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Abstract

Most deep learning models for temporal regression directly output the estimation based on single 

input images, ignoring the relationships between different images. In this paper, we propose deep 

relation learning for regression, aiming to learn different relations between a pair of input images. 

Four non-linear relations are considered: “cumulative relation”, “relative relation”, “maximal 

relation” and “minimal relation”. These four relations are learned simultaneously from one deep 

neural network which has two parts: feature extraction and relation regression. We use an efficient 

convolutional neural network to extract deep features from the pair of input images and apply a 

Transformer for relation learning. The proposed method is evaluated on a merged dataset with 

6,049 subjects with ages of 0-97 years using 5-fold cross-validation for the task of brain age 

estimation. The experimental results have shown that the proposed method achieved a mean 

absolute error (MAE) of 2.38 years, which is lower than the MAEs of 8 other state-of-the-art 

algorithms with statistical significance (p<0.05) in paired T-test (two-side).
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I. Introduction

Regression aims to estimate continuous values (or ordinal outcomes [1]) from the input data 

using machine learning models. It has many applications such as severity scores [2], [3], 

brain age estimation [4], [5] and fluid intelligence prediction [6]. Deep convolutional neural 

networks (CNNs) can transform the raw input image data into target variables by training on 

a large-scale dataset [7]. Therefore, many recent applications use deep learning to solve the 

regression problem [5], [8], [9].

Most deep regression methods estimate the ordinal output z based on a single input image 

x sampled from a set , which can be denoted by z = ℱw (x) (where ℱw  is the machine 

learning model and w  is the set of parameters). This requires the machine learning model 

ℱw  to learn the output directly from the single input image x without any reference. Instead 

of learning from the single image, pairwise learning r = ℱw (x, y) is also used in regression 

[1], [10], [11] and segmentation [12], aiming to learn the ordinal relationship r between the 

pair of input subjects (x, y), such as the ternary relationship [1]: “greater than”, “similar to” 

or “smaller than”. The order regression based on pairwise learning has two advantages: (1) 

it is easy to learn the relationship between two instances [13] and (2) y can be used as the 

reference to estimate an ordinal output of x [1]. However, limitations of the order learning 

with the ternary relationship proposed in [1] include: (1) it only learns one relationship 

between x and y, thus the estimation of the ordinal output of x needs a chain with many 

different references y and (2) it lacks the reflexivity [12] which cannot estimate the output 

with the pair of the identical input (x, x). (The reflexivity means the model can provide the 

estimation based on a pair of identical input images.)

In this paper, we propose a novel deep relation learning framework to solve these limitations 

of ordinal learning. Given two sets  and , the Cartesian product  ×  is defined as {(x, 

y)∣x ∈  and y ∈ } which contains a pair of elements from two sets. A relation r over 

sets  and  can be defined to capture the relationships between x and y. Given a pair of 

images (x, y) and the corresponding chronological ages (τx, τy), we train a deep learning 

model to learn relations r ∈ R where R is the set of relationships without linear correlation, 

including “cumulative relation” (r1 = τx + τy), “relative relation” (r2 = τx – τy), “maximal 

relation” (r3 = max(τx, τy)), and “minimal relation” (r4 = min(τx, τy)). The cumulative 

relation τ1 = τx + τy aims to learn the sum of ages from the two subjects which can mitigate 

the additive noise. If the model has errors on subjects x and y but the errors are in a different 

direction (positive on one and negative on the other), the cumulative relation τ1 = τx+τy 

will be close to the ground-truth. Another potential application of the cumulative relation is 

the bias correction [14]. Based on the regression to the mean problem [15], the brain ages 

of the young subjects are usually over-estimated and the brain ages of the old subjects are 

usually under-estimated. Recent studies are on correcting this bias [16], [14], [17], but with 

controversies [18]. With the pair of the young and old subjects, the cumulative relation we 

propose here may serve as a potential model for bias correction. On the other hand, if the 

errors on two subjects are in the same direction, the relative relation r2 = τx – τy may get 

us closer to the ground-truth. In addition, the relative relation can also be converted into the 

order relationship [1] or relative attributes [19]. The maximal relation r3 = max(τx, τy) and 
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minimal relation r4 = min(τx, τy) are useful for obtaining the upper and lower boundary of 

the estimated ages from the two subjects.

The advantages of the proposed deep relation learning are summarized as follows: (1) it is 

an extension of the order learning. When only “relative relation” r2 = τx – τy is applied, it 

becomes the deep order learning [1]; (2) the values of the x and y can be directly estimated 

from the relations ri, i ∈ {1, 2, 3, 4}; (3) mathematically, a relation is reflexivity if each 

element is related to itself. The proposed four relations are reflexivity [12] because the 

model can compute the relations between the pair of the same image (x, x) and r1 = 2τx, 

r2 = 0, r3 = r4 = τx. All the four relations can be used for prediction with an ensemble 

principle, similar to the multi-input multi-output (MIMO) method [20]; (4) y can be used as 

the reference instance with the known age τy to estimate the τx based on ensemble learning, 

providing a robust prediction with different y.

We use the proposed deep relation learning for brain age estimation based on structural 

magnetic resonance imaging (MRI), which contains not only brain anatomy information, but 

also the brain age information. The MRI-based brain age estimation is a typical regression 

task that aims at estimating the (artificial) biological brain age on brain MRIs using machine 

learning techniques [21], [22], [23]. The estimated “brain age” is purely computed from 

brain MRIs and is a useful biomarker for brain health. Mathematically, we use the ν and 

ν  to denote the chronological and estimated brain ages, respectively. ν  is estimated by 

machine learning model M, given an input image x:ν = ℳ(x). The difference between the 

estimated and chronological brain ages d = ν − ν is usually named “brain age gap, (BAG)” 

[4]. Many studies have shown that the BAG is correlated to brain diseases or disorders, such 

as Alzheimer’s Disease (AD) [9], Bipolar disorder [24], Autism Spectrum Disorder (ASD) 

[25], Psychopathology [26], Major Depressive Disorder (MDD) [27], Multiple sclerosis 

[28], Psychosis [29] and other common brain disorders [30].

Deep convolutional neural networks can extract task-discriminative features and learn the 

subtle patterns in the minimally pre-processed input MR images [31]. Many deep learning 

brain MRI age estimation models have roots in models widely used in computer vision. 

For example, the Age-Net [22] which is a hybrid combination of inception v1 [32] and 

SqueezeNet [33]. The DeepBrainNet [9] which has been built based on the inception-resnet-

v2 [34] framework, the two-stage-age-network (TSAN) [23] which is inspired by the 

DenseNet [35], the simple fully convolution network (SFCN) which is the lightweight 

version of the VGGNet [36] and the fusion with attention (FiA-Net) [37] which is the multi-

channel fusion network based on the ResNet [38] and Hi-Net [39]. All of these methods use 

deep learning models to estimate the brain age directly from input brain MRIs. Our proposed 

method, however, is different from these models and aims to learn the different relations on a 

pair of input subjects. Our proposed method can also directly estimate the brain age from the 

pair of identical input images with an ensemble strategy.

Fig. 1 shows the proposed hybrid neural network of deep relation learning for brain age 

estimation with a pair of input images (x, y). To learn different relations between two input 

subjects of brain MRIs, we first use a simple and efficient neural network (SFCN) [40] to 

extract the deep features. The SFCN is a lightweight neural network and it can estimate 

He et al. Page 3

IEEE Trans Med Imaging. Author manuscript; available in PMC 2022 December 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



brain ages from 3D MRIs with few parameters and low consumption of computational 

memories. The Transformer with attention [41] is exploited to learn different relations with 

a multi-task framework [42]. A Transformer model in our proposed framework uses the 

self-attention mechanism to learn the information from a pair of input images for relation 

learning. Studies [43], [44], [45] have shown that Transformer can capture the inherent 

relations between different inputs.

The main contributions of this paper are summarized as follows:

• we propose a deep relation learning framework for regression with four different 

relations not linearly related: accumulative, relative, maximal and minimal 

relations between a pair of input images.

• we evaluate the proposed deep relation learning for brain age estimation and 

there are different ways to estimate the brain age based on the pair of input 

images with the ensemble strategy.

• we propose a hybrid neural network with a convolutional neural network for 

feature extraction and a Transformer for relation learning.

The rest of the paper is organized as follows: Section II describes the proposed four different 

relations and the structure of the neural network for deep relation learning. Section III 

presents the detailed experimental setting for brain age estimation using the proposed deep 

relation learning. The results are provided in Section IV and the discussion and conclusion is 

given in Section V.

II. Method

A. Relations for regression

As mentioned above, the Cartesian product ×  is defined as {(x, y)∣x ∈  and y ∈ } 

which contains a pair of elements from two sets  and . In this paper, the sets  = 

are datasets containing brain MRIs and the defined relation is called a homogeneous relation 

[46]. For brain age estimation, the brain age range of the subjects is: 0 ≤ τx, τy ≤ A, where A 
denotes the maximum age contained in the dataset. The typical relations can be defined as:

Cumulative relation : r1 = τx + τy r1 ∈ [0, 2A]
Relative relation : r2 = τx − τy r2 ∈ [ − A, A]
Maximal relation :r3 = max(τx, τy) r3 ∈ [0, A]
Minimal relation : r4 = min(τx, τy) r4 ∈ [0, A]

Amplifying relation : r5 = τx ∗ τy r5 ∈ [0, A2]
Divided relation : r6 = τx ∕ τy r6 ∈ [0, + ∞]

(1)

where x and y denote different input images and τx and τy denote the corresponding 

chronological age of subjects x and y, respectively.

In practice when using the neural network to estimate the relation and it should be bounded: 

∣r∣ ≤ M where M is a real number. Thus, we only use the first four relations ri, i ∈ {1, 2, 

3, 4} and do not consider the “amplifying relation r5” and the “divided relation r6” since 

their boundaries are very large, toward [0,10,000] or even [0,+∞], making it hard to train 
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the neural network on a lifespan dataset with brain age of 0-100 years. We train a neural 

network to learn the four relations ri, i ∈ {1, 2, 3, 4} and the brain age estimation can be 

obtained based on the estimated ri, i ∈ {1, 2, 3, 4} from the trained neural network.

B. Deep neural network

The framework of the proposed deep relation learning is shown in Fig. 1, which contains 

two parts: a convolutional neural network (CNN) backbone for deep feature extraction from 

the pair of input images and a Transformer for the fusion of the extracted deep features to 

learn the four relations.

1) CNN backbone to extract deep features: For the CNN backbone, we use a 

structure similar to the Simple Fully Convolutional Neural Network (SFCN) [40]. The 

network contains 6 blocks and each block on the first 5 blocks contains a convolutional layer 

with a kernel size of 3 × 3 × 3, a batch normalization layer [47], a ReLU activation layer 

[48] and a max-pooling layer with a kernel size of 2 × 2 × 2 and stride 2. The last block 

contains a convolutional layer with a kernel size of 1 × 1 × 1, a batch normalization and a 

ReLU layer. We also set the channel numbers of each convolutional layers to [32, 64, 128, 

256, 256, 64], as in [40].

In practice we have found that applying a max-pooling layer with the kernel size of 2 × 2 

× 2 and stride 2 at the beginning of the neural network or directly on the input images (see 

Fig. 1) can reduce the errors in brain age estimation. It can also reduce the image size at 

the beginning and thus reduce the computational complexity and memory cost. Applying the 

max-pooling directly on input images can help reduce the redundant information in the input 

images. We name the neural network with the max-pooling at the first layer “mSFCN” in 

this paper. Using the CNN, the 3D input image x can be converted into a tensor Tx
d × ℎ × w × c

where d = 64 is the feature dimension and h, w, c are the height, the width, and the number 

of channels in each input image, respectively.

2) Transformer to learn relations: Given 4D feature tensors Tx and Ty extracted from 

the pair of input images (x, y), we exploit a “patch” operation to convert the feature tensors 

into a sequence of feature vectors where each feature vector represents the deep feature 

from a patch receptive field of the input image. These two 4D feature tensors are reshaped 

into 2D sequences of tokens: txd × L and tyd × L (where L = h × w × c). Each token is a 1D 

feature vector with the size of L and there are L = h × w × c tokens in total extracted 

on each 4D feature tensor. In practice, the size of the input image is 2 × 80 × 130 × 170 

where 2 represents the 2 channels of input images (intensity image and RAVENS map, see 

details on Section III.A) and 80, 130, 170 are the size of the three dimensions of the brain 

MRIs. The size of the tensors Tx and Ty extracted from the mSFCN is (d =)64 × (h =)4 

× (w =)5 × (c =)2 after five max-pooling layers (with kernel size of 2 and stride of 2) on 

the mSFCN backbone. Thus, the size of the corresponding token sequences tx and ty is 64 

× 40. These two sequences of tokens are concatenated into a sequence of 2L tokens [49]: 

td × 2L = [txd × L, tyd × L]. The combined tokens from the two input images are concatenated 

into a sequence of tokens with a size of 64 × 80 and fed into a standard Transformer [41] 
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which contains several encoder blocks. Each encoder block contains two parts: an attention 

part and a multi-layer perceptron (MLP) part. The attention part consists of Layernorm and 

multi-headed self-attention (the head size is 8) layers:

td × 2L = Self − Attention(td × 2L) (2)

The key idea of self-attention is to fuse the tokens with the attention mechanism. It first 

transforms the sequence of tokens td×2L into query Qd×2L, key Kd×2L and value Vd×2L by a 

linear transformation:

Attention(Q, K, V ) = Softmax(QKT

d )V (3)

The second part is multi-layer perceptron (MLP) layer. It is also named Feed-Forward 

Networks (FFN) [41] which contains two fully connected layers with a ReLU activation in 

between:

td × 2L = FFN(td × 2L) (4)

Finally, the outputs of the relation estimation are computed as:

r i = class_head(td, i) (5)

where td,i is the ith token sampled from the sequence of the tokens td×2L and class_head is a 

fully-connected layer to learn the relation ri, i ∈ {1, 2, 3, 4}.

3) Neural network training: We use the mean absolute error (MAE) as the loss 

function to train the neural network for relation learning:

Li = 1
n ∑

j = 1

n
∣ r i − ri ∣ (6)

where r i is the estimated relation from the network and ri is the ground-truth for the ith 

relation (1 ≤ i ≤ 4). n is the number of samples involved in the computation (i.e. the number 

of training samples on each batch). The mean absolute error loss is widely used to train the 

neural network for brain age estimation [8], [5], [22]. The neural network is trained with a 

total loss computed by:

L = ∑
i = 1

K
Li (7)

where K is the number of relations estimated by the neural network. For joint relation 

learning, the neural network is used to estimate the four relations and K = 4. For pair relation 

learning, the neural network is trained to estimate a pair of relations ((r1, r2) and (r3, r4)) and 
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K = 2. For single relation learning, the neural network is only used to estimate one relation 

and K = 1. The detailed information of the joint, pair, and single relation learning can be 

found in Section III-C3.

III. Experiments

We will first introduce our data (III-A) and network training (III-B). Two major experiment 

settings follow: optimizing various components in the framework to maximize the accuracy 

of relation learning (III-C), and evaluating the accuracy of the proposed relation-based brain 

age estimation (III-D).

A. Data sets

In this paper, we use a lifespan dataset which is the same as used in our previous work [37]. 

A lifespan dataset is recently used in studies [56], [57], [9] and the deep learning model 

trained on a lifespan dataset can be applied/transferred to any age group without introducing 

artificial boundaries on the predicted ages. This is especially important for quantifying 

premature aging or development delays in diseased cohorts, as MRI-manifested brain ages 

can range from 0-100 even though the patient’s actual ages are in a narrowly bounded 

range. The summary of the dataset is shown in Table I. The merged dataset consists of brain 

MRI scans from 8 datasets with 6,049 samples (0-97 years of age). Fig.2 shows the age 

distribution of the dataset. Only healthy brains with T1-weighted MRIs are collected in each 

dataset.

Similar to [37], we perform a minimum pre-processing and harmonization of the T1w 

images with the following steps: (1) N4 bias correction [58]; (2) field of view normalization 

[59]; (3) Multi-Atlas Skull Stripping (MASS) [60], [61]; (4) non-rigidly registered to 

the SRI24 atlas [62] by the Deformable Registration via Attribute-Matching and Mutual-

Saliency weighting (DRAMMS) algorithm [63]; (5) splitting the registered image into 

two channels: intensity image containing the contrast information and RAVENS map [64] 

containing the morphological information. The final size of the MRIs after pre-processing 

is 80 × 130 × 170 per channel without the black background voxels on the boundary. We 

concatenate the intensity image and RAVENS map as the input of the 3D neural network 

so the image size of each subject is 2 × 80 × 130 × 170. Our previous study showed that 

explicitly splitting the T1w image into two channels led to more accurate age estimation 

than each channel alone [37].

B. Network training

The network is trained by the Adam optimizer built in PyTorch platform, with an initial 

learning rate of 0.0001, reducing to half at every 35 epochs in the total 80 training epochs. 

The batch size is set to 20 due to the limitation of the GPU memory. The training of the 

neural network takes around 24 hours on a single NVIDIA RTX 6000 GPU with 24G 

memory. We divide the training images into 100 groups according to their ages. To make 

a balanced distribution of the input pair (x, y) during training, on each iteration, we first 

randomly select an age group and then randomly select an image from this group to collect 

the batch of the training samples. Fig. 3 shows the training loss and testing accuracies of the 
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four relations. The MAEs of the four relations decrease fast in the first 35 epochs. After that, 

the neural network starts to converge and the accuracies of the four relations increase slowly 

and are stable with 80 training epochs.

C. Optimization of the accuracy for relationship estimation

1) Accuracy metric in cross validation for relationship estimation: We use the 

cross-validation strategy [65], [37] to evaluate the accuracy of the relation estimation. The 

merged dataset is randomly split into 5 folds of approximately equal sample sizes without 

overlapping. Each time, one fold of the samples is used for evaluation and the rest four folds 

are used for training. It repeats five times and each sample is left out for testing once and 

only once.

Our relations are computed based on a pair of input images and the evaluation of the relation 

estimation is performed on a set of test pairs which contains N pairs of input images. In 

other words, N is the total number of testing pairs involved in the evaluation. We use three 

accuracy metrics computed on the test pairs: mean absolute error (MAE), cumulative score 

(CS) and Pearson correlation coefficient. The MAE is computed as the mean absolute errors 

between the estimation and ground-truth of the relations on test pairs. Note that the MAE 

is computed on the test samples for testing which is different from the MAE loss defined 

in Eq. 6 computed on the training samples for training. The CS is computed by: CS(α) = 

N∣e∣≤α/N ∈ 100%, where N∣e∣≤α is the number of test pairs whose absolute error ∣e∣ is no 

higher than a given threshold α. Following previous works [37], [66], we set the α = 5 

(years) in experiments. The Pearson correlation is computed between the ground-truth ri and 

the estimated r i(i ∈ {1, 2, 3, 4}) on the whole test set.

2) Eight variations of underlying deep learning models: There are two main parts 

of the neural network for relation learning given a pair of input (x, y): feature extraction 

and relation regression (as shown in Fig. 1). For the feature extraction part, we compare 

the accuracies of the SFCN [40] and the mSFCN which applies a Max-Pooling layer (with 

the kernel size of 2 × 2 × 2, stride size of 2) on the input image. The backbones ℱ1 

and ℱ2 can be shared (similar to the Siamese network [1]: ℱ1 = ℱ2) or independent (the 

same network with different parameters [20]: ℱ1 ≠ ℱ2). For the relation regression part, 

we consider the traditional CNN-based method [1] as the baseline: deep features from the 

two pairs are concatenated and input to three fully-connected (FC) layers with the size 

of: 64, 64, 4-channel vectors sequentially. The 4-channel vectors represent the 4 output 

relations. We also use the Transformer to compute the four relations and we set the number 

of transformer blocks to 2, with the same number of FC layers of the CNN-based method for 

a fair comparison.

Table II summarizes the 8 model variations compared in this paper and the main difference 

is which backbone (SFCN or mSFCN, and whether it is shared or independent) is used for 

feature extraction and which model (FCs or Transformer) is used for relation regression 

(Fig. 1).
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3) Using 1, 2 or 4 deep learning models for estimating 4 relations: The outputs 

of the proposed neural network are the four relations of the pair of inputs (x, y). Three 

different configurations are considered: joint relation learning, pair relation learning and 

single relation learning. For the joint relation learning, we train 1 neural network to learn the 

four relations with the multi-task framework [67]. For the pair relation learning, we train 2 

neural networks to learn the pair of relation (r1, r2) and (r3, r4), respectively. For the single 

relation learning, we train 4 neural networks and each neural network learns one relation. 

On the test set, the pairs of the input (x, y) are randomly sampled for the testing set and the 

results from the 5-fold cross-validation are averaged.

D. Accuracy evaluation for brain age estimation

1) Accuracy metric in cross-validation for brain age estimation: Similar to 

Section III-C, we also use 5-fold cross-validation strategy to evaluate the accuracy of brain 

age estimation based on estimated relations in different configurations given a pair of input 

images.

For evaluation of brain age estimation, we also use the three accuracy metrics: MAE, CS and 

Pearson correlation coefficient. Specifically, the MAE for brain age estimation is computed 

by: MAE = 1
M ∑j = 1

M ∣ τx − τx ∣ where τx is the estimated brain age of the test scan x and 

τx is the corresponding chronological age. M is the total number of the testing images. The 

CS for brain age estimation is computed by: CS(α) = M∣e∣≤α/M×100% which indicates the 

accuracy of brain age estimation with the absolute error ∣e∣ no higher than a given threshold 

α. We also set the α = 5 (years) for brain age estimation in experiments. The Pearson 

correlation is computed between the ground-truth τx and the estimated τx on the whole test 

images (M=6,049 in our experiment since each subject has been left out once and only once 

in the 5-fold cross-validation).

To measure the significance of the improvement of the proposed method compared to other 

state-of-the-art models, we use paired t-test (two-side) to compute p-value between the 

absolute errors obtained by the proposed method and absolute errors obtained by other 

state-of-the-art models in comparison over all the 6,049 test images for brain age estimation. 

p ≤ 0.05 indicates that there is a significant difference between the MAEs of the two 

different models in comparison.

2) Accuracy of relation-based brain age estimation when x ≠ y, and x and 
y both from the testing set: Based on the estimated relations r i, i ∈ {1, 2, 3,4} of 

the input pair (x, y), the estimated brain age τx and τy of both x and y can be computed 

simultaneously based on the following equations:
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τx = (r1 + r2) ∕ 2
τy = (r1 − r2) ∕ 2

τx =
r3 if r2 > 0
r4 Otherwise

τy =
r4 if r2 < 0
r3 Otherwise

(8)

There are two estimations of each pair x and y and we estimate the age of image x by 

averaging the two τx above, and do the same for estimating the age for image y.

In this section, we group the testing images into pairs and feed them into the trained neural 

network for relation estimation. The estimated brain ages of both x and y are computed 

according to Eq.(8). The average of the MAE, CS(α=5 years) and Pearson correlation from 

models trained for 5-fold cross-validation are reported.

3) Accuracy of relation-based brain age estimation on x with reference y 
when x ≠ y, x from the testing set and y from the training set.: In this section, we 

estimate the brain age τx of the testing input x from the testing set based on the reference 

y which is sampled from the training set with known brain age τy. The estimation of the 

τy is close to the ground-truth because y is sampled from the training set. Thus, the error 

of the estimation τx is only from the test sample x. We sample no more than 2 brain MRIs 

from each age on the training set and there are roughly 186 reference samples y used in 

experiments. Based on the definition the four relations as defined on Eq. (1), for each input 

testing image x, there are four different ways to estimate the brain age τx of x based on the 

known age τy of the reference y:

τx = r1 − τy
τx = r2 + τy
τx = (r1 + r2) ∕ 2
τx = r3 + r4 − τy

(9)

where r i, i ∈ {1, 2, 3, 4} are the estimation of the four relations from the trained neural 

network. We also compare the proposed methods with the baseline model proposed in [1], 

which only considers the “relative relation r2” and converts it into a binary relation given a 

threshold t [1]: τx > τy if r2 > t, τx ≈ τy if ∣r2∣ ≤ t and τx < τy if r2 < −t. Given the binarized 

order relationship, the estimation of τx is obtained by the maximum consistency (MC) rule 

[1] given N different reference y with the chronological age τyi:

τx = arg max
τx′

∑
i = 0

N − 1
ϕ(τx, τyi, τx′) (10)

where ϕ(τx, τyi, τx′) is the consistency function defined by:
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c1 = [r2 > t][τx′ − τyi > t]
c2 = [ ∣ r2 ≤ t][ ∣ τx′ − τyi ∣ ≤ t]
c3 = [r2 < − t][τx′ − τyi < − t]

ϕ(τx, τyi, τx′) = c1 + c2 + c3

(11)

where [•] is the indicator function and ϕ(τx, τyi, τx′) returns either 0 (inconsistent) or 1 

(consistent). More computation and explanation details of the MC rule can be found in [1]. 

The complexity of the MC rule is O(MN) where M is the number of references and N is the 

total age bins (N = 97 in this paper, covering the age from 0-97 years of age).

4) Accuracy of relation-based brain age estimation when x = y, and both 
from the testing set: The pair of inputs (x, y) can be the same testing image when we set 

the input y = x. Ideally, when y = x, the “relative relation” r2 = 0 and r3 = r4 = x. However, 

due to the possible regression errors from the neural network, the estimated relations r2
might not be zeros and r3 ≠ r4 may occur. Thus, all estimations of the four relations r i, i ∈ 

{1, 2, 3,4} can be used to estimate the brain age x based on the following calculations:

τx = r1 ∕ 2
τx = (r1 + r2) ∕ 2
τx = (r1 − r2) ∕ 2
τx = r3
τx = r4
τx = (r3 + r4) ∕ 2

(12)

5) Accuracy comparison with state-of-the-art brain age estimation 
algorithms: Eight other deep learning based methods for brain age estimation are 

compared in this section, including the Hi-Net [39], FiA-Net [37], GL-Transformer [66], 

3D CNN [4], SFCN [40], DeepBrainNet [9]. The Hi-Net [39] and FiA-Net [37] fuse the 

multi-channel input MRI images (intensity and RAVENS) in a layer-level fusion. The 

GL-Transformer [66] applies a global-local transformer for exploiting the global-context 

information from the whole image and the local fine-grained information from the local 

patches on 2D input images. The 3D CNN [4] uses 5 convolutional layers with kernel size 

of 3 × 3 × 3, followed by ReLU and max-pooling layers. The number of channels at the 

first layer is eight, and is doubled after each max-pooling layer. We use the global average 

pooling layer and a fully-connected layer for the brain age estimation. The SFCN[40] is 

also used as the backbone in our method, as described in Section II-B. The DeepBrainNet 

[9] is based on the Inception-Res-V2 [34] model, which works on 2D slices for brain age 

estimation. We get the results of Hi-Net [39] and FiA-Net [37] from the original research 

papers since we have similar experimental configurations and datasets. We also compare 

the accuracies of models with the relation learning (mSFCN+Transformer+Relation) and 

without relation learning (mSFCN+Transformer) where the model is directly trained to 

estimate the brain age. For the GL-Transformer [66], 3D CNN [4], SFCN [40], DeepBrain-

Net [9] and mSFCN+Transformer, we train them from scratch with the same training 

configuration as our neural network for a fair comparison.
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IV. Results

This section has two major parts: Section IV-A reports the accuracies for relation learning, 

which are results from experiment setting in III-C; and Section IV-B presents the accuracies 

for relation-based brain age estimation, which are results from experiment setting introduced 

in Section III-D.

A. Accuracy of relation estimation

This section presents the accuracies of relation estimation which are measured by the three 

metrics of MAE, CS(α=5) and Pearson correlation described in Section III-C1 on the 

test samples. Higher accuracy means lower MAE and higher scores of CS and Pearson 

correlation for relation estimation in this section.

1) Effects of underlying CNN models: Table III shows the accuracies of 8 model 

variations when the pair of input images are sampled from the testing set. Several 

observations can be obtained: (1) the MAEs of the “maximal relation (r3)” and “minimal 

relation (r4)” are lower than the MAEs of “cumulative relation (r1)” and “relative relation 

(r2)”, indicating that the neural network is more powerful at capturing the non-linear 

relations than the linear relations of the pair of input images. The “minimal relations (r4)” 

has the lowest MAEs among the four relation estimations. (2) Using Transformer for the 

relation regression provides better accuracies than using FCs for relation regression on 

different configurations. (3) the mSFCNi provides the best accuracies than other model 

variations for the four relations regression. (4) when using the Transformer for relation 

regression, the shared backbone ℱ1 = ℱ2 provides better results than the independent 

backbone ℱ1 ≠ ℱ2.

Fig. 4 shows the MAEs of relation estimation with the age difference τx – τy of the pair 

input (x, y) sampled from the testing set. We only compare the two models: mSFCNi+CNN 

and mSFCNi+Transformer. It can be seen from the figure that mSFCNi+Transformer 

provides lower MAE than mSFCNs+CNN and it is less sensitive to the age difference τx – 

τy than mSFCNs+CNN.

2) Effects of 1, 2, or 4 CNN models for estimating 4 relations: Table IV shows 

accuracies of deep relation learning with the joint, pair and single learning with 1, 2, and 4 

CNNs, respectively. There is no significant difference in results among these three different 

configurations. However, joint relation learning only needs 1 neural network to learn the 

four relations and it requires fewer parameters, memories, and computational times than 

single relation learning which needs 4 different neural networks, and pair relation learning 

which needs 2 different neural networks. In the following sections, we use the estimated 

relations of joint relation learning for brain age estimation, which only requires to train 1 

CNN model for estimating 4 relations.

B. Accuracy of relation-based brain age estimation

Results in this section correspond to the experiment setting described in Section III-D. 

Accuracies of brain age estimation are measured by the three metrics of MAE, CS(α=5) 
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and Pearson correlation as described in Section III-D1 on the test samples. Higher accuracy 

means lower MAE and higher scores of CS and Pearson correlation for brain age estimation 

in this section.

1) Accuracy when x ≠ y, x and y both from the testing set: Sub Table I in 

Table V shows the accuracies of the 8 underlying CNN variations for brain age estimation 

based on pair of input images sampled from the test set. In general, models with the shared 

feature extraction backbones provide better accuracies than the independent backbones 

and using Transformer for relation regression gives better results than using CNN. The 

mSFCNi+Transformer provides the lowest MAEs and highest scores of CS(α=5) and 

Pearson correlation among all models. The accuracy goes even higher by the ensemble 

of different relations, with an MAE of 2.42 years.

2) Accuracy on x with reference y when x ≠ y, x from the testing set and y 
from the training set: Fig. 6 shows an example of the age estimation τx (x from the 

testing set whose age is to be estimated) based on different reference images y (from the 

training set) according to four estimated relations r i, i ∈ {1, 2, 3, 4}. We compute the 

average age of brain age estimations based on different references y as the final estimated 

brain age based on learned relations. The estimated brain ages τx are slightly different given 

different reference images y.

Sub Table II in Table V shows the accuracies of the brain age estimation τx according to 

the learned relations r i, i ∈ {1, 2, 3, 4} of the pair input (x, y) with the known reference y 

sampled from the training set. From the table we can obtain the following observations: (1) 

The method using the MC rule [1] ( only using the binarized r2 for brain age estimation) 

provides better results than proposed methods when using FCs for the relation regression. 

However, our proposed relation regression based on Transformer gives better results than the 

method of MC rule. In addition, the computation of the MC method [1] takes a long time 

due to its high complexity. (2) In about ≈ 75% of the cases, the shared backbone (ℱ1 = ℱ2) 

for feature extraction gives higher accuracies than the independent backbone (ℱ1 ≠ ℱ2). 

(3) When using the CNN for the relation regression, models using SFCN as the backbone 

provides lower MAEs than models using mSFCN as the backbone. However, when using 

the Transformer for the relation regression, models using the mSFCN as the backbone have 

lower MAEs than models using the SFCN as the backbone. (4) The mSFCNs+Transformer 

provides lower MAEs than other model variations and the highest accuracy is given by 

using the “maximal relation (r3)” and “minimal relation (r4)” in terms of MAE and Pearson 

coefficient, with an MAE of 2.38 years. Fig. 7 shows the scatter plots between the estimated 

brain age and chronological age based on different relations.

3) Accuracy when x = y and both from the testing set: In this section, we feed 

the neural network with the same image as the pair of input: y = x. Ideally, when y = x, 

the “relative relation r2” should be zero, the “maximal relation r3” and the “minimal relation 

r4” should be equal to the input x. In practice, the estimated relations r2 ≠ 0 and r3 ≠ r4 ≠ x
due to the regression errors from the neural network. To learn the relations between the pair 
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input samples, the training pair images are randomly sampled with different ground-truth (x 
≠ y). The distributions of these three estimated relations over different chronological ages 

are shown in Fig. 8. The estimated error of the r2 represents the uncertainty of the model 

for brain age estimation when it compares to itself. From Fig. 8 (b) we can see that the 

estimation of the “maximal relation r3” is greater than the input τx in most testing samples. 

Similarly, from Fig. 8 (c) we can see that the estimation of the “minimal relation r4” is 

smaller than the input τx in most testing samples.

Sub Table III in Table V shows the accuracies of different model variations for brain age 

estimation τx when y = x. The lowest MAEs are from the τx = (r3 + r4) ∕ 2 on different CNN 

model variations. In addition, using Transformer provides better results than using CNN 

for relation regression. The highest accuracies are given by the mSFCNs+Transformer in 

terms of MAE and CS score. We also find that combining these six estimations ∑i
6 (τx) ∕ 6

(ensemble by averaging) does not improve the accuracies.

4) Robustness/uncertainty in relation-based brain age estimation: Fig. 5 

shows the MAEs of the joint, pair, and single relation learning for brain age estimation 

with different strategies i indexed in Table V. In most cases, the joint relation learning 

provides the highest accuracy, except for the 2, 3, 13 and 14 where the relations r3 and 

r4 are involved in the computation. Table V and Fig. 5 show that the best result of brain age 

estimation is from the strategy of 8 and 15.

Different brain age estimations can be obtained according to Eqs. 8, 9 and 12 and 

the uncertainty can be measured as the standard deviation of these different brain 

age estimations [68], [69], which shows how uncertainty for brain age estimation 

can be introduced by the deep relation learning. Fig. 9 shows the distribution of 

the uncertainty over different chronological ages. Uncertainty computed from different 

estimations in Eqs. 8, 9 and 12 corresponds to three different brain age estimation methods. 

The mSFCNs+Transformer has almost the same uncertainty on different ages and the 

Pearson correlations between the uncertainty and chronological age are smaller than the 

mSFCNs+FCs on these three different estimation methods.

5) Accuracy comparison with state-of-the-art brain age estimation 
algorithms: Table VI shows the accuracies of different state-of-the-art models for brain 

age estimation. With the same training dataset and configuration, the 2D DeepBrain-Net [9] 

gives slightly higher accuracies than 3D SFCN [40]. The mSFCN model, which is similar to 

SFCN [40] but has the max-pooling layer at the beginning, has a similar accuracy with the 

SFCN. However, mSFCN is more efficient than SFCN since it reduces the image size at the 

beginning using max-pooling. Our proposed deep relation learning with reference image y 
or with the same input pair y = x provides higher accuracies than all other models. The MAE 

of the proposed method (2.38 years) is lower than MAEs of other models. The statistical 

significance measured by the paired t-test (two-side) based on absolute errors across all 

6,049 test samples indicates that the differences of the MAEs between the proposed method 

and other models are statistically significant (p < 0.05). In addition, using different reference 

images y can provide slightly lower MAE and higher CS score than using the same input 
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pair when y = x. The experimental results show that the combination of the mSFCN and 

Transformer can provide better results than other models. Moreover, the neural network with 

deep relation learning (mSFCN+Transformer+Relations) provides lower MAE and higher 

scores of CS and Pearson correlation than the neural network without relation learning 

(mSFCN+Transformer), demonstrating that using the four different relations can further 

reduce the error for brain age estimation.

Fig. 10 shows the MAE of different models on the 8 different datasets involved in the cross-

validation. We first rank the models on each dataset and assign a rank score (rank=1,2,…,10 

for 10 different models) and the average rank score of each model on the 8 datasets 

is computed and shown in Fig. 10. The result shows that our proposed deep relation 

learning gives the lowest rank score, demonstrating that deep relation learning provides 

good generalization on different datasets.

V. DISCUSSION AND CONCLUSION

We proposed a deep relation learning for regression given a pair of input images and 

evaluated it for brain age estimation on brain MRIs. Four non-linearly correlated relations 

were evaluated, including the “cumulative relation”, “relative relation”, “maximal relation” 

and “minimal relation”. To learn these relations on a pair of input images, we used 

a neural network with two parts: feature extraction which was based on convolutional 

neural networks and relation regression which was based on Transformer. We evaluated the 

accuracies of the proposed deep relation learning on a merged dataset with 6,049 healthy 

brain MRIs acquired between 0-97 years of age.

Our experimental results demonstrate the advantages of relation learning for brain age 

estimation. (1) Our proposed relation learning is an extension of the order learning [1] 

and experimental results in Table V shows that the MAE (2.38 years) of using the four 

different relations is lower than the MAE (2.55 years) of the order learning based on the MC 

rules [1]. (2) We evaluated different strategies to estimate the brain ages of a pair of input 

images: brain age estimation with different test images (strategies 1–3 in Table V), brain 

age estimation with the reference with known age (strategies 4–9 in Table V) and brain 

age estimation with a pair of the same image (strategies 10–16 in Table V). The accuracies 

of these different strategies are similar and the lowest MAE is 2.38 years which is better 

than other state-of-the-art models for brain age estimation (as shown in Table VI). (3) We 

also evaluated three different training configurations to learn the four relations: joint, pair, 

and single learning. Experimental results in Table IV and Fig. 5 show that the MAEs and 

the scores of CS(α=5) and Pearson correlation of these three different learning strategies are 

similar. However, joint relation learning only needs 1 neural network to learn the 4 relations 

simultaneously which requires fewer parameters, memories, and computational times than 

the pair and single relation learning. (4) The uncertainty shown in Fig. 9 indicates that our 

proposed method is robust for brain age estimation on different ages.

Fig. 7 also shows the bias problem known as “regression to the mean”: the ages of the older 

subjects being underestimated while the ages of the younger subjects being over-estimated. 

The regression to the mean (RTM) problem [15] is a natural statistical phenomenon for 
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many regression problems, and age estimation is not an exception. This bias, or RTM 

problem, also exists in other age estimation studies that focus purely on adults, where 

bias correction has been proposed [16], [14], [17]. Bias correction, however, is also with 

controversies, for which model should be optimal for correction, how to best quantify bias, 

and how to best evaluate the effects of correction [18]. Bias correction is also our ongoing 

work.

The unbalanced age distribution introduces the bias of relation learning between the pair 

of input images with different age ranges. As shown in Fig. 4, the errors of relation r1 

increase among subjects with age differences between 20 to 40. This is also the same for the 

relations r3 and r4. In addition, the accuracy of the relation r4 is higher than other relations 

and one possible reason is that the number of young subjects is larger than the number of old 

subjects. A balanced age distribution may mitigate this problem. Our future work will dive 

into the data imbalanced problem for relation learning and brain age estimation across the 

lifespan.

Table V shows that there is no significant difference among the accuracies of deep relation 

learning with different strategies (the pair of input images are the same image (x=y) or 

different images (x≠y)). The results demonstrate the consistency and generality of the 

proposed method. For consistency, our proposed method provides consistent accuracies 

with the same image or different images as a pair of input images. For the generality, our 

proposed method can be used in different scenarios and it can predict the brain age based on 

reference images if they are available or based on itself if reference images are not available.

Experimental results in Table V show that the lowest MAEs and highest CS and Pearson 

correlations is achieved based on the relations r3 and r4, demonstrating that the neural 

network can capture non-linear relations better than the linear relations. In addition, joint 

relation learning can provide slightly lower MAEs ( 8 and 15) than single and pair 

relation learning.

The limitations and future works include: (1) We only focused on the evaluation of the 

proposed deep relation learning and we did not apply it to potential applications, such as 

building different chains [1] for subjects with different sex, race, ethnicity, etc. Our proposed 

method can be directly used for age comparison between different subject groups or cohorts, 

which can provide richer information than only “relative relations” proposed in [1]. (2) 

Only healthy subjects are involved in this study. However, the age differences between the 

healthy and diseased subjects can be compared by the proposed method with the pair of 

the input images (x, y). In the future, we will apply the model to compute the brain age 

difference when x is from the healthy cohort and y is from the disease cohort. (3) As shown 

in Table I and Fig. 2, the age distribution of our dataset is unbalanced, with more samples 

in 15-30 years and elderly ages. As a result, we see bigger errors in age ranges where 

fewer samples are available [37]. Feng et al. [5] recently showed that balancing the age 

distribution (by under-sampling in more popular age bins) may reduce the errors in less 

popular age bins. However, under-sampling the data created a smaller overall sample size. 

Our ongoing work is on gathering more images [4], [5], and even resampling or synthesizing 

new images, so that we can increase the sample size while balancing the age distribution. 
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(4) The proposed deep relation learning can provide good accuracy for brain age estimation. 

However, the deep neural networks are usually hard to be interpreted, especially for the 

convolutional neural networks which are used to extract deep features. One future direction 

is to interpret the Transformer by visualizing the attention heatmaps based on the deep 

Taylor decomposition principle [70]. These attention heatmaps may be useful to understand 

the interaction and influence among the four relations for brain age estimation. (5) Table 

VI compares the proposed method to other state-of-the-art models with the same training 

configurations. However, another fair comparison might be using different models at their 

own optimal parameters. In practice, we have found that these parameters do not affect 

the accuracies if they are in a reasonable range (e.g., learning rate between 0.001 and 

0.0001). We also ran SFCN [40], another 3D model, with only the T1w image and with the 

parameters specified in its original paper [40], and we found a accuracy (MAE=2.67±0.11) 

statistically equivalent to SFCN’s accuracy we listed in Table VI (MAE=2.62±0.07), which 

does not affect the ranking and findings in the comparison. In future work, we will more 

thoroughly study how the training setting affects the strong backbone for deep relation 

learning.

In conclusion, we have proposed a novel deep relation learning for brain age estimation and 

our proposed method can achieve lower MAE than the other six state-of-the-art models. The 

proposed method was validated on a lifespan dataset with 5-fold cross-validation, yielding 

an MAE of 2.38 years, CS(α = 5 years) of 87.40% and Pearson correlation of 0.988.
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Fig. 1. 
The framework of the proposed deep relation learning for brain age estimation has two 

parts: feature extraction and relation regression. It has the pair of inputs (x, y) and the CNN 

backbones ℱ1 and ℱ2 for feature extraction. The two backbones can be shared (Siamese) 

or be independent, which stack several Convolutional, Batch Normalization, Max-Pooling 

and ReLU layers. The outputs of the CNN backbones are split into tokens to the standard 

transformer for relation regression: learning the four relations between the pair of inputs x 
and y.
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Fig. 2. 
Age distribution of the datasets used in this paper, covering the age from 0 to 97 years, with 

a mean of μ = 30.58 years (median 22.8 years) and a standard deviation of σ = 24.52 years.
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Fig. 3. 
The training loss and testing accuracies (in terms of MAE, the lower MAE, the better 

accuracy) of different relations. The bold curves are the average MAEs over the five-fold 

cross-validation.
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Fig. 4. 
The MAEs of the relation estimation of models with the age difference τx – τy of the 

pair input image (x, y) when both x and y are sampled from the testing set. (The blue 

line shows the accuracies of mSFCNs+FCs while the red line shows the accuracies of 

mSFCNs+Transformer)
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Fig. 5. 
The Mean Absolute Error (MAE) of the joint, pair, and single relation learning with i 

indexed based on different brain age estimation strategies as shown on Table V.
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Fig. 6. 
An example of brain age estimation of the mSFCNs+Transformer given the test image x 
and the reference images y from 0-97 years of age sampled from the training set. Each dot 

represents the estimated age with one reference image according to the estimated relations 

r i, i ∈ {1, 2, 3, 4}. The red line indicates the chronological age.
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Fig. 7. 
Scatter plots of the estimated and chronological ages based on different relations with the 

reference y sampled from the training set. The orange lines indicate the ideal estimation 

when the estimated age equals the chronological age while the green lines are the fitted 

regression lines. The r is the Spearsman correlation between the estimated brain age and 

chronological brain age.
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Fig. 8. 
The scatter plots of the r2 (a), r3 − τx (b) and r4 − τx (c) versus chronological age when 

the pair input is the same: y = x. These three figures show the regression errors from the 

mSFCNs+Transformer model for relation learning.
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Fig. 9. 
The uncertainty which is the standard deviation of estimated brain age from the different 

estimations in Eq. 8 (Figure (a)), Eq. 9 (Figure (b)) and Eq. 12 (Figure (c)) over different 

chronological ages. The Pearson correlation is computed between the uncertainty and 

chronological age on all test subjects. The red lines are the average uncertainty over years.
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Fig. 10. 
The MAE of different models on each data set. The ranking score is the average rank of each 

model on the 8 different datasets involved in the cross-validation.
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TABLE I

Demographics of datasets used in this paper, sorted by median age (years).

Dataset Nsamples Age range [Median] Male/Female

MGHBCH [50] 428 0-6 [1.7] 226/202

NIH-PD [51] 1,211 0-22.3 [9.8] 585/626

ABIDE-I [52] 567 6.47-56.2 [14.8] 469/98

BGSP [53] 1,570 19-53 [21] 665/905

BeijingEN 
1 180 17-28 [21] 73/107

IXI
2 556 20.0-86.3 [48.6] 247/309

DLBS [54] 315 20-89 [54] 117/198

OASIS-3 [55] 1,222 42-97 [69] 750/472

Total 6,049 0-97 [22.8] 3,132/2,917

1,
 http://fcon_1000.projects.nitrc.org/indi/retro/BeijingEnhanced.html 

2,
 https://brain-development.org/ixi-dataset/ 
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TABLE II

Model variations compared with different backbones and relation regressions. (FCs represents the three 

Fully-Connected layers for relation regression)

Model Name Configuration

SFCNs+FCs Shared SFCN backbone (ℱ1 = ℱ2) with FCs for relation regression

SFCNi+FCs Independent SFCN backbone (ℱ1 ≠ ℱ2) with FCs for relation regression

mSFCNs+FCs Shared mSFCN backbone (ℱ1 = ℱ2) with FCs for relation regression

mSFCNi+FCs Independent mSFCN backbone (ℱ1 ≠ ℱ2) with FCs for relation regression

SFCNs+Transformer Shared SFCN backbone (ℱ1 = ℱ2) with Transformer for relation regression

SFCNi+Transformer Independent SFCN backbone (ℱ1 ≠ ℱ2) with Transformer for relation regression

mSFCNs+Transformer Shared mSFCN backbone (ℱ1 = ℱ2) with Transformer for relation regression

mSFCNi+Transformer Independent mSFCN backbone (ℱ1 ≠ ℱ2) with Transformer for relation
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TABLE IV

Accuracy of relation estimation with different configurations.

Relations MAE CS(α = 5) Pearson

r1

Single 3.95±0.20 73.48%±1.91% 0.9861±0.0024

Pair 3.85±0.26 73.88%±3.00% 0.9869±0.0020

Joint 3.71±0.18 75.04%±2.01% 0.9878±0.0016

r2

Single 3.98±0.20 71.80%±2.06% 0.9869±0.0018

Pair 3.89±0.21 73.95%±2.41% 0.9872±0.0019

Joint 3.80±0.24 74.17%±2.06% 0.9880±0.0018

r3

Single 3.15±0.14 80.78%±0.89% 0.9828±0.0027

Pair 3.00±0.14 83.12%±1.24% 0.9834±0.0029

Joint 3.03±0.16 81.62%±1.44% 0.9838±0.0027

r4
Single 1.64±0.09 94.46%±0.60% 0.9804±0.0067

Pair 1.67±0.12 93.99%±0.79% 0.9805±0.0079

Joint 1.69±0.11 94.19%±0.36% 0.9825±0.0044
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