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Abstract

In this paper, we propose a new estimation methodology based on a projected non-linear conjugate 

gradient (PNCG) algorithm with an efficient line search technique. We develop a general PNCG 

algorithm for a survival model incorporating a proportion cure under a competing risks setup, 

where the initial number of competing risks are exposed to elimination after an initial treatment 

(known as destruction). In the literature, expectation maximization (EM) algorithm has been 

widely used for such a model to estimate the model parameters. Through an extensive Monte 

Carlo simulation study, we compare the performance of our proposed PNCG with that of the EM 

algorithm and show the advantages of our proposed method. Through simulation, we also show 

the advantages of our proposed methodology over other optimization algorithms (including other 

conjugate gradient type methods) readily available as R software packages. To show these, we 

assume the initial number of competing risks to follow a negative binomial distribution although 

our general algorithm allows one to work with any competing risks distribution. Finally, we apply 

our proposed algorithm to analyze a well-known melanoma data.
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1 Introduction

Due to the advancements in the treatment of certain types of disease, including cancer and 

heart disease, we see a significant number of patients to respond favorably to the treatment 

and not show recurrence until the end of a long follow-up time. In literature, these patients 

are called recurrence-free survivors. It may be possible that some of these recurrence-free 

survivors will not show recurrence for a sufficiently long period after the follow-up time 

since they may reach a stage where the disease is undetectable as well as harmless. These 

patients, among the recurrence-free survivors, are called long-term survivors or “cured”. It is 

to be noted that the estimation of this long-term survivor rate or cure rate cannot be readily 
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obtained from a given survival data since we are not in a position to identify which of the 

recurrence-free survivors can be considered as long-term survivors. This issue arises because 

a patient who is susceptible to disease recurrence soon after the follow-up time may also 

show no recurrence and survive until the end of the follow-up time. However, the estimation 

of a treatment-specific cure rate is crucial to observe the trend in the survival of patients 

suffering from a particular disease. Furthermore, it is an important measure to judge the 

efficacy of a treatment and its adoption in practice, as opposed to the standard treatment.

The literature on cure rate models is vast and the topic itself is one of the most emerging 

areas of modern research. The early work on cure rate model dates back to the work of 

Boag (1949) followed by Berkson and Gage (1952), which is known in the literature as 

the mixture cure rate model. According to the mixture cure rate model, the overall survival 

function (also called the population survival function) of the time-to-event variable Y can be 

split into two parts, one corresponding to the cured group and the other corresponding to the 

susceptible group. Such a survival function is given by

Spop(y) = p0 + 1 − p0 Ss(y), (1)

where p0 is the proportion of cured subjects (cure rate) and Ss(y) is a proper survival 

function for the susceptible subjects; see Sy and Taylor (2000) and Kannan et al. (2010). 

Note that Spop(y) is not a proper survival function as limy→∞ Spop(y) = p0 (≠ 0). One 

major drawback of the mixture cure rate model in (1) is that it does not incorporate a 

scenario where several risk factors may compete to produce the event of interest; known as 

the competing risks scenario. To circumvent this problem, Chen et al. (1999) proposed the 

promotion time cure rate model by considering a competing risks scenario and assuming the 

latent number of risk factors to follow a Poisson distribution. The corresponding population 

survival function is given by

Spop(y) = e−η(1 − S(y)), (2)

where η is the mean number of risk factors and S(y) is the common survival function of 

the progression times, defined as the time taken by each risk factor to produce the event. 

Note that in this case the cure rate is given by e−η. Rodrigues et al. (2009) unified the 

mixture and promotion time cure rate models by proposing the Conway-Maxwell Poisson 

(COM-Poisson) cure rate model, which assumes the number of risk factors to follow a 

COM-Poisson distribution that can handle both over-dispersion and under-dispersion relative 

to the Poisson distribution. For this unified cure rate model, the population survival function 

is given by

Spop(y) = Z(ηS(y), ϕ)
Z(η, ϕ) , (3)

where Z(a, ϕ) = ∑j = 0
∞ aj

(j!)ϕ
 and ϕ is the dispersion parameter of the COM-Poisson 

distribution. In (3), is related to the mean number of risk factors and S(y) is as defined 

before for the promotion time model. In this case, the cure rate is given by 1
Z(η, ϕ) . Note 
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that if ϕ → ∞ in (3), the COM-Poisson model reduces to the mixture model in (1) with 

p0 = 1
1 + η , whereas, if ϕ = 1 in (3), the COM-Poisson model reduces to the promotion time 

model in (2); see Cancho et al. (2011), Balakrishnan and Pal (2015), Balakrishnan and 

Pal (2016), and Balakrishnan and Feng (2018) for some recent works on cure rate model 

using COM-Poisson distribution. To develop the associated inferential procedures, several 

approaches have been proposed in the literature. In this regard, one may refer to parametric 

approaches (Farewell, 1986; deFreitas and Rodrigues, 2013; Balakrishnan and Pal, 2013); 

semi-parametric approaches (Kuk and Chen, 1992; Li and Taylor, 2002; Balakrishnan et 

al., 2017); and non-parametric approaches (Maller and Zhou, 1996; Balakrishnan et al., 

2016). Rodrigues et al. (2011) first brought in a practical and interesting interpretation of 

the biological mechanism of the occurrence of an event of interest; see Cooner et al. (2007). 

They proposed a flexible cure rate model, known as the destructive cure rate model, by 

considering the possible elimination (or destruction) of risk factors after an initial treatment. 

Since then, several papers have been published in the context of destructive model and 

interested readers may refer to Cancho et al. (2013), Pal and Balakrishnan (2016), Pal et al. 

(2018), and Gallardo et al. (2016), among others.

In this paper, we consider a competing risks scenario and accommodate the elimination of 

risk factors after an initial treatment. Under such a setup, Rodrigues et al. (2011) assumed 

a weighted Poisson distribution for the initial number of competing risks and carried out a 

direct maximization of the observed likelihood function for parameter estimation. Since 

then, few other authors studied the destructive cure rate model and interested readers 

may refer to Pal and Balakrishnan (2016), Gallardo et al. (2016), Pal and Balakrishnan 

(2017), and Pal et al. (2018), among others. In particular, Pal and Balakrishnan (2016), 

Pal and Balakrishnan (2017), and Pal et al. (2018) studied the destructive cure rate 

model by assuming different distributions for the initial risk factors. For the maximum 

likelihood estimation (MLE) of the model parameters, the authors developed the expectation 

maximization (EM) algorithm; see McLachlan and Krishnan (2008). However, they noted 

that the likelihood surface was flat with respect to certain parameters of the model and 

as such simultaneous maximization of all model parameters was an issue. To circumvent 

this problem, the authors proposed profile likelihood techniques within the EM algorithm. 

Although the proposed approach performed satisfactorily, few drawbacks were noted. For 

instance, the root mean square error (RMSE) of the regression parameters associated with 

the cure rate turned out to be high. Such inaccuracy may lead to imprecise inference on the 

overall population survival. Furthermore, the suggested profile likelihood techniques require 

the EM algorithm to be run several times which is computationally expensive. To evade 

these issues with the developed EM algorithm, we propose a new estimation procedure 

based on a projected non-linear conjugate gradient (PNCG) algorithm with an efficient line 

search (Hager and Zhang, 2005) that (i) allows simultaneous maximization of all model 

parameters; (ii) results in more precise estimates, specifically for the parameters associated 

with the cure rate; and (iii) is computationally less expensive when compared to the EM 

algorithm that requires a profile likelihood approach. We also compare our proposed PNCG 

algorithm with the EM algorithm as well as with other optimization algorithms, including 

available conjugate type methods, readily available as R software packages and show the 
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main advantages of using our methodology. To the best of our knowledge, we are the first 

one to propose such an algorithm in the context of cure rate models.

The rest of the paper is organized as follows. In Section 2, we give a brief overview of 

the destructive cure rate model. In Section 3, we describe our proposed PNCG algorithm in 

detail. In Section 4, we present the results of a detailed simulation study where we assume 

the initial competing risks to follow a negative binomial distribution. We first compare 

the performance of our PNCG algorithm with the EM algorithm developed by Pal and 

Balakrishnan (2016). Then, we also compare the PNCG algorithm with other optimization 

techniques available as R packages. In Section 5, we apply the PNCG algorithm to analyze 

to a well-known melanoma data. Finally, in Section 6, we make some concluding remarks 

and discuss some future research in this direction.

2 Destructive cure rate model

We can define the destructive cure rate model as follows; see Rodrigues et al. (2011). First, 

we assume that there are M latent risk factors competing to produce an event of interest 

(for instance, death due to cancer or recurrence of a disease). These risk factors being 

unobserved, we assume them to follow a discrete distribution with mass function pm = P[M 
= m]. With the passage of time or after an initial treatment, we consider the possibility of 

elimination of risk factors, which we assume to occur according to a Binomial law. More 

specifically, we define the number of active risk factors after elimination, i.e., those risk 

factors that are still capable of producing the event, as

D =
X1 + X2 + … + XM, M > 0,
0, M = 0,

(4)

where Xj′s are independent Bernoulli random variables with P[Xj = 1] = p, for j = 1, 2,···, 

M, with p denoting the activation probability of each risk factor. Note that these assumptions 

are in line with the assumptions of Rodrigues et al. (2011) who first proposed the destructive 

cure rate model; see also Yang and Chen (1991). Using the distribution of M and noting that 

the conditional distribution of D given M = m is Binomial (m, p), the marginal distribution 

of D can be obtained. Given D = d, we now let Wj (j = 1, 2, …, d) to denote the time taken 

by the j–th active risk factor to produce the event, also called the progression time. Once 

again, using the same assumptions as in Rodrigues et al. (2011), we let the progression times 

Wj to be independently distributed and distributed independently of D with distribution 

function F (·) = 1 − S(·), where S(·) is the corresponding survival function. Note that the 

individual progression times are not observed, however, we only observe the time taken by 

the first active risk factor to produce the event, which we term as the lifetime. Notationally, 

such a lifetime in a competing risks scenario is defined as

Y =
min W 1, …, W D , D > 0
∞, D = 0.

(5)

The infinite lifetime corresponding to D = 0 leads to a proportion, say p0, of the population 

who are not susceptible to the occurrence of the event. We term this proportion as the 
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“cure rate” and its estimation is of great interest to us. As pointed out by Rodrigues et al. 

(2011), the destructive cure rate model is not identifiable as per Li et al. (2001). One way 

to circumvent this issue is to bring in the effect of prognostic factors (or covariates). For 

instance, we can relate the parameter p to a set of covariates x using the logistic link function 

p =
exp x′β1

1 + exp x′β1
 and a suitable parameter related to the distribution of M to another set of 

covariates z using an appropriate link function g(z′ β2), where β1 and β2 represents the 

vectors of regression coefficients. Furthermore, we have to make sure that either β1 or β2 

do not include the intercept term to retain identifiability. Note also that x and z cannot share 

common elements. The survival function, also called the long-term survival function, of the 

random variable Y in (5) is given by

Spop(y) = P[Y ≥ y] = ∑
d = 0

∞
P[D = d] S(y) d .

The corresponding density function, called the long-term density function, can be easily 

obtained as fpop(y) = − Spop′ (y). On assuming specific distributions for M, and hence for D, 

explicit expressions for Spop(y) and fpop(y) can be obtained.

3 Estimation method: projected non-linear conjugate gradient algorithm 

with line search

We consider a scenario where the lifetime data may not be completely observed and is thus 

subject to right censoring. We let Ti and Ci denote the actual failure time and censoring time, 

respectively, i = 1, 2,···, n, where n denotes the sample size. The lifetime that we observed is 

then given by Yi = min{Ti, Ci}. We let δi denote the right censoring indicator, i.e., δi takes 

the value 1 if the lifetime is observed and 0 if it is right censored. The observed data can 

then be represented by O = {(yi, δi, xi, zi), i = 1, 2, ···, n}. On assuming non-informative right 

censoring, we can define the observed data likelihood function as

L(θ) = ∏
i = 1

n
fpop yi ∣ xi, zi

δi Spop yi ∣ xi, zi
1 − δi, (6)

where θ is the vector of unknown parameters. We, now, desire to estimate the optimal 

parameter set, denoted by θ , that maximizes the likelihood function given in (6). Applying 

the natural logarithm on both sides of (6), we obtain the log-likelihood function as follows:

l(θ) = ∑
i = 1

n
δilog fpop yi ∣ xi, zi + 1 − δi log Spop yi ∣ xi, zi . (7)

Then, the corresponding maximization problem to obtain the optimal parameter set is given 

by

θ = arg maxθ ∈ Ul(θ), (8)
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where U is the feasible set of constraints.

The function l is non-linear with respect to θ and, thus, gives rise to a non-linear 

maximization problem. To solve such a non-linear maximization problem (8), we use the 

non-linear conjugate gradient method (NCG) together with an efficient line search technique 

based on the formula of Hager and Zhang (2005). This method has been primarily used 

in the context of solving partial differential equation (PDE)-constrained optimal control 

problems arising in mathematical models of crowd motion, game theory and medical 

imaging (Roy et al., 2016; Roy et al., 2017; Roy et al., 2018; Adesokan et al., 2018), but 

not well explored in the context of cure rate models. The NCG scheme has significant 

advantages over traditional Newton-based schemes (for instance, the EM algorithm in 

Pal and Balakrishnan, 2016, where the maximization step was carried out using a one-

step Newton Raphson method). For example, even though Newton’s method potentially 

converges faster, it is highly expensive and time consuming to compute the Hessian in a 

Newton-based method, specially for optimization problems with large number of parameters 

and bigger sample size n. On contrary, in the NCG method, only the gradient is required to 

be evaluated, leading to a much faster convergence than the Newton-based schemes.

To start the NCG scheme, we use an initial guess θ0 for the parameter set. It has been 

observed that the performance of the NCG method remains the same for a large choice of 

initial guesses, which suggests the robustness of the method; see Roy et al., (2017) and 

Adesokan et al., (2018). Due to the fact that the maximum rate of increase of a function is 

along the positive gradient direction, the initial guess is updated by moving in the search 

direction given by the gradient d0 = g0 = ∂
∂θ l θ0  of the function l. In subsequent iterations, 

the search directions are recursively given by the formula

dk + 1 = gk + 1 + ξkdk,   k = 0, 1, 2, ⋯,

where gk = ∂
∂θ l θk  and ξk is given by the formula of Hager-Zhang (Hager and Zhang, 2005) 

as follows:

ξk = 1
dk′wk

wk − 2dk
wk′wk
dk′wk

′
gk + 1 (9)

with wk = gk+1 – gk. We update our parameter set θ using a steepest ascent scheme given 

below

θk + 1 = θk + skdk, (10)

where sk > 0 is a steplength obtained through a line search algorithm. An accurate estimate 

of the steplength sk is crucial because a very large sk would result in deviating from the 

path of the maximizer, whereas a very small sk would lead to slow convergence of the NCG 

scheme. Thus, we deploy a line-search algorithm to obtain sk that uses the following Armijo 

condition (Annunziato and Borzi, 2013) of sufficient increase of l
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l θk + skdk ≥ l θk + λsk dk′ gk

with 0 < λ < 1/2; see Nocedal and Wright (1999). Such a method leads to an optimal 

steplength sk resulting in a fast and accurate optimal solution through the NCG.

Traditional gradient-based schemes look for an optimum in a global space of parameters. 

But for the maximization problem given in (8), one needs to determine the maximizer that 

lies in the constraint set U. Thus, we need to ensure that the solution obtained at the end of 

each iterative step in the NCG scheme lies in the constraint set U. For this purpose, we use 

a projection step onto the constraint set U that is applied to the parameter update step (10) 

through the following way:

θk + 1 = ℙ θk + skdk ,

where ℙ[θ] is the projected parameter set. The projection step ensures that the parameter 

values obtained in each iteration lies inside the constraint set U. We call our new scheme 

as the projected NCG (PNCG) scheme with line search. The scheme is terminated once the 

relative difference between two successive iterates is less than a specified tolerance level or 

the number of iterations exceed the maximum number of iterations. The algorithm of the 

PNCG scheme is summarized below.

The convergence of the PNCG scheme, as described in Algorithm 3.1, follows from 

Neittaanmaki and Tiba (1994, Lemma 1.6, p. 235).

4 Simulation study with negative binomial competing risks

We shall now assume the distribution of the initial number of competing risks to be negative 

binomial with the following mass function:

pm = P[M = m; η, ϕ] =
Γ m + 1

ϕ
Γ 1

ϕ m!
ϕη

1 + ϕη
m

(1 + ϕη)− 1
ϕ ,     m = 0, 1, 2, …, (11)

where η > 0 and ϕ > 0. Using (11) and noting that the conditional distribution of D given M 
= m is Binomial (m,p), Pal and Balakrishnan (2016) showed that the mass function of D can 

be expressed as
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P[D = d; η, ϕ, p] =
Γ d + 1

ϕ
Γ 1

ϕ d!
ϕηp

1 + ϕηp
d 1

1 + ϕηp

1
ϕ ,     d = 0, 1, 2, ⋯, (12)

which is once again a negative binomial distribution. Rodrigues et al. (2011) showed that the 

overall survival function or the population survival function of the lifetime variable Y in (5) 

can be expressed as

Spop(y) = P[Y > y] = 1 + ϕηpF(y) − 1
ϕ (13)

and the corresponding density function can be expressed as

fpop(y) = ηp
1 + ϕηpF(y)Spop(y)f(y), (14)

where f(·) is the density function corresponding to F(·). Noting that cure rate is the long-term 

survival probability, we can easily obtain the cure rate as

p0 = 1
1 + ϕηp

1
ϕ . (15)

In this regard, Pal and Balakrishnan (2016) showed that the overall cure rate can be 

decomposed into pre-destructive and post-destructive components. From (15), we note 

that the cure rate is a decreasing function of both η and p. We will link the parameter 

η using a log-linear link function η = exp(z′ β2). Although we have assumed negative 

binomial distribution for competing risks, one can easily incorporate other competing risks 

distribution such as those considered in Pal and Balakrishnan (2017) and Pal et al. (2018), 

among others. As done in Pal and Balakrishnan (2016), we will also assume F(·) and f(·) to 

be the distribution function and density function, respectively, of a two-parameter Weibull 

distribution defined as

F(y) = 1 − exp − γ2y
1
γ1  and

f(y) = 1
γ1y γ2y

1
γ1 1 − F(y)

(16)

for y > 0, γ1 > 0, and γ2 > 0. Thus, we now have θ = ϕ, β1′ , β2′ , γ1, γ2 ′, U = {θ: ϕ > 0, β1, β2, 

γ1 > 0, γ2 > 0}, and

ℙ[θ] = max(0, ϕ), β1, β2, max(0, γ1), max(0, γ2) .

For the purpose of this simulation study, we mimic the real melanoma dataset that we 

analyze in the next section. For this dataset, two covariates of interest are tumor thickness 

(measured in mm) and ulceration status (presence of ulcer denoted by 1 and absence denoted 

by 0). A preliminary analysis of this data indicates that 44% of patients had the presence of 

ulcer. For this group of patients, the mean and standard deviation of tumor thickness turned 
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out to be 4.34 mm and 3.22 mm, respectively. On the other hand, for the group of patients 

without the presence of ulcer, the mean and standard deviation of tumor thickness turned 

out to be 1.81 mm and 2.19 mm, respectively. Moreover, as noted by Pal and Balakrishnan 

(2016), histograms of tumor thickness for two groups suggest that a Weibull distribution 

may be suitable for the group with presence of ulcer, whereas an exponential distribution 

may be suitable for the group without the presence of ulcer. Thus, to generate the ulceration 

status data, we first generated a Uniform (0,1) random variable, say, U. If U ≤ 0.44, we 

took ulceration status (x) to be 1 and then generated the tumor thickness (z) from a Weibull 

distribution. For the choice of the Weibull parameters here, we equated the theoretical mean 

and variance of the Weibull distribution to 4.34 and 10.37, respectively. On the other hand, 

if U > 0.44, we took ulceration status (x) to be 0 and generated tumor thickness (z) from 

an exponential distribution. For a choice of this exponential parameter, we simply equated 

the exponential mean to 1.81. To make the model identifiable, we linked the parameter 

η to ulceration status without the intercept term and the parameter p to tumor thickness 

(including the intercept term). Thus, we have the following link functions: η = exp(β2z) 

and p =
exp β0 + β1x

1 + exp β0 + β1x . To decide on the true value of the regression parameter β2, we note 

that the absence of ulcer would simply imply η taking on the value 1. Intuitively, with the 

presence of ulcer, η is expected to be higher since it is related to the mean number of active 

competing risks. Thus, we chose η to be 3 in the presence of ulcer, which gave us the true 

value of β2 as log(3) = 1.099. To decide on the true values of the regression parameters β0 

and β1 corresponding to p, we chose a low and a high value of p as 0.3 and 0.9, respectively. 

Also, from the generated tumor thickness data, we identified the minimum (xmin) and 

the maximum (xmax) tumor thickness values. Then, we came up with the following two 

equations to solve for β0 and β1.

exp β0 + β1xmin
1 + exp β0 + β1xmin

= 0.3
exp β0 + β1xmax

1 + exp β0 + β1xmax
= 0.9.

Note that the true values of β0 and β1 depends on the generated tumor thickness data 

and as such cannot be kept fixed across the generated data sets; see Pal and Balakrishnan 

(2016). To incorporate random censoring, the censoring time (C) distribution was chosen to 

be exponential with censoring rate 0.15. Next, to generate the lifetime data from the DNB 

model, we followed the following steps:

i. Generate the initial number of risk factors M from a negative binomial 

distribution with mass function as in (11) for a chosen value of ϕ.

ii. If M = 0 in (i), set the number of active risk factors D = 0.

iii. If M > 0 in (i), generate D from a Binomial distribution with the observed value 

of M as the number of trials and success probability p.

iv. From (ii) and (iii), if D = 0, set the observed lifetime Y as the censoring time, 

i.e., Y = C.
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v. From (ii) and (iii), if D > 0, generate D Weibull random variables {W1, W2,···, 

WD} with density function as in (16) for chosen values of γ1 and γ2. Then, take 

the observed lifetime as Y = min{min{W1, W2, ···, WD}, C}.

vi. From (iv) and (v), if Y = C, set δ = 0, otherwise, set δ = 1.

We considered the following true choices: (γ1, γ2) = (0.215,0.183) and (0.316,0.179); n = 

150, 300 and 400; and ϕ = 0.5 and 0.75. We ran our simulations in R statistical software and 

all results were based on 500 Monte Carlo runs. To come up with a choice of initial values 

to start the PNCG algorithm, we first created an interval for each model parameter by taking 

20% deviation o its true value and then selected a value at random from the created interval, 

which was used as the parameter’s initial value.

To demonstrate the performance of our proposed PNCG algorithm with line search, we 

chose kmax = 500, λ = 0.1, and tol = 0.001. Note that we also tried the algorithm for other 

values of λ within its range, and our findings were similar. First, we present the calculated 

bias and root mean square (RMSE) of the estimates obtained using PNCG algorithm and 

compare these with the bias and RMSE obtained using the EM algorithm developed by Pal 

and Balakrishnan (2016). In this regard, note that in the EM algorithm the maximization step 

was carried out using a one-step Newton Raphson method and the same stopping criterion 

as in the aforementioned PNCG algorithm was used. Furthermore, note that in the PNCG 

algorithm the maximization was done on the observed log-likelihood function, whereas in 

the EM algorithm the maximization was done on the Q − function (using the same notation 

as in Pal and Balakrishnan, 2016).

4.1 Comparison with EM algorithm

In Tables 1 and 2, we present the simulation study results, in terms of bias and RMSE when 

the true value of ϕ is 0.50 and 0.75, respectively. When we employed the PNCG algorithm, 

we did not face any issue with simultaneous maximization of all model parameters. This 

is a nice behavior of the PNCG algorithm and is unlike the EM algorithm developed by 

Pal and Balakrishnan (2016), where simultaneous maximization was not possible and the 

authors had to keep the parameters γ1 and ϕ fixed for the EM procedure to work. This is 

a big advantage of the PNCG algorithm over the EM algorithm. It is clear that the PNCG 

algorithm provides estimates that are very close to the true parameter values. Both bias 

and RMSE are found to decrease with an increase in sample size, which is also a very 

satisfactory property. When compared to the estimates produced by EM algorithm, we first 

note that the bias in the estimates of the PNCG algorithm is lower than that of the EM 

algorithm. Note, in particular, the reduction in the bias of ϕ that the PNCG algorithm results 

when the true value of ϕ is 0.75. When compared to the EM algorithm, the PNCG algorithm 

also results in a significant reduction in the RMSE for the regression parameters (β0, β1, β2) 

as well as for the parameter ϕ. This is another big advantage of the PNCG algorithm over 

the EM algorithm, noting that the cure rate is a pure function of the regression parameters 

and ϕ only. For the lifetime parameters γ1 and γ2, both algorithms result in similar bias and 

RMSE. From the above findings, it is very clear that the PNCG algorithm results in more 

accurate and precise estimates of the model parameters and is thus preferred over the EM 

algorithm.

Pal and Roy Page 10

Commun Stat Simul Comput. Author manuscript; available in PMC 2023 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Next, we compare the performance of the PNCG algorithm, in terms of bias and RMSE, 

with the following three optimization routines readily available in R software: (i) “optim” 

with the “CG” (conjugate gradient) method that is based on the work by Fletcher and 

Reeves (1964), (ii) “nlm” that uses a Newton-type algorithm (Schnabel et al., 1985), and (iii) 

“Rcgmin” which is a conjugate gradient optimization that uses the Dai-Yuan update (Dai 

and Yuan, 2001). As in the case of PNCG, for the aforementioned optimization routines, 

maximization was also done on the observed log-likelihood function. Furthermore, we used 

the same technique of finding the initial values as we did for the PNCG method.

The implementation of any non-linear conjugate gradient scheme involves a line search 

algorithm and determining the search directions for descent of the function under 

consideration. Convergence of the non-linear conjugate gradient depends on the accuracy 

of the line search algorithm and the corresponding update of the search directions. Since 

exact line search algorithms are difficult to realize in practice, inexact line search algorithms 

are used based on the Wolfe conditions (see Wolfe, 1969). With the output of the step size 

obtained from a line search algorithm, the search directions are updated to obtain descent 

of the function. An accurate line search algorithm ensures that these search directions yield 

descent. Thus, it is important to devise a non-linear conjugate gradient algorithm that would 

provide descent directions in combination with inexact line search algorithms. It has been 

shown that the conjugate gradient method proposed by Fletcher and Reeves (1964) may not 

yield descent directions with inexact line search algorithms that satisfy the Wolfe conditions 

even for strongly convex problems. Also the scheme by Dai and Yuan (2001) requires a 

stronger version of the Wolfe conditions to prove convergence of the algorithm (Hager and 

Zhang, 2005; Hager and Zhang, 2006). However, for general inexact line search algorithms, 

the Dai-Yuan method cannot be shown to be convergent. Our PNCG scheme with the update 

parameter ξk, originally proposed by Hager and Zhang (2005), counters these two major 

issues as it is convergent for any inexact line search algorithm and is more fast and accurate 

in comparison to the other two conjugate gradient algorithms. Thus the proposed PNCG 

is efficient and more robust with applications to a large class of non-linear, non-convex 

functions.

4.2 Comparison with available optimization routines in R software

For the purpose of this comparison, we consider two di erent settings - Setting 1: γ1 = 0.316, 

γ2 = 0.179, ϕ = 0.75 and Setting 2: γ1 = 0.316,γ2 = 0.179, ϕ = 0.50. In Table 3, we present 

the comparison in terms of bias and RMSE. Note that the “optim”, “nlm”, and “Rcgmin” 

methods also allowed simultaneous estimation of all model parameters as we have seen in 

our proposed PNCG algorithm. However, our proposed PNCG algorithm outperforms other 

optimization techniques both in terms of bias and RMSE. Note, in particular, the reduction 

in bias and RMSE that the PNCG results with respect to the DNB shape parameter ϕ. It 

is important to mention here that for both “optim” (method=CG) and “Rcgmin”, the two 

conjugate gradient optimization techniques available in R, the number of iterations reached 

the maximum (set at 500) for every Monte Carlo run. As such, the reported bias and RMSE 

for these two methods actually correspond to the estimates obtained at the last iteration 

(500th) step. This is unlike our proposed PNCG algorithm, where the convergence took 

place in less than 110 iterations (on an average) for any considered parameter setting. The 
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“nlm” routine, on the other hand, took less than 20 iterations (on an average) to converge. 

Even though the “nlm” converges faster than PNCG, the final estimates obtained from 

PNCG is more accurate and more precise (as already seen from Table 3). In Table 4, we 

present the bias in the estimate of the population survival probability, Spop(y), at y = 5, z = 

1 (ulcer status), and x = 2 (tumor thickness) for the PNCG and other candidate algorithms. 

Once again, for any given parameter setting, it can be seen that the PNCG estimates the 

survival probability with the smallest bias.

5 Real data analysis

To illustrate the proposed PNCG algorithm, we analyzed a well-known melanoma data that 

is available in the “timereg” package of R software. The dataset contains 205 patients who 

were observed after operation for removal of malignant melanoma in the period 1962–1977 

and then followed until 1977. The observed time is recorded in years and refers to the time 

until the patient’s death or the censoring time. It has a mean of 5.9 years and a standard 

deviation of 3.1 years. Patients who survived the end of the study and patients who died due 

to some other causes were considered as censored observations. The percentage of censored 

observations is 72%. For our analysis, we selected the ulceration status (presence of ulcer 

for 90 patients and absence of ulcer for 115 patients) and tumor thickness (measured in mm 

with a mean of 2.92 and a standard deviation of 2.96) as prognostic factors. As done in Pal 

and Balakrishnan (2016), we linked the parameter p to tumor thickness and the parameter 

η to ulceration status to retain identifiability of model parameters; see also Rodrigues et al. 

(2011).

We employed the proposed PNCG algorithm and the results are presented in Table 5. For 

comparison purpose, we also present the EM, optim, nlm, and Rcgmin estimates together 

with their standard errors. For the EM algorithm, the values are taken from Table 3 of Pal 

and Balakrishnan (2016). The EM estimates are used as initial values for the PNCG and 

other optimization algorithms. Note that in the EM algorithm, the M-step was carried out 

using a one-step Newton Raphson method and the estimates of γ1 and ϕ were obtained by 

employing a two-way profile likelihood approach within the EM algorithm. Furthermore, the 

standard errors corresponding to the EM estimates were obtained by inverting the observed 

information matrix under the assumption that γ1 and ϕ were fixed. For the optim and nlm 

routines, the hessian matrix is readily available as an output which we then inverted to 

calculate the standard errors. For the Rcgmin routine, however, we computed the hessian 

matrix numerically using the package “numDeriv” and using the “Richardson” method. For 

the destructive model that we considered, we also tried to compute the standard errors by 

inverting the observed information matrix (with respect to all model parameters), however, 

we noticed that the second-order derivatives of the observed log-likelihood function were 

highly unstable, specifically with respect to the parameter ϕ. As such, corresponding to 

the PNCG estimates, we calculated the standard errors using the non-parametric bootstrap 

method. It is clear that the bootstrap standard errors are much lower compared to the EM, 

optim, nlm, and Rcgmin standard errors. Note also that the PNCG, EM, optim, and nlm 

estimates are relatively close to each other.
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6 Concluding remarks

In this paper, we have proposed an algorithm based on a projected non-linear conjugate 

gradient method with an efficient line search technique (Hager and Zhang, 2005) for 

the maximum likelihood estimation of the destructive cure rate model parameters. For 

simulation studies, we assumed the initial number of competing risks to follow a negative 

binomial distribution and showed that our proposed method results in estimates that have 

smaller bias and smaller RMSE when compared to the estimates obtained from the EM 

algorithm as well as other existing Newton-type and conjugate gradient type methods. The 

reduction in the RMSE is more pronounced for the parameters that are associated with the 

cure rate, which holds the key for accurate inference on overall population survival. Our 

proposed algorithm, being a general algorithm, can be used for destructive cure rate models 

with any competing risks distribution. Furthermore, on setting the activation probability p 
to one, the destructive cure rate model reduces to the regular cure rate model (Berkson 

and Gage, 1952; Chen et al., 1999) and as such our algorithm can be used to study these 

regular cure models as well. We believe that we are the first one to use the PNCG algorithm 

with efficient line search technique in the context of cure rate models and we hope that 

researchers will use our algorithm for more complicated cure rate models, for instance, 

those considered in Gallardo et al. (2016) and Pal et al. (2018), among others. A possible 

extension will be to consider interval censoring, a more general form of censoring, and 

develop the likelihood inference for destructive cure models based on the PNCG algorithm. 

We are currently working on this and hope to report the findings in a future paper.
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Table 1:

Comparison of PNCG algorithm with EM algorithm in terms of bias and RMSE with true value of ϕ as 0.50

n (γ1, γ2) Parameter Bias RMSE

PNCG EM PNCG EM

150 (0.215,0.183) β2 0.037 0.047 0.360 0.435

β0 −0.094 −0.275 0.441 0.838

β1 0.061 0.184 0.235 0.677

γ1 −0.004 −0.005 0.026 0.020

γ2 0.001 0.002 0.009 0.010

ϕ 0.002 −0.060 0.206 0.400

300 (0.215,0.183) β2 0.021 0.035 0.229 0.339

β0 −0.028 −0.120 0.271 0.462

β1 0.015 0.115 0.139 0.396

γ1 −0.002 −0.003 0.019 0.019

γ2 0.001 0.000 0.006 0.007

ϕ −0.012 0.012 0.138 0.370

400 (0.215,0.183) β2 0.019 0.024 0.181 0.309

β0 −0.018 −0.070 0.201 0.379

β1 0.013 0.053 0.106 0.253

γ1 −0.001 −0.002 0.017 0.017

γ2 0.000 0.000 0.005 0.007

ϕ −0.005 0.011 0.106 0.368

150 (0.316,0.179) β2 0.115 −0.016 0.485 0.460

β0 −0.152 −0.377 0.604 0.837

β1 0.119 0.340 0.388 0.950

γ1 −0.013 −0.005 0.042 0.031

γ2 0.001 0.002 0.014 0.015

ϕ 0.114 −0.029 0.499 0.416

300 (0.316,0.179) β2 0.033 0.041 0.294 0.336

β0 −0.076 −0.117 0.364 0.468

β1 0.053 0.114 0.219 0.421

γ1 −0.006 −0.006 0.028 0.027

γ2 0.000 0.000 0.010 0.011

ϕ 0.036 0.062 0.275 0.410

400 (0.316,0.179) β2 0.033 0.027 0.245 0.289

β0 −0.039 −0.071 0.288 0.377

β1 0.028 0.066 0.144 0.268

γ1 −0.006 −0.004 0.024 0.025

γ2 0.001 0.000 0.009 0.011
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n (γ1, γ2) Parameter Bias RMSE

PNCG EM PNCG EM

ϕ 0.025 0.025 0.218 0.410
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Table 2:

Comparison of PNCG algorithm with EM algorithm in terms of bias and RMSE with true value of ϕ as 0.75

n (γ1, γ2) Parameter Bias RMSE

PNCG EM PNCG EM

150 (0.215,0.183) β2 0.050 0.039 0.360 0.478

β0 −0.093 −0.201 0.441 0.671

β1 0.055 0.126 0.235 0.524

γ1 −0.009 −0.003 0.026 0.021

γ2 0.002 0.002 0.009 0.011

ϕ −0.012 −0.181 0.206 0.436

300 (0.215,0.183) β2 0.018 0.013 0.247 0.368

β0 −0.050 −0.138 0.263 0.486

β1 0.027 0.077 0.153 0.354

γ1 −0.004 −0.001 0.020 0.018

γ2 0.001 0.002 0.007 0.008

ϕ 0.000 −0.140 0.159 0.422

400 (0.215,0.183) β2 0.002 −0.018 0.195 0.318

β0 −0.029 −0.094 0.209 0.417

β1 0.025 0.043 0.115 0.231

γ1 −0.002 0.000 0.017 0.017

γ2 0.001 0.002 0.006 0.007

ϕ −0.003 −0.138 0.119 0.408

150 (0.316,0.179) β2 0.111 0.014 0.467 0.479

β0 −0.124 −0.231 0.664 0.802

β1 0.116 0.180 0.410 0.911

γ1 −0.014 −0.005 0.043 0.031

γ2 0.001 0.003 0.016 0.015

ϕ 0.084 −0.229 0.519 0.479

300 (0.316,0.179) β2 0.029 −0.002 0.300 0.352

β0 −0.063 −0.143 0.370 0.458

β1 0.039 0.056 0.193 0.290

γ1 −0.006 −0.003 0.029 0.027

γ2 0.001 0.003 0.010 0.012

ϕ 0.006 −0.168 0.274 0.445

400 (0.316,0.179) β2 0.034 0.003 0.269 0.312

β0 −0.045 0.077 0.315 0.385

β1 0.028 0.055 0.166 0.265

γ1 −0.004 −0.004 0.025 0.025

γ2 0.001 0.001 0.010 0.010
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n (γ1, γ2) Parameter Bias RMSE

PNCG EM PNCG EM

ϕ 0.022 −0.101 0.256 0.418
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Table 3:

Comparison of PNCG algorithm with other optimization algorithms

n Setting Parameter Bias RMSE

PNCG optim nlm Rcgmin PNCG optim nlm Rcgmin

150 1 β2 0.111 0.183 0.149 0.461 0.467 0.545 0.518 0.903

β0 −0.124 −0.149 −0.154 0.070 0.664 0.739 2.386 3.762

β1 0.116 0.170 0.380 1.176 0.410 0.480 2.622 4.550

γ1 −0.014 −0.017 −0.015 −0.031 0.043 0.045 0.045 0.060

γ2 0.001 −0.001 0.000 −0.006 0.016 0.016 0.015 0.018

ϕ 0.084 0.232 0.235 1.068 0.519 0.765 0.927 2.028

300 1 β2 0.032 0.056 0.047 0.203 0.303 0.357 0.303 0.525

β0 −0.094 −0.118 −0.066 −0.016 0.388 0.462 0.384 1.050

β1 0.059 0.084 0.064 0.277 0.221 0.266 0.316 1.140

γ1 −0.006 −0.007 −0.005 −0.017 0.030 0.031 0.031 0.039

γ2 0.001 0.001 0.001 −0.003 0.012 0.012 0.011 0.014

ϕ 0.024 −0.069 0.087 0.551 0.324 0.505 0.496 1.155

400 1 β2 0.014 0.046 0.029 0.152 0.271 0.320 0.243 0.400

β0 −0.031 −0.061 −0.005 0.018 0.305 0.398 0.302 0.594

β1 0.031 0.063 0.028 0.135 0.157 0.227 0.157 0.407

γ1 −0.001 −0.002 −0.002 −0.010 0.024 0.026 0.025 0.031

γ2 0.000 −0.001 0.000 −0.004 0.009 0.010 0.010 0.012

ϕ −0.003 −0.061 0.067 0.425 0.249 0.475 0.407 0.984

150 2 β2 0.115 0.196 0.133 0.468 0.485 0.574 0.641 1.053

β0 −0.152 −0.219 −0.348 −0.351 0.604 0.680 4.177 3.133

β1 0.119 0.190 0.386 0.848 0.388 0.436 3.809 3.374

γ1 −0.013 −0.019 −0.011 −0.031 0.042 0.045 0.044 0.057

γ2 0.001 −0.001 0.000 −0.006 0.014 0.015 0.015 0.017

ϕ 0.114 0.291 0.184 0.940 0.499 0.662 1.055 1.864

300 2 β2 0.033 0.086 0.048 0.208 0.285 0.359 0.265 0.469

β0 −0.042 −0.061 −0.032 −0.027 0.346 0.448 0.341 0.690

β1 0.045 0.105 0.055 0.284 0.181 0.274 0.282 1.263

γ1 −0.007 −0.012 −0.007 −0.020 0.030 0.033 0.032 0.039

γ2 0.001 −0.001 0.000 −0.005 0.011 0.011 0.010 0.013

ϕ 0.030 0.212 0.077 0.595 0.238 0.517 0.386 0.981

400 2 β2 0.041 0.085 0.035 0.167 0.263 0.327 0.228 0.413

β0 −0.045 −0.053 −0.033 −0.018 0.316 0.419 0.363 0.716

β1 0.029 0.067 0.045 0.194 0.167 0.245 0.353 0.670

γ1 −0.004 −0.008 −0.005 −0.014 0.024 0.026 0.025 0.031

γ2 0.000 −0.001 0.000 −0.004 0.010 0.011 0.010 0.012

ϕ 0.015 0.148 0.050 0.437 0.216 0.459 0.290 0.850
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Table 4:

Bias in the estimate of population survival probability

n Setting PNCG EM optim nlm Rcgmin

150 1 −0.039 −0.050 −0.051 −0.097 −0.168

300 1 −0.014 −0.015 −0.019 −0.017 −0.067

400 1 −0.008 −0.014 −0.015 −0.008 −0.034

150 2 −0.034 −0.050 −0.045 −0.084 −0.147

300 2 −0.016 −0.023 −0.023 −0.020 −0.060

400 2 −0.012 −0.014 −0.019 −0.014 −0.049

Commun Stat Simul Comput. Author manuscript; available in PMC 2023 January 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Pal and Roy Page 22

Table 5:

MLEs and standard errors of the parameters for the melanoma data.

Parameter Estimate Standard Error

PNCG EM optim nlm Rcgmin PNCG EM optim nlm Rcgmin

β1,intercept −5.841 −5.882 −5.787 −5.880 −6.434 0.573 1.183 2.099 2.155 2.473

β1,thickness 1.183 1.197 1.191 1.190 1.284 0.383 0.354 0.444 0.451 0.499

β2,ulc:present 5.434 5.490 5.536 5.490 6.432 0.523 1.001 2.651 2.675 3.186

β2,ulc:absent 3.533 3.484 3.523 3.480 4.256 0.479 1.154 2.247 2.266 2.672

γ1 0.314 0.300 0.308 0.311 0.284 0.029 - 0.080 0.081 0.081

γ2 0.122 0.127 0.122 0.123 0.119 0.020 0.021 0.026 0.026 0.025

ϕ 6.654 6.600 7.146 6.600 8.340 0.604 - 3.525 3.205 4.274
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