
Citation: Thongprayoon, C.;

Radhakrishnan, Y.; Jadlowiec, C.C.;

Mao, S.A.; Mao, M.A.; Vaitla, P.;

Acharya, P.C.; Leeaphorn, N.;

Kaewput, W.; Pattharanitima, P.; et al.

Characteristics of Kidney Recipients

of High Kidney Donor Profile Index

Kidneys as Identified by Machine

Learning Consensus Clustering. J.

Pers. Med. 2022, 12, 1992.

https://doi.org/10.3390/

jpm12121992

Academic Editor: Haruhito

A. Uchida

Received: 22 October 2022

Accepted: 29 November 2022

Published: 1 December 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Journal of

Personalized 

Medicine

Article

Characteristics of Kidney Recipients of High Kidney Donor
Profile Index Kidneys as Identified by Machine Learning
Consensus Clustering
Charat Thongprayoon 1,†, Yeshwanter Radhakrishnan 1,† , Caroline C. Jadlowiec 2 , Shennen A. Mao 3,
Michael A. Mao 4 , Pradeep Vaitla 5, Prakrati C. Acharya 6, Napat Leeaphorn 4, Wisit Kaewput 7 ,
Pattharawin Pattharanitima 8 , Supawit Tangpanithandee 1,9 , Pajaree Krisanapan 1,8 ,
Pitchaphon Nissaisorakarn 10 , Matthew Cooper 11 and Wisit Cheungpasitporn 1,*

1 Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA
2 Division of Transplant Surgery, Mayo Clinic, Phoenix, AZ 85054, USA
3 Division of Transplant Surgery, Mayo Clinic, Jacksonville, FL 32224, USA
4 Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Jacksonville,

FL 32224, USA
5 Division of Nephrology, University of Mississippi Medical Center, Jackson, MS 39216, USA
6 Division of Nephrology, Texas Tech Health Sciences Center El Paso, El Paso, TX 79905, USA
7 Department of Military and Community Medicine, Phramongkutklao College of Medicine,

Bangkok 10400, Thailand
8 Department of Internal Medicine, Faculty of Medicine, Thammasat University, Pathum Thani 12120, Thailand
9 Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University,

Samut Prakan 10540, Thailand
10 Department of Medicine, Division of Nephrology, Massachusetts General Hospital, Harvard Medical School,

Boston, MA 02114, USA
11 Medstar Georgetown Transplant Institute, Georgetown University School of Medicine, Washington,

DC 21042, USA
* Correspondence: wcheungpasitporn@gmail.com
† These authors contributed equally to this work.

Abstract: Background: Our study aimed to characterize kidney transplant recipients who received
high kidney donor profile index (KDPI) kidneys using unsupervised machine learning approach.
Methods: We used the OPTN/UNOS database from 2010 to 2019 to perform consensus cluster
analysis based on recipient-, donor-, and transplant-related characteristics in 8935 kidney transplant
recipients from deceased donors with KDPI ≥ 85%. We identified each cluster’s key characteristics
using the standardized mean difference of >0.3. We compared the posttransplant outcomes among
the assigned clusters. Results: Consensus cluster analysis identified 6 clinically distinct clusters of
kidney transplant recipients from donors with high KDPI. Cluster 1 was characterized by young,
black, hypertensive, non-diabetic patients who were on dialysis for more than 3 years before receiving
kidney transplant from black donors; cluster 2 by elderly, white, non-diabetic patients who had
preemptive kidney transplant or were on dialysis less than 3 years before receiving kidney transplant
from older white donors; cluster 3 by young, non-diabetic, retransplant patients; cluster 4 by young,
non-obese, non-diabetic patients who received dual kidney transplant from pediatric, black, non-
hypertensive non-ECD deceased donors; cluster 5 by low number of HLA mismatch; cluster 6 by
diabetes mellitus. Cluster 4 had the best patient survival, whereas cluster 3 had the worst patient
survival. Cluster 2 had the best death-censored graft survival, whereas cluster 4 and cluster 3 had the
worst death-censored graft survival at 1 and 5 years, respectively. Cluster 2 and cluster 4 had the best
overall graft survival at 1 and 5 years, respectively, whereas cluster 3 had the worst overall graft survival.
Conclusions:Unsupervised machine learning approach kidney transplant recipients from donors with
high KDPI based on their pattern of clinical characteristics into 6 clinically distinct clusters.
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1. Introduction

In patients with end-stage kidney disease (ESKD), kidney transplantation is associated
with improved mortality, better quality of life and decreased treatment-related costs com-
pared to maintenance dialysis [1]. Access to kidney transplantation for an eligible patient
with ESKD depends on the availability of an organ from a living donor or placement on a
waitlist to receive an organ from a deceased donor [2,3]. Given the shortage of kidneys, the
Kidney Donor Profile Index (KDPI) scoring system was introduced to transplant kidneys
that were previously discarded [4]. The KDPI is a percentile measure determined based
on the kidney donor risk index that predicts the risk of kidney allograft failure compared
to the allografts transplanted in the previous year [4,5]. A KDPI score ≥ 85% (high KDPI)
predicts a higher risk of graft failure than 85% of the grafts transplanted in the previous
year [4]. Although a high KDPI graft has a higher risk of graft failure, transplantation
of these kidneys in specific subgroups based on patient’s age, comorbidities and life ex-
pectancy can result in meaningful outcomes in such patients compared to remaining on
maintenance dialysis [4,5]. As of December 2020, 62% of high KDPI kidneys were discarded
and considered unsuitable for transplantation [3].

Machine learning (ML) has been employed in medicine to determine diagnosis and
outcome prediction among different subgroups and assist in clinical decision-making [6].
Unsupervised consensus clustering is an exploratory subtype of machine learning in
which undefined patterns are identified from data variables [7]. Unsupervised machine
learning categorizes a dataset into various distinct clusters that have different clinical
outcomes by identifying the similarities and heterogeneities in the dataset [8–10]. Given
the heterogeneity among kidney transplant recipients from donors with high KDPI, ML
may help in identifying different phenotypes that have different clinical outcomes.

In addition, an improved understanding of high KDPI transplantation in different
patient phenotypes may prevent the discarding of kidneys, improve the allocation system,
and identify strategies to improve patient outcomes. In this cohort study, we analyzed
the Organ Procurement and Transplantation Network/United Network for Organ Sharing
(OPTN/UNOS) database from 2010 through 2019, using an unsupervised machine learning
clustering approach to identify clinically distinct clusters of kidney transplant recipients
from deceased donors with high KDPI.

2. Materials and Methods
2.1. Data Source and Study Population

We screened kidney transplant patients from 2010 to 2019 in the United States in the
OPTN/UNOS database. We included patients who received the transplanted kidney from
deceased donors with KDPI score ≥ 85%. We excluded patients who received simultaneous
kidney transplants with other organs. The Mayo Clinic Institutional Review Board (IRB
number 21-007698) approved this study.

2.2. Data Collection

The following recipient-, donor-, and transplant-related variables were abstracted
from the OPTN/UNOS database; recipient age, sex, race, body mass index (BMI), history of
prior kidney transplant, dialysis vintage, end-stage kidney disease etiology, comorbidities,
panel reactive antibody (PRA), hepatitis B, hepatitis C, and human immunodeficiency
virus (HIV) serostatus; Karnofsky performance status index, working income, insurance
status, U.S. residency status, education level, serum albumin, kidney donor type, ABO
incompatibility, donor age, sex, and race; donor history of hypertension, kidney donor
profile index (KDPI), HLA mismatch, cold ischemia time, kidney on pump, allocation type,
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Ebstein-Barr virus (EBV) and Cytomegalovirus (CMV) status; and type of induction and
maintenance immunosuppression. All of these extracted variables had less than 5% of
missing data. Any missing data was imputed using multivariable imputation by chained
equation (MICE) method [11].

2.3. Cluster Analysis

ML was utilized via an unsupervised consensus clustering analysis to categorize clini-
cal phenotypes of kidney transplant recipients who received the transplanted kidney from
deceased donors with KDPI score ≥ 85% [12]. We prescribed a pre-specified subsampling
parameter of 80% with 100 iterations and number of potential clusters (k) ranging from 2 to
10 in order to avoid generating an excessive number of clusters. The optimal number of
clusters was established by appraising the consensus matrix (CM) heat map, cumulative
distribution function (CDF), cluster-consensus plots with the within-cluster consensus
scores, and the ambiguously clustered pairs (PAC) proportions. The within-cluster con-
sensus score, ranging between 0 and 1, was defined as the average consensus value for
all pairs of individuals belonging to the same cluster [13]. A value closer to one indicates
better cluster stability. PAC, ranging between 0 and 1, was calculated as the proportion of
all sample pairs with consensus values falling within the predetermined boundaries [14].
A value closer to zero indicates better cluster stability [14]. The detailed consensus cluster
algorithms used in this study for reproducibility are provided in Online Supplementary.

2.4. Outcomes

Posttransplant outcomes consisted of primary non-function, delayed graft function,
patient death, death-censored graft failure, all-cause graft failure (including patient death)
at 1 and 5 years, and acute allograft rejection within 1 year after kidney transplant.

2.5. Statistical Analysis

After we categorized each kidney transplant recipient from high KDPI deceased
donor using the consensus clustering approach, we compared clinical characteristics and
posttransplant outcomes among the assigned clusters. We used Chi-squared test and
analysis of variance to compare categorical and continuous characteristics, respectively. We
determined the key characteristics of each cluster by using the standardized mean difference
with a cut-off of >0.3 between each cluster and the overall cohort. We used Kaplan–Meier
method to estimate the cumulative risks of patient death, death-censored graft failure, and
all-cause graft failure after kidney transplant and used log-rank test for comparison among
the assigned clusters. In contrast, we used Chi-squared test to compare incidence of 1-year
acute allograft rejection. OPTN/UNOS only reported whether allograft rejection occurred
within one year after kidney transplant but did not specify the occurrence date. We used
R, version 4.0.3 (RStudio, Inc., Boston, MA, USA; http://www.rstudio.com/, accessed on
21 July 2021) for statistical analyses; ConsensusClusterPlus package (version 1.46.0) for
consensus clustering analysis, and the MICE command in R for multivariable imputation
by chained equation [11].

3. Results

Out of 158,367 adult patients receiving kidney transplants from 2010 to 2019 in the United
States, 8935 (5.6%) received transplanted kidney from deceased donors with KDPI ≥ 85%.
Accordingly, we performed a consensus clustering analysis on a total of 8935 kidney transplant
recipients from high KDPI deceased donors. Table 1 shows recipient-, donor-, and transplant-
related characteristics of included patients. The mean KDPI was 91 ± 4%.

http://www.rstudio.com/
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Table 1. Clinical characteristics according to clusters.

All
(n = 8935)

Cluster 1
(n = 1984)

Cluster 2
(n = 2135)

Cluster 3
(n = 357)

Cluster 4
(n = 335)

Cluster 5
(n = 1069)

Cluster 6
(n = 3055) p-Value

Recipient age (year) 62.4 ± 9.5 57.2 ± 9.9 68.0 ± 6.9 57.3 ± 11.0 51.7 ± 13.7 63.3 ± 8.7 63.3 ± 7.2 <0.001

Recipient male sex 5699 (63.8) 1213 (61.1) 1371 (64.2) 223 (62.5) 170 (50.8) 598 (55.9) 2124 (69.5) <0.001

Recipient race
- White
- Black
- Hispanic
- Other

3341 (37.4)
3080 (34.5)
1549 (17.3)
965 (10.8)

204 (10.3)
1298 (65.4)
308 (15.5)
174 (8.8)

1554 (72.7)
200 (9.4)
185 (8.7)
196 (9.2)

163 (45.6)
130 (36.4)

32 (9.0)
32 (9.0)

85 (25.3)
82 (24.5)
71 (21.2)
97 (28.9)

510 (47.7)
260 (24.3)
213 (19.9)
86 (8.1)

825 (27.0)
1110 (36.3)
740 (24.2)
380 (12.5)

<0.001

ABO blood group
- A
- B
- AB
- O

2846 (31.9)
1374 (15.4)

340 (3.8)
4375 (48.9)

377 (19.0)
392 (19.8)
61 (3.1)

1154 (58.1)

903 (42.3)
222 (10.4)
79 (3.7)

931 (43.6)

112 (31.4)
63 (17.7)
18 (5.0)

164 (45.9)

87 (26.0)
69 (20.6)
15 (4.5)

164 (48.9)

381 (35.6)
145 (13.6)

40 (3.7)
503 (47.1)

986 (32.3)
483 (15.8)
127 (4.2)

1459 (47.7)

<0.001

Body mass index (kg/m2) 28.5 ± 5.0 28.6 ± 5.3 27.3 ± 4.7 27.4 ± 5.4 24.8 ± 4.1 28.7 ± 5.0 29.6 ± 4.8 <0.001

Kidney retransplant 364 (4.1) 0 (0) 0 (0) 357 (100) 7 (2.1) 0 (0) 0 (0) <0.001

Dialysis duration
- Preemptive
- <1 year
- 1–3 years
- >3 years

803 (9.0)
2234 (25.0)

775 (8.7)
5123 (57.3)

99 (5.0)
315 (15.9)
107 (5.4)

1463 (73.7)

359 (16.8)
661 (31.0)
253 (11.9)
862 (40.4)

35 (9.8)
88 (24.7)
36 (10.1)

198 (55.5)

35 (10.5)
112 (33.4)
39 (11.6)

149 (44.5)

110 (10.3)
306 (28.6)
111 (10.4)
542 (50.7)

165 (5.4)
752 (24.6)
229 (7.5)

1909 (62.5)

<0.001

Cause of end-stage kidney disease
- Diabetes mellitus
- Hypertension
- Glomerular disease
- PKD
- Other

3623 (40.5)
2525 (28.3)
1104 (12.4)

602 (6.7)
1081 (12.1)

18 (0.9)
1318 (66.4)
328 (16.5)
164 (8.3)
156 (7.9)

61 (2.9)
784 (36.7)
489 (22.9)
292 (13.7)
509 (23.8)

32 (9.0)
61 (17.1)
48 (13.5)
14 (3.9)

202 (56.5)

80 (23.9)
89 (26.5)
76 (22.7)
30 (9.0)

60 (17.9)

460 (43.0)
253 (23.7)
139 (13.0)

84 (7.9)
133 (12.4)

2972 (97.2)
20 (0.7)
24 (0.8)
18 (0.6)
21 (0.7)

<0.001

Comorbidity
- Diabetes mellitus
- Malignancy
- Peripheral vascular disease

4484 (50.2)
975 (10.9)
987 (11.1)

331 (16.7)
123 (6.2)
107 (5.4)

314 (14.7)
419 (19.6)
148 (6.9)

116 (32.5)
49 (13.7)
30 (8.4)

101 (30.2)
32 (9.6)
18 (5.4)

567 (53.0)
129 (12.1)
119 (11.1)

3055 (100.0)
223 (7.3)

565 (18.5)

<0.001
<0.001
<0.001

PRA (%), median (IQR) 0 (0–1) 0 (0–4) 0 (0–0) 48 (0–95) 0 (0–0) 0 (0–17) 0 (0–0) <0.001

Positive HCV serostatus 455 (5.1) 145 (7.3) 70 (3.3) 34 (9.5) 9 (2.7) 47 (4.4) 150 (4.9) <0.001

Positive HBs antigen 181 (2.0) 43 (2.2) 30 (1.4) 14 (3.9) 16 (4.8) 24 (2.3) 54 (1.8) <0.001

Positive HIV serostatus 63 (0.7) 31 (1.6) 9 (0.4) 0 (0.0) 4 (1.2) 5 (0.5) 14 (0.5) <0.001

Functional status
- 10–30%
- 40–70%
- 80–100%

26 (0.3)
3723 (41.7)
5186 (58.0)

4 (0.2)
859 (43.3)

1121 (56.5)

6 (0.3)
709 (33.2)

1420 (66.5)

0 (0.0)
143 (40.1)
214 (59.9)

2 (0.6)
101 (30.2)
232 (69.2)

3 (0.3)
429 (40.1)
637 (59.6)

11 (0.4)
1482 (48.5)
1562 (51.1)

<0.001

Working income 1593 (17.8) 415 (20.9) 427 (20.0) 71 (19.9) 100 (29.8) 192 (18.0) 388 (12.7) <0.001

Public insurance 7320 (81.9) 1676 (84.5) 1672 (78.3) 297 (83.2) 232 (69.3) 865 (80.9) 2578 (84.4) <0.001
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Table 1. Cont.

All
(n = 8935)

Cluster 1
(n = 1984)

Cluster 2
(n = 2135)

Cluster 3
(n = 357)

Cluster 4
(n = 335)

Cluster 5
(n = 1069)

Cluster 6
(n = 3055) p-Value

US resident 8872 (99.3) 1966 (99.1) 2127 (99.6) 356 (99.7) 323 (96.4) 1060 (99.2) 3040 (99.5) <0.001

Undergraduate education or above 4400 (49.2) 863 (43.5) 1274 (59.7) 188 (52.7) 188 (56.1) 530 (49.6) 1357 (44.4) <0.001

Serum albumin (g/dL) 3.9 ± 0.5 4.0 ± 0.5 4.0 ± 0.5 3.8 ± 0.6 4.0 ± 0.5 3.9 ± 0.5 3.9 ± 0.6 <0.001

Kidney donor status
- Non-ECD deceased
- ECD deceased

1673 (18.7)
7262 (81.3)

484 (24.4)
1500 (75.6)

184 (8.6)
1951 (91.4)

80 (22.4)
277 (77.6)

335 (100)
0 (0)

155 (14.5)
914 (85.5)

435 (14.2)
2620 (85.8)

<0.001

Donor age (year) 58.3 ± 13.2 58.1 ± 6.6 62.6 ± 6.3 58.4 ± 8.4 0.7 ± 3.1 61.1 ± 6.9 60.7 ± 6.7 <0.001

Donor male sex 4124 (46.2) 850 (42.8) 944 (44.2) 165 (46.2) 189 (56.4) 515 (48.2) 1461 (47.8) <0.001

Donor race
- White
- Black
- Hispanic
- Other

4532 (50.7)
2928 (32.7)
987 (11.1)
488 (5.5)

605 (30.5)
1042 (52.5)
208 (10.5)
129 (6.5)

1472 (68.9)
367 (17.2)
198 (9.3)
98 (4.6)

158 (44.3)
139 (38.9)

35 (9.8)
25 (7.0)

104 (31.0)
191 (57.0)

32 (9.6)
8 (2.4)

677 (63.3)
206 (19.3)
138 (12.9)
48 (4.5)

1516 (49.6)
983 (32.2)
376 (12.3)
180 (5.9)

<0.001

Donor weight (kg) 79 ± 26 82 ± 23 82 ± 22 81 ± 23 9 ± 9 81 ± 23 83 ± 22 <0.001

Donor Height (cm) 163 ± 22 167 ± 10 167 ± 10 167 ± 13 67 ± 17 167 ± 11 168 ± 10 <0.001

Donor hypertension 6833 (76.5) 1633 (82.3) 1648 (77.2) 287 (80.4) 6 (1.8) 837 (78.3) 2422 (79.3) <0.001

Donor diabetes 2416 (27) 571 (29) 588 (28) 93 (26) 3 (1) 306 (29) 855 (28) <0.001

Donor positive HCV serostatus 387 (4) 110 (6) 71 (3) 28 (8) 2 (1) 45 (4) 131 (4) <0.001

Donor cerebrovascular death 6142 (69) 1469 (74) 1489 (70) 257 (72) 14 (4) 744 (70) 2169 (71) <0.001

Donor creatinine (mg/dL) 1.3 ± 1.0 1.3 ± 0.0.7 1.3 ± 1.1 1.3 ± 0.6 1.0 ± 1.8 1.3 ± 1.1 1.3 ± 0.8 <0.001

KDPI (%) 91 ± 4 91 ± 4 91 ± 4 90 ± 4 89 ± 4 91 ± 4 91 ± 4 <0.001

Dual kidney transplant 840 (9.4) 94 (4.7) 189 (8.9) 10 (2.8) 280 (83.6) 77 (7.2) 190 (6.2) <0.001

Total HLA mismatch, median (IQR) 5 (4-5) 5 (4-6) 5 (4-5) 4 (3-5) 5 (4-6) 3 (2-3) 5 (4-6) <0.001

Cold ischemia time (hours) 20.2 ± 9.0 19.6 ± 9.0 20.5 ± 9.1 20.4 ± 9.1 21.7 ± 8.7 19.7 ± 8.4 20.4 ± 9.0 <0.001

Kidney on pump 5428 (60.8) 1171 (59.0) 1400 (65.6) 206 (57.7) 143 (42.7) 623 (58.3) 1885 (61.7) <0.001

Allocation type
- Local
- Regional
- National

5248 (58.7)
2264 (25.3)
1423 (16.0)

1298 (65.4)
452 (22.8)
234 (11.8)

1269 (59.4)
531 (24.9)
335 (15.7)

169 (47.3)
86 (24.1)

102 (28.6)

86 (25.7)
101 (30.1)
148 (44.2)

608 (56.9)
261 (24.4)
200 (18.7)

1818 (59.5)
833 (27.3)
404 (13.2)

<0.001

EBV status
- Low risk
- Moderate risk
- High risk

23 (0.3)
8197 (91.7)
715 (8.0)

2 (0.1)
1847 (93.1)
135 (6.8)

8 (0.4)
1916 (89.7)
211 (9.9)

0 (0)
327 (91.6)
30 (8.4)

9 (2.7)
316 (94.3)
10 (3.0)

1 (0.1)
979 (91.6)
89 (8.3)

3 (0.1)
2812 (92.0)
240 (7.9)

<0.001
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Table 1. Cont.

All
(n = 8935)

Cluster 1
(n = 1984)

Cluster 2
(n = 2135)

Cluster 3
(n = 357)

Cluster 4
(n = 335)

Cluster 5
(n = 1069)

Cluster 6
(n = 3055) p-Value

CMV status
- D−/R−
- D−/R+
- D+/R+
- D+/R−

722 (8.1)
1711 (19.1)
4777 (53.5)
1725 (19.3)

68 (3.4)
254 (12.8)

1369 (69.0)
293 (14.8)

270 (12.7)
468 (21.9)
796 (37.3)
601 (28.1)

28 (7.8)
70 (19.6)

196 (54.9)
63 (17.7)

25 (7.5)
151 (45.1)
116 (34.6)
43 (12.8)

109 (10.2)
196 (18.3)
529 (49.5)
235 (22.0)

222 (7.3)
572 (18.7)

1771 (58.0)
490 (16.0)

<0.001

Induction immunosuppression
- Thymoglobulin
- Alemtuzumab
- Basiliximab
- Other
- No induction

5021 (56.2)
1382 (15.5)
2080 (23.3)

256 (2.9)
687 (7.7)

1130 (57.0)
342 (17.2)
386 (19.5)
82 (4.1)

170 (8.6)

1079 (50.5)
342 (16.0)
622 (29.1)
53 (2.5)

161 (7.5)

211 (59.1)
57 (16.0)
51 (14.3)
16 (4.5)
34 (9.5)

268 (80.0)
22 (6.6)
33 (9.8)
10 (3.0)
13 (3.9)

577 (54.0)
176 (16.5)
258 (24.1)
29 (2.7)
82 (7.7)

1756 (57.5)
443 (14.5)
730 (23.9)
66 (2.2)

227 (7.4)

<0.001
<0.001
<0.001
<0.001
0.050

Maintenance Immunosuppression
- Tacrolimus
- Cyclosporine
- Mycophenolate
- Azathioprine
- mTOR inhibitors
- Steroid

7983 (89.3)
115 (1.3)

8185 (91.6)
21 (0.2)
94 (1.1)

5910 (66.1)

1766 (89.0)
23 (1.2)

1821 (91.8)
1 (0.1)
20 (1.0)

1330 (67.0)

1896 (88.8)
31 (1.4)

1952 (91.4)
9 (0.4)
31 (1.5)

1341 (62.8)

312 (87.4)
6 (1.7)

323 (90.5)
2 (0.6)
4 (1.1)

258 (72.3)

298 (89.0)
4 (1.2)

307 (91.6)
1 (0.3)
1 (0.3)

160 (47.8)

954 (89.2)
15 (1.4)

962 (90.0)
2 (0.2)

11 (1.0)
736 (68.9)

2757 (90.2)
36 (1.2)

2820 (92.3)
6 (0.2)

27 (0.9)
2085 (68.3)

0.419
0.905
0.274
0.155
0.307

<0.001

Abbreviations: BMI: Body mass index, CMV: Cytomegalovirus, D: Donor, EBV: Epstein–Barr virus, ECD: Extended criteria donor, HBs: Hepatitis B surface, HCV: Hepatitis C virus,
HIV: Human immunodeficiency virus, KDPI: Kidney donor profile index, mTOR: Mammalian target of rapamycin, PKD: Polycystic kidney disease, PRA: Panel reactive antibody, R:
Recipient.
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Figure 1A shows the CDF plot consensus distributions for each cluster of kidney trans-
plant recipients who received kidneys from deceased donors with KDPI ≥ 85%; the delta
area plot shows the relative change in the area under the CDF curve (Figure 1B). The largest
changes in the area occurred between k = 3 and k = 6, at which point the relative increase in
the area became noticeably smaller. As shown in the CM heat map (Figure 1C, Supplementary
Figures S1–S9), cluster 5, cluster 6, and cluster 7 had better-distinguished cluster boundaries
than other clusters, indicating good cluster stability over repeated iterations. Favorable low
PACs were demonstrated for cluster 6, cluster 7, and cluster 8 (Supplementary Figure S10).
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The mean cluster consensus score was highest in cluster 6 (Figure 2). Thus, using
baseline variables at the time of transplant, the consensus clustering analysis identified
6 clusters that best represented the data pattern of our kidney transplant recipients.
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3.1. Clinical Characteristics Based on Clusters of Kidney Transplant Recipients from High KDPI
Deceased Donors

Consensus clustering analysis identified six distinct clinical clusters. There were
1984 (22%) patients in cluster 1, 2135 (24%) patients in cluster 2, 357 (4%) patients in cluster
3, 335 (4%) patients in cluster 4, 1069 (12%) patients in cluster 5, and 3055 (34%) patients
in cluster 6. These six clusters were clinically distinct, as demonstrated in Table 1. In
Figure 3A–F, compared to the overall cohort, cluster 1 was characterized by young (mean
age 57 years), black (65%), hypertensive (66%), non-diabetic (17% had diabetes) patients
who were on dialysis for more than 3 years (74%) before receiving kidney transplants from
black (53%) donors. Cluster 2 was characterized by elderly (mean age 68 years), white
(73%), non-diabetic (15% had diabetes) patients who had preemptive kidney transplants
or were on dialysis less than 3 years (60%) before receiving kidney transplants from older
(mean age 63 years) white (69%) donors. Cluster 3 was characterized by young (mean
age 57 years), non-diabetic (33% had diabetes), and retransplant patients (100%). Cluster
3 patients had higher PRA (median PRA 48%) but a smaller number of HLA mismatches
(median number 4). Cluster 4 was characterized by young (mean age 52 years), non-obese
(mean BMI 25 kg/m2), non-diabetic (30% had diabetes) patients who received the dual
kidney transplant (84%) from pediatric (mean age 0.7 years), black (57%) non-hypertensive
(2% had hypertension) non-ECD deceased (100%) donors. Cluster 4 patients had more
donor negative/recipient negative EBV status (2.7%), donor negative/recipient positive
CMV status (45%), received more thymoglobulin (80%) as induction immunosuppression
but less steroid (45%) as maintenance immunosuppression, compared to the other clusters.
Cluster 5 was characterized by a low number of HLA mismatches (median number 3).
Cluster 6 was characterized by the presence of diabetes mellitus (100%).

Figure 4 and Table S1 showed the proportion of the assigned clusters based on the UNOS
regions. Region 5 had the highest number of kidney transplants from high KDPI deceased
donors. Region 11 and Region 6 had the highest and lowest proportion of cluster 1, respectively.
Region 1 and region 4 had the highest and lowest proportion of cluster 2, respectively. Region 8
and Region 3 had the highest and lowest proportion of cluster 3, respectively. Region 5 and
region 1 had the highest and lowest proportion of cluster 4, respectively. Region 6 and region 3
had the highest and lowest proportion of cluster 5, respectively. Region 5 and region 8 had
the highest and lowest proportions of cluster 6, respectively.
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vertical lines represent the standardized differences cutoffs of <−0.3 or >0.3. Abbreviations: BMI: 
Body mass index, CMV: Cytomegalovirus, D: Donor, DGF: Delayed graft function, DM: diabetes 
mellitus, EBV: Epstein–Barr virus, ECD: Extended criteria donor, ESKD: end stage kidney disease, 
GN: Glomerulonephritis, HBs: Hepatitis B surface, HCV: Hepatitis C virus, HIV: Human immuno-
deficiency virus, HLA: Human leucocyte antigen, HTN: Hypertension, KDPI: Kidney donor profile 
index, mTOR: Mammalian target of rapamycin, PKD: Polycystic kidney disease, PRA: Panel reactive 
antibody, PVD: peripheral vascular disease, R: Recipient. (B). The standardized differences across 
cluster 2 for each of baseline parameters. The x axis is the standardized differences value, and the y 
axis shows baseline parameters. The dashed vertical lines represent the standardized differences 
cutoffs of <−0.3 or >0.3. Abbreviations: BMI: Body mass index, CMV: Cytomegalovirus, D: Donor, 
DGF: Delayed graft function, DM: diabetes mellitus, EBV: Epstein–Barr virus, ECD: Extended crite-
ria donor, ESKD: end stage kidney disease, GN: Glomerulonephritis, HBs: Hepatitis B surface, HCV: 

Figure 3. (A). The standardized differences across cluster 1 for each of baseline parameters. The x
axis is the standardized differences value, and the y axis shows baseline parameters. The dashed
vertical lines represent the standardized differences cutoffs of <−0.3 or >0.3. Abbreviations: BMI:
Body mass index, CMV: Cytomegalovirus, D: Donor, DGF: Delayed graft function, DM: diabetes
mellitus, EBV: Epstein–Barr virus, ECD: Extended criteria donor, ESKD: end stage kidney disease,
GN: Glomerulonephritis, HBs: Hepatitis B surface, HCV: Hepatitis C virus, HIV: Human immunod-
eficiency virus, HLA: Human leucocyte antigen, HTN: Hypertension, KDPI: Kidney donor profile
index, mTOR: Mammalian target of rapamycin, PKD: Polycystic kidney disease, PRA: Panel reactive
antibody, PVD: peripheral vascular disease, R: Recipient. (B). The standardized differences across
cluster 2 for each of baseline parameters. The x axis is the standardized differences value, and the
y axis shows baseline parameters. The dashed vertical lines represent the standardized differences
cutoffs of <−0.3 or >0.3. Abbreviations: BMI: Body mass index, CMV: Cytomegalovirus, D: Donor,
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DGF: Delayed graft function, DM: diabetes mellitus, EBV: Epstein–Barr virus, ECD: Extended criteria
donor, ESKD: end stage kidney disease, GN: Glomerulonephritis, HBs: Hepatitis B surface, HCV:
Hepatitis C virus, HIV: Human immunodeficiency virus, HLA: Human leucocyte antigen, HTN:
Hypertension, KDPI: Kidney donor profile index, mTOR: Mammalian target of rapamycin, PKD:
Polycystic kidney disease, PRA: Panel reactive antibody, PVD: peripheral vascular disease, R: Recipi-
ent. (C). The standardized differences across cluster 3 for each of baseline parameters. The x axis is
the standardized differences value, and the y axis shows baseline parameters. The dashed vertical
lines represent the standardized differences cutoffs of <−0.3 or >0.3. Abbreviations: BMI: Body mass
index, CMV: Cytomegalovirus, D: Donor, DGF: Delayed graft function, DM: diabetes mellitus, EBV:
Epstein–Barr virus, ECD: Extended criteria donor, ESKD: end stage kidney disease, GN: Glomeru-
lonephritis, HBs: Hepatitis B surface, HCV: Hepatitis C virus, HIV: Human immunodeficiency virus,
HLA: Human leucocyte antigen, HTN: Hypertension, KDPI: Kidney donor profile index, mTOR:
Mammalian target of rapamycin, PKD: Polycystic kidney disease, PRA: Panel reactive antibody,
PVD: peripheral vascular disease, R: Recipient. (D). The standardized differences across cluster 4 for
each of baseline parameters. The x axis is the standardized differences value, and the y axis shows
baseline parameters. The dashed vertical lines represent the standardized differences cutoffs of <−0.3
or >0.3. Abbreviations: BMI: Body mass index, CMV: Cytomegalovirus, D: Donor, DGF: Delayed
graft function, DM: diabetes mellitus, EBV: Epstein–Barr virus, ECD: Extended criteria donor, ESKD:
end stage kidney disease, GN: Glomerulonephritis, HBs: Hepatitis B surface, HCV: Hepatitis C virus,
HIV: Human immunodeficiency virus, HLA: Human leucocyte antigen, HTN: Hypertension, KDPI:
Kidney donor profile index, mTOR: Mammalian target of rapamycin, PKD: Polycystic kidney disease,
PRA: Panel reactive antibody, PVD: peripheral vascular disease, R: Recipient. (E). The standardized
differences across cluster 5 for each of baseline parameters. The x axis is the standardized differences
value, and the y axis shows baseline parameters. The dashed vertical lines represent the standardized
differences cutoffs of <−0.3 or >0.3. Abbreviations: BMI: Body mass index, CMV: Cytomegalovirus, D:
Donor, DGF: Delayed graft function, DM: diabetes mellitus, EBV: Epstein–Barr virus, ECD: Extended
criteria donor, ESKD: end stage kidney disease, GN: Glomerulonephritis, HBs: Hepatitis B surface,
HCV: Hepatitis C virus, HIV: Human immunodeficiency virus, HLA: Human leucocyte antigen,
HTN: Hypertension, KDPI: Kidney donor profile index, mTOR: Mammalian target of rapamycin,
PKD: Polycystic kidney disease, PRA: Panel reactive antibody, PVD: peripheral vascular disease, R:
Recipient. (F). The standardized differences across cluster 6 for each of baseline parameters. The x
axis is the standardized differences value, and the y axis shows baseline parameters. The dashed
vertical lines represent the standardized differences cutoffs of <−0.3 or >0.3. Abbreviations: BMI:
Body mass index, CMV: Cytomegalovirus, D: Donor, DGF: Delayed graft function, DM: diabetes
mellitus, EBV: Epstein–Barr virus, ECD: Extended criteria donor, ESKD: end stage kidney disease,
GN: Glomerulonephritis, HBs: Hepatitis B surface, HCV: Hepatitis C virus, HIV: Human immunod-
eficiency virus, HLA: Human leucocyte antigen, HTN: Hypertension, KDPI: Kidney donor profile
index, mTOR: Mammalian target of rapamycin, PKD: Polycystic kidney disease, PRA: Panel reactive
antibody, PVD: peripheral vascular disease, R: Recipient.

3.2. Posttransplant Outcomes of Kidney Transplant Recipients from High KDPI Deceased Donors

Table 2 shows cluster-based posttransplant outcomes. The incidence of primary non-
function ranged from 0.7–1.8% and were similar among clusters (p = 0.08). In contrast, the
incidence of delayed graft function was 38.3% in cluster 1, 25.1% in cluster 2, 41.7% in cluster
3, 30.2% in cluster 4, 31.8% in cluster 5, and 40.8% in cluster 6 (p < 0.001). Cluster 3 had the
highest delayed graft function, whereas cluster 2 had the lowest delayed graft function.

The 1-year and 5-year patient survival was 95.3% and 79.2% in cluster 1, 93.9% and
68.6% in cluster 2, 91.0% and 62.1% in cluster 3, 98.1% and 90.5% in cluster 4, 92.2% and
68.9% in cluster 5, and 92.5% and 67.0% in cluster 6, respectively (p < 0.001) (Figure 5A).
Cluster 4 had the best patient survival, whereas cluster 3 had the worst patient survival.

The 1-year and 5-year death-censored graft survival was 91.2% and 73.1% in cluster 1,
94.3% and 84.3% in cluster 2, 87.8% and 70.1% in cluster 3, 85.6% and 81.8% in cluster 4, 93.4%
and 80.5% in cluster 5, and 92.3% and 76.2% in cluster 6, respectively (p < 0.001) (Figure 5B).
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Cluster 2 had the best death-censored graft survival at 1 and 5 years, whereas cluster 4 and
cluster 3 had the worst death-censored graft survival at 1 and 5 years, respectively.
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Table 2. Post-transplant outcomes according to the clusters.

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6

Primary non-function 36 (1.8%) 26 (1.2%) 5 (1.4%) 4 (1.2%) 7 (0.7%) 31 (1.0%)
Delayed graft function 759 (38.3%) 535 (25.1%) 149 (41.7%) 101 (30.2%) 340 (31.8%) 1247 (40.8%)

1-year survival 95.3% 93.9% 91.0% 98.1% 92.2% 92.5%
5-year survival 79.2% 68.6% 62.1% 90.5% 68.9% 67.0%

1-year death-censored
graft survival 91.2% 94.3% 87.8% 85.6% 93.4% 92.3%

5-year death-censored
graft survival 73.1% 84.3% 70.1% 81.8% 80.5% 76.2%

1-year graft survival 88.1% 90.2% 81.8% 84.8% 88.6% 87.3%
5-year graft survival 63.9% 64.2% 53.2% 76.9% 63.4% 58.9%
1-year acute rejection 157 (7.9%) 134 (6.3%) 38 (10.6%) 8 (2.4%) 69 (6.5%) 200 (6.6%)

The 1-year and 5-year overall graft survival rates were 88.1% and 63.9% in cluster 1,
90.2% and 64.2% in cluster 2, 81.8%, and 53.2% in cluster 3, 84.8% and 76.9% in cluster 4,
88.6% and 63.4% in cluster 5, and 87.3% and 58.9% in cluster 6, respectively (p < 0.001)
(Figure 5C). Cluster 2 and cluster 4 had the best overall graft survival at 1 and 5 years,
respectively, whereas cluster 3 had the worst overall graft survival at 1 and 5 years.

The incidence of acute allograft rejection within 1 year after kidney transplant was
7.9% in cluster 1, 6.3% in cluster 2, 10.6% in cluster 3, 2.4% in cluster 4, 6.5% in cluster 5,
and 6.6% in cluster 6 (p < 0.001). Cluster 3 had the highest acute rejection, whereas cluster 4
had the lowest acute rejection.
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4. Discussion

In this study, an unsupervised machine learning consensus clustering approach was
used to categorize kidney transplant recipients from deceased donors with high KDPI
in the OPTN/UNOS database into high stability clusters of 6 different phenotypes. The
characteristics of recipients in these subgroups were (1) young, black, hypertensive, non-
diabetic patients who were on dialysis for more than 3 years before receiving kidney
transplants from black donors in cluster 1; (2) elderly, white, non-diabetic patients who had
preemptive kidney transplants or were on dialysis less than 3 years before receiving kidney
transplants from older white donors in cluster 2; (3) young, non-diabetic, retransplant
patients in cluster 3; (4) young, non-obese, non-diabetic patients who received dual kidney
transplants from pediatric, black, non-hypertensive non-ECD deceased donors in cluster 4;
(5) the low number of HLA mismatches in cluster 5; (6) diabetes mellitus in cluster 6. These
distinct phenotypes of transplant recipients are associated with different clinical outcomes,
including overall survival, death censored graft survival, and acute rejection.

Recipients in cluster 2 accounted for the second largest group among the transplant
recipients. Patients in cluster 2 had the best 1- and 5-year death censored graft survival,
1-year overall graft survival and the second lowest risk of rejection after cluster 4. Most
patients in this cluster had glomerular disease, PKD and other causes, and underwent
preemptive kidney transplants (16.8%), or had a shorter dialysis duration of fewer than
3 years (42.9%). Compared with other clusters, only 14% had diabetes mellitus, had
the second highest functional status (59.7%) after cluster 4 and had a higher level of
educational attainment. These favorable characteristics may explain the findings of the
superior patients and graft survival. This is consistent with prior studies showing that pre-
emptive kidney transplants, functional status, and better access to pre- and post-transplant
care are associated with improved outcomes [15–18].
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Recipients in cluster 6 were older diabetic patients who were likely to be obese with
reduced functional status and did not have a working income. They also had the second
lowest number of pre-emptive kidney transplants. These findings likely explain the poorer
outcomes when compared to cluster 2 [16,17,19]. Areas to improve outcomes include
emphasizing the need for pre-emptive kidney transplantation, diabetes care, improvement
of functional status, and management of immunosuppression in the elderly to reduce
complications such as infection and malignancy [20].

Recipients in cluster 4 were characterized by the presence of the highest number of
dual kidney transplants (83.6%). Compared to other clusters, they were younger, likely had
a lower BMI, had the highest functional status, were more likely to be non-US residents,
had private insurance, and the majority received thymoglobulin for induction immuno-
suppression. Cluster 4 had the lowest rate of rejection, likely because of non-sensitization,
better income, and access to post-transplant care and thymoglobulin induction, which likely
resulted in the best patient survival and 5-year overall graft survival. Recipients were more
likely to receive a kidney from outside the local organ procurement organization (74.3%),
leading to longer cold ischemia time, surgical complexities of dual kidney transplant and
undefined donor characteristics (other than mean age (year) was 0.7 ± 3.1), which may
explain the worst 1-year death censored graft survival.

Cluster 3 was characterized by kidney re-transplantation in all recipients. They were
likely to be younger, non-diabetic, and dialyzed for more than 3 years (55.5%) with lower
serum albumin. This group had recipients who were sensitized, characterized by an
elevated panel reactive antibody (PRA) of 48% (IQR 0-95) and the highest number of
delayed graft functions (41.7%) compared to other clusters. Despite previous sensitization,
9.5% of the patients in this group did not receive any induction immunosuppression, which
was the highest compared to other clusters. This cluster had the worst outcomes, including
poor 5-year death censored graft survival, poor 1 and 5-year overall graft survival, and the
highest incidence of acute rejection within 1 year of transplantation.

Cluster 5 recipients were characterized by the presence of the lowest number of
HLA mismatches compared to other clusters. However, the incidence of acute rejection
was 6.5%, which was comparable to cluster 2 and cluster 6. These findings in cluster 3
and cluster 5 create an opportunity to improve pre- and post-transplant care in these
recipients to improve outcomes. Areas of future investigations to improve outcomes in this
cluster include optimal induction and maintenance of immunosuppression in re-transplant
recipients, earlier detection of allograft rejection by access to protocol biopsies and cell-free
DNA, and strategies to decrease cold ischemia time and delayed graft function [20–24].

Cluster 1 was characterized by recipients who were likely young, black (65.4%),
non-diabetic but hypertensive with fewer comorbidities, and had been on dialysis for
more than 3 years. This cluster had lower number of pre-emptive kidney transplants
and lower educational attainment compared to other clusters. Although these patients
were young with fewer comorbidities, they remained on dialysis for a longer duration
and did not receive pre-emptive transplants compared to other clusters. This might be
explained by the fact that the black population experiences delay in referral for transplant
evaluation, limiting pre-emptive transplants, and remaining on dialysis longer than the
white population [10]. Thus, this creates opportunities to determine health inequities and
disparities among the black population to improve outcomes in the future [10,25,26].

This study has some limitations. Due to the nature of the national registry cohort, it is
difficult to determine what causes lead to graft rejection, graft loss, and death. Moreover,
there were a small number of missing data and lost to follow-up patients that could have
affected the outcomes of interest. To minimize the potential of bias, however, missing data
were imputed using the multivariable imputation by chained equation approach.

According to our knowledge, this is the first machine learning approach specifically
targeted at kidney transplant recipients with high KDPI kidneys. We identified six-clusters
of characteristics of patients using machine learning clustering methods without human
intervention. The results of our machine learning clustering approach provide a deeper
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understanding of the optimal recipient characteristics for high KDPI kidneys as well as
chances to improve care for vulnerable groups of high KDPI transplant recipients. Future
studies are required to individualize pre- and post-transplant care for transplant recipients
with high KDPI kidneys in order to optimize their results. Moreover, future studies
assessing the paired kidneys within the clusters with one kidney transplanted and the other
discarded, are needed to provide additional information that influence informed decision
making for organ allocation. In addition, while the findings of unsupervised ML clustering
approach in this study provide detailed information on distinct phenotypes of transplant
recipients with high KDPI kidneys, unsupervised ML algorithms have their limitations that
do not directly generate risk prediction for each patient. Thus, future studies assessing the
utilization of supervised ML prediction models for transplant outcomes among transplant
recipients with high KDPI kidneys are required.

5. Conclusions

In this cohort study, the analysis of the OPTN/UNOS database using an unsupervised
machine learning clustering approach identified 6 clinically distinct clusters of kidney
transplant recipients from deceased donors with high KDPI. An improved understanding
of these phenotypes may identify strategies to improve transplant recipient outcomes.
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