed gaps in the network, and these are inserted
by repeating steps 2 and 3 in part.

Once a GEM has been obtained, by using different approaches these models can help
predict cell phenotypes under different environmental conditions, such as the presence
of antibiotics. There are a variety of computational techniques that are used to elucidate
metabolic features and help to obtain a global view of the processes under study. A
constraint-based analysis technique, flux balance analysis (FBA), already mentioned above,
is fundamental to understand the metabolic pathways used by a given organism under
different environmental conditions. This technique is also used to observe if the deletion
of one or more genes can stop the targeted function in bacterial metabolism. Another
widely employed technique for the study of metabolism using GEMs is flux variability
analysis (FVA), which determines the range of fluxes in alternative pathways capable of
reaching the identical target, and can be employed for the identification of potential drug
targets [97]. This flux sampling calculates every solution with statistical significance when
the target is unclear [7]. On the other hand, GEMs are also very powerful for gene deletion
screening studies, as this approach to computational analysis, carried out in just fractions of
a second, saves substantial amounts of time and labor compared to conventional laboratory
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analysis [45]. Finally, a great advantage of GEMs is the ability to integrate with different
omics technologies, and the use of this approach allows us to analyze and predict changes in
transcriptional regulation effects on cellular metabolism at the systemic level. Knowing that
the transcriptional response related to antibiotics is not stress-related and does not confer
any fitness advantage, the use of this computational approach hence permits a topological
analysis of the networks, thus allowing us to design a more realistic high-throughput
experiments [98].

In this regard, several studies have been published that reveal applications of GEMs in
antibiotic resistance. Recently, the metabolic pathways involved in polymyxin resistance in
P. aeruginosa were analyzed using the iPAO1 metabolic model and transcriptomic data [99].
First, FBA was carried out using the experimental data related to lipid A modifications
as a constraint, and then the metabolic model was integrated with transcriptomic data.
The growth and metabolism of P. aeruginosa were slightly affected in simulations using
lipid A modifications as a constraint; however, the physicochemical properties of the outer
membrane were significantly affected. In addition, simulations performed with transcrip-
tomic constraints revealed a wide variety of metabolic signatures in response to polymyxin
treatment, including decreased biomass biosynthesis, enhanced amino acid catabolism, en-
hanced flux across the tricarboxylic acid cycle, and augmented redox exchange. In another
study, FBA was carried out to verify the metabolic changes and flux distribution varia-
tion in streptomycin- and chloramphenicol-resistant strains of Chromobacterium violaceum
using the iDB858 metabolic model and metabolomics data [100]. FBA was performed to
predict metabolic alterations due to stresses generated by the presence of antibiotics. For
this purpose, experimental constraints were used to represent susceptible and resistant
populations of the studied antibiotics. Variation in the distribution of fluxes in response
to the presence of the two antibiotics studied was observed. The presence of chloram-
phenicol increased the overflow of acetate and formate, and this change is associated with
fermentative metabolism, through an excess of reducing equivalents and an increase in
the NADH/NAD ratio. On the other hand, the presence of streptomycin increased acetate
production. Furthermore, we predicted a reduction in proton gradients and a change in
proton motive force (PMF) induced by the presence of both antibiotics, and verified the
predicted results by experimentally verifying them with flow cytometry-based membrane
potential measurements.

Recently, adaptive laboratory evolution (ALE) experiments have been successfully
employed to study the evolution of AR in controlled environments. Within this approach,
GEMs have been used to contextualize the genetic and metabolic changes involved in
resistance development and studied using ALE. Metabolic adaptation accompanied by
the development of AR was studied in the opportunistic pathogen Pseudomonas aeruginosa
using the UCBPP-PA14 model [101,102]. The impact of deletion of different genes in
42 different carbon sources was contextualized using single-gene knockout simulation, and
the results were compared with experimental data [102]. That study highlighted those
deletions of the gnyABDHL group genes in the evolved piperacillin lineage and resulted
in the loss of L-leucine utilization. These findings emphasize the interconnectivity of AR
and metabolism and support future efforts to consider this relationship in the design of
new antibiotic regimens [101]. Laboratory-controlled evolutions were also established in
chloramphenicol-resistant pathogens and streptomycin-resistant Chromobacterium. The
iDB149 metabolic model was used to predict the metabolic basis of antibiotic susceptibility
and resistance. The model predicted electron imbalance and skewed NAD/NADH ratios
due to the presence of the antibiotics studied: chloramphenicol and streptomycin. The
resistant pathogen reconfigured its metabolic networks to compensate for the altered redox
homeostasis [103].

5. Limitation of the Use of Systems Biology

Despite numerous applications and early successes, systems biology faces numerous
challenges and certain limitations, even in the field of omics technologies, as well as in
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modeling using GEMs. With respect to omics technologies, sequencing-based approaches
such as WGS cannot yet identify unknown resistance mechanisms that may contribute
to phenotyping. Another drawback of these approaches is that they often require the
isolation of the microorganism. To avoid this problem, a variety of technologies based
on the analysis of the microbial community at different levels, such as metagenomics,
metatranscriptomics, metaproteomics, and metametabolomics, would be an option in the
case of isolated microorganisms. As an example, the use of the metagenomic approach
using techniques such as Nanopore, which is portable, fast, and provides long sequence
reads, can be implemented at least in microbiomes of low complexity, such as those involved
in orthopedic implant infections [104].

Another possible limitation of systems biology comes because of one of its main
premises: that of combining large-scale multiomics data to obtain a more holistic un-
derstanding. Dealing with the large amount of data generated using different omics
technologies is very complex and requires extensive knowledge of bioinformatics to an-
alyze it. This is not necessarily a drawback if the teams include bioinformaticians, but
rapid translation of the results to the clinic requires the development of user-friendly tools,
which are not always available. In this context, mention should also be made of the lack
of suitable databases and analytical tools, such as visualization tools, and those that are
available often require prior knowledge of programming.

Concerning GEMs, one of the main shortcomings of this tool lies in the calibration
of these models. On the other hand, the lack of kinetic information from GEMs [105],
represents a challenge for the integration of omics data, being very important to consider
the best way to represent omics data so that they can be integrated into GEMs. Furthermore,
modeling based solely on genome and/or transcriptome data may be limited because
approximately 50% of the changes found in the transcriptome may not be present in
the proteome, and an even smaller percentage of changes in the genome may leak into
the proteome.

Finally, several questions have been raised about the true utility of the multiomics
approach, as it has so far provided hardly any groundbreaking results or significant
mechanistic insights. Therefore, overcoming these challenges is the way forward for
this burgeoning discipline. It is also important to remember that future efforts will have to
creatively address the major open questions about how to integrate metabolic models with
other layers of biological complexity and their associated uncertainties.

6. Concluding Remarks

The emergence of multiresistance to antibiotics in different bacterial species is a matter
of great concern for health authorities worldwide, to the point that the situation could
be comparable to that of the pre-antibiotic era in 30 years’ time. Consequently, the 21st
century is facing a new challenge that goes beyond biomedicine and whose solution does
not involve a single agent. On the one hand, healthcare systems, medical professionals,
pharmacists, and other citizens must be aware of the rational use of antibiotics, particularly
because of the main aggravating factor, and the excessive use of antibiotics in humans
and animals, which is the main contributor to the development of resistance in bacteria.
On the other hand, researchers must strive to understand the mechanisms related to the
acquisition of antibiotic resistance.

Traditional studies related to AR have long been based on the search for specific genes
and/or mutations that might confer resistance to a given microorganism. Although this
approach is relevant, it is not sufficient to provide a holistic view of the elements involved
in the emergence and spread of AR, as it is a complex process that occurs at the system
level. For this reason, the use of omics technologies has gained ground, and they have
been widely used in resistance-related studies, as well as proved to be valuable tools
in AR studies.

The possible implications of metabolism in the acquisition and maintenance of resis-
tance, as well as their ability to be integrated with data obtained by omics technologies,



Microorganisms 2022, 10, 2362 17 of 21

has encouraged the growing use of genome-scale metabolic models in resistance-related
studies. The major limitation in their use as tools is that they require some bioinformatics
training on the part of the users, in addition to the time-consuming and laborious process
of obtaining the models.

The outlook for the advancement of knowledge of complex biological systems will de-
pend largely on advances in the integration of high-performance analytical methods (such
as omics) and powerful synthesis tools (such as natural multi-hierarchical computation,
GEMs, Big Data, or artificial intelligence). In the case of AR, detailed and global genomic
information should become increasingly available, feeding integrative models to extract
prevailing trends and associate them with anthropogenic interventions. Although systems
biology has its limitations, the information provided by using this approach will be an
important step forward in establishing rational, ecological and evolutionary approaches to
address this important health problem.
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