Table 8.
Machine learning classifiers applied on modified labeled data.
| Traditional Features | ||||||||||
|---|---|---|---|---|---|---|---|---|---|---|
| Techniques | TF-IDF | Uni-Gram | Bi-Gram | Uni–Bi-Gram | Uni–Bi–Tri-Gram | |||||
| Accuracy | F1-Score | Accuracy | F1-Score | Accuracy | F1-Score | Accuracy | F1-Score | Accuracy | F1-Score | |
| KNN | 80.2 | 79.8 | 82.8 | 82.6 | 63.1 | 57.7 | 84.8 | 84.7 | 59.9 | 56.1 |
| NB | 86.9 | 86.7 | 92.6 | 92.5 | 89 | 88.9 | 90.8 | 90.7 | 90 | 89.8 |
| RF | 96.1 | 96 | 96.4 | 96.2 | 93.9 | 93.6 | 96.4 | 96.2 | 95.9 | 95.8 |
| LR | 95.3 | 95.2 | 96.5 | 96.3 | 93.5 | 93.3 | 96.9 | 96.7 | 96.6 | 96.5 |
| SVM | 96.4 | 96.3 | 96.6 | 96.5 | 92.7 | 92.6 | 96.8 | 96.7 | 96.5 | 96.4 |
| DT | 95.3 | 95 | 96 | 95.8 | 92.3 | 92.2 | 96.3 | 96.2 | 96.3 | 96.1 |
| MLP | 94.7 | 94.3 | 95.3 | 95 | 93.9 | 93.7 | 95.7 | 95.5 | 91.8 | 91.7 |