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Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most cancers. Its 5-year 
survival rate is very low. The recent induction of neoadjuvant chemotherapy and 
improvements in chemotherapy for patients with pancreatic cancer have resulted 
in improved survival outcomes. However, the prognosis of pancreatic cancer is 
still poor. To dramatically improve the prognosis, we need to develop more tools 
for early diagnosis, treatment selection, disease monitoring, and response rate 
evaluation. Recently, liquid biopsy (circulating free DNA, circulating tumor DNA, 
circulating tumor cells, exosomes, and microRNAs) has caught the attention of 
many researchers as a new biomarker that is minimally invasive, confers low-risk, 
and displays an overall state of the tumor. Thus, liquid biopsy does not employ 
the traditional difficulties of obtaining tumor samples from patients with 
advanced PDAC to investigate their molecular biological status. In addition, it 
allows for long-term monitoring of the molecular profile of tumor progression. 
These could help in identifying tumor-specific alterations that use the target 
structure for tailor-made therapy. Through this review, we highlighted the latest 
discoveries and advances in liquid biopsy technology in pancreatic cancer 
research and showed how it can be applied in clinical practice.
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Core Tip: We focused on liquid biopsy technology for pancreatic ductal adenocarcinoma (PDAC), 
including circulating free DNA, circulating tumor DNA, circulating tumor cells, exosomes, and 
microRNAs. We equally described the characteristics of these technologies and reviewed the clinical 
significance according to the purpose of these biomarkers: early diagnosis, prognosis, prediction of 
recurrence, and therapeutic response. Although liquid biopsy still has many limitations to its widespread 
utilization in clinical practice, liquid biopsy has the potential to be applied from diagnosis to treatment. It 
is expected to improve the prognosis of PDAC radically.
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INTRODUCTION
Pancreatic ductal adenocarcinoma (PDAC) is the seventh most common cause of cancer-related death 
worldwide, and its incidence is increasing[1-3]. In the United States and Japan, it ranks as the fourth 
leading cause of cancer-related mortality[4,5]. Its 5-year survival rate remains as low as 6% in the United 
States[6]. Without novel diagnostic methods and/or treatments, it is expected to become the second 
leading cause of cancer-related deaths by 2030[7]. Due to its early metastatic nature, up to 20% of 
patients with PDAC are eligible for initial resection[6]. The poor prognosis results from the low resect-
ability rate at diagnosis, with surgery being the only potentially curative treatment. However, even with 
radical resection, most patients relapse within a year. Moreover, due to the high resistance rate to 
chemotherapy, radiotherapy, and immunotherapy[8], non-operative treatment has a poorer prognosis 
with a median survival of 5-9 mo[9].

A variety of genetic and molecular alterations have been identified in PDAC, including mutations in 
KRAS, p16, p53, BRCA2, Smad4, etc[10]. However, translating this scientific knowledge into clinical 
treatment regimens has not yet been achieved. Tumor marker-adjusted treatments for PDAC have been 
discussed by several authors[11-16]. Carbohydrate antigen 19-9 (CA19-9) is considered the best tumor 
marker for patients with PDAC. CA19-9 values correlate with tumor size, stage, and burden[17,18]. 
Therefore, CA19-9 is commonly used to diagnose PDAC, assess resectability, monitor progression, and 
determine prognosis[19]. Preoperative and postoperative CA19-9 levels predict prognosis[20-24]. 
Although CA19-9 is a helpful prognostic factor of PDAC, its usefulness remains controversial[19,25-27]. 
Better tumor markers that correlate with tumor size, predict recurrence after surgery, reflect tumor 
progression and metastasis, and indicate response to chemotherapy are urgently needed to improve the 
prognosis of PDAC.

This ideal tumor biomarker should be disease-specific and sensitive. It should also have a high 
positive predictive value and allows for the detection of disease at very early stages. Furthermore, it 
should be easy to collect, and the test should be simple and economically feasible. To replace CA19-9 as 
an alternative biomarker, many researchers have reported the usefulness of liquid biopsy in various 
cancers. Liquid biopsy is used to diagnose cancer through the detection of circulating tumor cells 
(CTCs), cell-free and circulating tumor DNA (cfDNA and ctDNA), and microvesicles such as exosomes 
containing nucleic acids and proteins released from primary tumors and metastases into body fluids. In 
contrast to surgical or needle biopsy, liquid biopsy is a non-invasive diagnostic method. As a result, it 
can be detected in real-time and can provide valid information[28-33].

Through this review, we aimed at exploring cfDNA, ctDNA, CTCs, exosomes, and microRNAs 
(miRNAs) in liquid biopsy technology for early detection, prognostic evaluation, prediction of response 
to chemotherapy, development of acquired resistance, and early detection of disease relapse, and to 
evaluate their clinical utility.

CFDNA 
cfDNA in plasma possibly originates from necrosis, apoptosis, and/or macrophage digestion of tumoral 
and healthy cells. Previous studies demonstrated that most of the plasma cfDNA molecules originate 
from the hematopoietic system in healthy individuals[34,35]. However, in certain physiological or 
pathological conditions, such as pregnancy, organ transplantation, and cancers, the related/affected 
tissues could release additional DNA into peripheral circulation[36-38]. In 1948, Mandel et al[39] rst 
discovered circulating cfDNA. However, it was not until 1977 that the utility of cfDNA was appreciated 
when Leon et al[36] discovered that significantly elevated levels were detected in patients with cancer 
compared to healthy controls. In 1989, Stroun et al[40] found that some of the cfDNA in the plasma of 
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cancer patients was derived from cancer cells (called ctDNA). Subsequent studies revealed that cancer 
cells release ctDNA fragments into blood and other biological fluids such as urine, saliva, and 
cerebrospinal fluid. ctDNA is highly fragmented, with a shorter fragment length found in cancer 
patients (134-145 bp) than that of healthy individuals (165-167 bp)[41]. ctDNA is derived from various 
tumor sites and can provide much more comprehensive genomic and epigenomic information than 
single-site biopsies. Thus, ctDNA overcomes the issue of tumor heterogeneity, a significant limitation of 
conventional tissue biopsy. Furthermore, its non-invasive nature allows for continuous real-time 
monitoring of the molecular status of cancer.

CTCS
CTCs are defined as cells derived from primary, recurrent, or metastatic tumors. CTCs were reported in 
1869, and their significance in peripheral blood has been extensively studied in various malignancies[42-
46]. It potentially correlated with tumor metastasis and recurrence in breast cancer[42,43], prostate 
cancer[44], lung cancer[45], and colorectal cancer[46]. Multiple techniques have been developed to 
explore CTCs, tumor-specific epitopes that are not present in normal blood cells, changes in physical 
properties such as size, density, and electromechanical properties, or high-throughput imaging to 
uncollected blood cell preparations[47]. CTCs can travel in the interstitium and bloodstream as single 
cells as well as clusters[48,49]. Several studies have depicted that CTC clusters correlate with high 
metastatic potential and poor outcomes. CTC clusters were more significantly associated with distant 
metastasis than single CTCs[50,51]. Its predictive value has been explored in recent studies in patients 
with lung, breast, and colon cancer[48,52,53].

EXOSOMES 
In 1967, Peter Wolf first discovered that platelets release numerous vesicles[54]. At the time, these 
vesicles were regarded as cell fragments with no associated biological function. In 1983, exosomes were 
first observed in sheep reticulocytes, and Johnstone named them "exosomes" in 1987[55]. They are one 
of the extracellular vesicles (EVs) and have attracted attention in tumor biology recently. Exosomes are 
40-150 nm in diameter containing transmembrane proteins, heat shock proteins, nucleic acids (DNA, 
mRNA, miRNA, long and short non-coding RNA), and enzymes (GAPDH, ATPase, pgk1, RAB)[56-58]. 
The molecular content of exosomes reflects the nature and state of the cell from which they originate, 
and their content can alter the function of the recipient cell[59]. In 1996, B lymphocyte-derived exosomes 
were found to exhibit antigen-presenting properties and induce T-cell responses[60]. Similarly, antigen-
presenting exosomes derived from dendritic cells retarded the progression of cancer[61]. These lipid-
bilayer vesicles apparently regulate tumor drug resistance, metastasis, and suppression of immune 
responses. From tumor growth to cellular metastasis, a complex exosome communication network 
between tumor and non-tumor cells directs all stages[62]. Tumor cells develop exosome-based 
mechanisms that promote a favorable microenvironment to support tumor growth by facilitating cell 
metastasis, evading apoptosis, establishing a premetastatic niche, and transporting information from 
cell to cell[62]. Tumor-derived exosomes can efficiently be captured by various separation methods and 
gives substantial information about the tumor. In addition, since exosomes are ubiquitously present in 
body fluids, diffuse through them, and fuse with cell membranes to exert their effects, they are potential 
tumor therapeutic drug carriers.

MIRNAS
miRNAs are non-coding RNAs that are involved in regulating gene expression. Most miRNAs are 
transcribed from DNA sequences to become primary miRNAs, then processed into precursor miRNAs 
and finally mature miRNAs. In most cases, miRNAs interact with 3′ untranslated region (3′ UTR) of the 
target mRNA to induce mRNA degradation and translational repression. However, interactions with 
other regions, such as the 5′ UTR, coding sequences, and gene promoters, have also been reported. 
Under certain conditions, they activate translation or regulate transcription. The interaction of miRNAs 
with their target genes is dynamic. It depends on many factors, including the intracellular location of the 
miRNA, the amount of miRNA and target mRNA present, and the affinity of the miRNA-mRNA 
interaction. MiRNAs are secreted into the extracellular fluid and transported to target cells via vesicles 
such as exosomes or binding to proteins such as Argonaute. Extracellular miRNAs mediate cell-to-cell 
communication as chemical messengers. The first miRNAs were reported in the nematode, C. elegans by 
the Ambros group at Harvard University in 1993[63]. Ambros et al[63] screened for mutants that affect 
the timing of cell fate switching during nematode development. They identified two genes: lin-4 and let-
7. Surprisingly, these genes did not code for proteins but for small RNAs, later called miRNAs. So far, 
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over 38000 miRNAs have been identified and catalogued in the public database, miRBase (www.
mirbase.org). miRNAs are involved in a wide range of processes, including metabolism, cell prolif-
eration, apoptosis, and developmental timing[64]. Overexpressed miRNAs act as regulators of 
oncogenes (through downregulation of tumor suppressor genes) and/or cellular processes such as cell 
differentiation and apoptosis. Thus, miRNAs are associated with the development of various types of 
cancer, including colorectal, breast, ovarian, and endometrial cancer[65-68], but their exact pathways are 
not fully understood. MiRNAs are involved in cell growth and differentiation regulators and have been 
proposed to be good candidates for diagnosis and treatment of cancers[69].

CLINICAL SIGNIFICANCE OF LIQUID BIOPSY IN PANCREATIC CANCER
Early diagnosis 
KRAS mutations in tumoral tissues have been detected in 90% of PDAC[9,70,71] and the heterogeneity 
of KRAS mutations between primary tumor and metastasis in patients with PDAC[72,73]. Due to high 
penetration of KRAS mutations in PDAC patients, identification of KRAS mutations in cfDNA could be 
a suitable cancer biomarker. CfDNA, however, is immediately removed from the circulatory system by 
nuclease action and urinary excretion. In addition, uptake by the liver and spleen and degradation by 
macrophages may also affect its removal from the circulation[74,75]. This short half-life, a few hours at 
most[74], makes it complicated to detect cfDNA and ctDNA in early-stage cancer.

CTCs was not highly observed in early-stage PDAC, with a sensitivity of < 50%[76,77]. The detection 
rate of CTCs is 0.0%, 60.7%, 78.6%, and 96.3% of American Joint Commission on Cancer stages I, II, III, 
and IV patients, respectively, and increases dependence on cancer progression[76]. On the other hand, 
CTCs have also been detected in patients with early-stage PDAC[78-80], with relatively high sensitivity 
of over 70%. Kulemann et al[81] reported that no difference in the detection rate of CTCs between early-
stage and advanced PDAC, which may suggest that CTCs are disseminated from the primary tumor in 
the early stages of the disease and may be used to diagnose PDAC in the initial stages.

Exosomes have shown promise for early detection of PDAC and proved to be a useful tool clinically
[33,82]. Melo et al[33] found glypican-1 (the cell surface proteoglycan glypican-1) on tumor-derived 
exosomes as a diagnostic biomarker in PDAC, which enabled to distinguish healthy persons from 
patients with benign diseases and patients with early- and late-stage pancreatic cancer with 100% of the 
sensitivity and specificity. Another study, however, failed to show significant differences in GPC1 
between healthy, PDAC and chronic pancreatitis samples while a combination of detection with high 
levels of exosomal miR-10b, miR-21, miR-30c, and miR-181a and low levels of miR-let7a succeeded to 
distinguish PDAC from healthy and chronic pancreatitis samples[83]. The EV is also a potent biomarker 
for early detection. Liang et al[84] identified ephrin type-A receptor 2 (EphA2) to distinguish PDAC 
patients from pancreatitis patients and healthy control. In addition, it discriminated against PDAC 
patients with early disease (stage I/II), who were potentially benefit from curative surgical resection, 
from normal healthy control (NC) and pancreatitis cases. The blood levels of EphA2-EV before 
treatments distinguished stage I/II PDAC patients from NC and pancreatitis accurately.

Differences in expression of miRNA are considered precursors to prominent diagnostic biomarkers of 
PDAC[85-89]. High expressions of serum exosomal miR-17-5p and miR-21 are likely observed in PDAC 
patients in connection with metastasis and the advanced stage of PDAC[85]. Studies of miR-10b[86,87] 
also showed increased levels in exosomes isolated from the plasma of PDAC patients compared to those 
with chronic pancreatitis or normal controls. Peng et al[90] conducted the meta-analysis including 46 
studies and found that the sensitivity, specificity, and AUC of circulating miRNAs for discriminating 
early-stage PDAC patients (0-IIa) from non-PDAC controls were 0.78 (0.76-0.81), 0.78 (0.75-0.80) and 0.85 
(0.82-0.88), respectively.

cfDNA, ctDNA, and CTCs are highly detectable in patients with advanced PDAC, but less noticeable 
in early-stage PDAC while exosomes are secreted into cells from early stages and miRNAs are abundant 
and relatively easy to detect. These biomarkers, however, are not yet appropriate for early diagnosis in 
clinical practice and liquid biopsy (especially cfDNA and ctDNA) needs to be improved for the 
detection capability as a screening tool for PDAC (Table 1).

Prognosis assessment
Numerous articles have been published regarding the prognosis of PDAC using liquid biopsy. It is 
challenging to detect cfDNA in early-stage PDAC due to small amount of cfDNA at the instance. On the 
other hand, cfDNA is detected with high probability in plasma from patients with advanced PDAC and 
high levels of cfDNA are significantly associated with poor prognosis[91-93]. Higher levels of plasma 
DNA (> 62 ng/mL) is significantly associated with poor outcome in overall survival (OS), presence of 
vascular encasement and metastasis[91]. Fragment size of cfDNA and cfDNA are investigated in 
patients with advanced PDAC, where a pretreatment cfDNA fragment size of 167 bp or less and a high 
pretreatment cfDNA level are associated with shorter progression-free survival (PFS) and OS[92]. 
Regarding ctDNA, KRAS mutations in plasma from PDAC patients were detected in 1999 in connection 
with poor survival[94]. Then, several studies reported the feasibility of detecting circulating mutant 
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Table 1 Liquid biopsy in the early diagnosis of pancreatic cancer

Ref. Journal No. of 
patients Biomarker Method Main findings

Ankeny et al[76], 
2016

Br J Cancer 72 CTC Microfluidic NanoVelcro CTC 
chip

Detection rate of PDAC: 54/72 
(sensitivity = 75.0%, specificity = 
96.4%)

Rhim et al[77], 
2014

Gastroenterology 51 CTC Microfluidic geometrically 
enhanced differential immuno-
capture

CTC (≥ 3) in 33% of patients with 
cystic lesions and no clinical diagnosis 
of cancer, 73% with PDAC, and 0% of 
controls

Xu et al[78], 2017 Int J Mol Sci 40 CTC NE-iFISH The positive rate of diagnosis of 
PDAC is nearly 97% in combination 
with CA19-9

Poruk et al[79], 
2017

Clin Cancer Res 60 CTC ISET method & immunofluor-
escence 

The positive rate is 12% in stageⅠ
PDAC

Gao et al[80], 2016 J Exp Clin Cancer Res 25 CTC SE-iFISH platform Sensitivity of 88 % and specificity of 
90 % in PDAC

Kulemann et al
[81], 2015

Pancreas 11 CTC ScreenCell; Cyto kit No difference in the rate of CTC 
detection between early-stage and 
advanced-stage diseases (P = 0.71)

Melo et al[33], 
2015

Nature 56 Exosome FACS analysis The sensitivity and specificity of 
GPC1+ circulating exosomes in 
diagnosing PDAC were both 100%

Buscail et al[82], 
2019

Cancers 30 Exosome and CTC FACS, Cellsearch and 
RosetteSepTM

Combining quantification of GPC1-
positive exosomes and CTC detection 
identified all the PDAC patients, 
showed a negative predictive value of 
100%, and an overall diagnostic 
accuracy of 91%

Lai et al[83], 2017 Cancer Lett 40 Exosome and 
miRNA

LC-MS & RT-qPCR High levels of exosomal miR-10b, 
miR-21, miR-30c, and miR-181a and 
low levels of miR-let7a differentiated 
PDAC from healthy and chronic 
pancreatitis samples

Liang et al[84], 
2017

Nat Biomed Eng 23 EV nPES assay Pre-therapy EphA2-EV blood levels 
accurately distinguished stage I/II 
pancreatic cancer patients from NC 
(AUC = 0.96) and pancreatitis patients 
(AUC = 0.93)

Que et al[85], 2013 World J Surg Oncol 49 miRNA RT-PCR Serum exosomal miR-17-5p was 
higher in PDAC patients than in 
non–PDAC patients and healthy 
participants

Cote et al[86], 
2014

Am J Gastroenterol 215 miRNA RT-PCR Increased expression of miRNA-10b, -
155, and -106b in plasma appears 
highly accurate in diagnosing PDAC

Ouyang et al[87], 
2015

Oncogene 42 miRNA RT-PCR Plasma miR-10b levels significantly 
increased in comparison with normal 
controls

Slater et al[88], 
2014

Transl Oncol 59 miRNA Real-time PCR A combination test of miRNA-196a 
and miRNA-196b, whose expression 
is upregulated from the PanIN state, 
can identify patients with PanIN 2/3

Madhavan et al
[89], 2015

Int J Cancer 220 Exosome and 
miRNA

miRNeasyMinikit, RT-PCR, 
qRT-PCR and flow cytometry

The selected miR-1246, miR-4644, 
miR-3976 and miR-4306 were 
significantly upregulated in 83% of 
PDAC serum-exosomes, but rarely in 
control groups

AUC: Area under the curve; CA19-9: Carbohydrate antigen 19-9; CTC: Circulating tumor cell; EphA2: Ephrin type-A receptor 2; EV: Extracellular vesicles; 
FACS: Fluorescence-activated cell sorting; ISET: Isolation by size of epithelial tumor cells; LC-MS: Liquid chromatography-tandemmass spectrometry; 
miRNA: microRNA; nPES: Nanoplasmon-enhanced scattering; NC: Normal healthy control; NE-iFISH: Negative enrichment immunofluorescence and in 
situ hybridization of chromosome 8; PDAC: Pancreatic ductal adenocarcinoma; RT-qPCR: Quantitative reverse transcription polymerase chain reaction; 
SE-iFISH: Subtraction enrichment and immunostaining-fluorescence in situ hybridization.
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KRAS genes in the blood of PDAC patients, as well as the prognostic relevance of KRAS genes[95-103]. 
Hadano et al[96] assessed the prognosis of patients who underwent curative pancreatoduodenectomy 
for PDAC according to the presence of KRAS-mutated ctDNA before surgery. The median OS of 
patients with PDAC with ctDNA was significantly worse than that of those without ctDNA (13.6 and 
27.6 mo, respectively). ctDNA before surgery is not associated with prognosis or recurrence[97,98]. 
Bernard et al[99] validated the significance of change in ctDNA and exosome DNA (exoDNA) during 
neoadjuvant chemotherapy in resectable PDAC patients and found that increased exoDNA levels after 
neoadjuvant chemotherapy were significantly associated with disease progression, whereas ctDNA 
showed no correlation with outcome. They also elucidated the significance of the presence of ctDNA 
and exoDNA before chemotherapy in unresectable PDAC patients demonstrating that detection of 
ctDNA and exoDNA mutant allele frequency (MAFs) ≥ 5% at baseline status were a significantly poor 
prognosis. Kinugasa et al[100] reported that KRAS mutations were observed in 62.5% of serum samples 
of 75 patients with PDAC at all stages using droplet digital polymerase chain reaction (PCR) and were 
correlated with worse OS. KRAS mutations in ctDNA were an independent negative predictor of 
survival in unresectable pretreatment PDAC patients[101-103].

CTCs serve as prognostic markers in several studies. A recent 9-cohort meta-analysis of separate 
studies using CellSearch and reverse transcription PCR detection methods involving 623 PDAC patients 
found an association between detection of CTCs and poor prognosis. Among the 623 patients, 268 
patients (43%) with CTCs showed poor PFS and OS compared to the those without CTCs[104]. The 
different methods of enrichment and detection of CTCs demonstrate that the abundance of CTCs[76,
105-108], circulating tumor microemboli (CTMs)[109], could be predictive of worse survival. Results 
have varied depending on the isolation techniques, detection methods, and the population of patients. 
Bidard et al[110] investigated the CTC detection rate using CellSearch® in a subgroup of 79 patients with 
locally advanced PDAC enrolled in the LAP 07 trial; 11% with CTCs had worse OS. Using the 
CellSearch enrichment method, Kurihara et al[111] investigated the significance of CTCs as a biomarker 
of clinical outcomes in 26 patients. Eleven of 26 patients (42%) showed CTCs. PDAC patients without 
CTCs exhibited significant longer median survival times of 375.8 d than those with CTCs (110.5 d, P < 
0.001). de Albuquerque et al[112] also reported a worse median PFS in patients with CTC (47% of 
patients). Detection of CTCs using immunomagnetic epithelial cell adhesion molecule and mucin1 
demonstrated longer PFS of 138.0 d in patients without CTCs than in those with CTC (66.0 d). 
Intriguingly, CTC enumeration is not correlated with clinicopathological features of the disease, 
including metastasis status and tumor stages. The detection of CTCs alone makes no difference in the 
prognosis of PDAC patients[113].

The exosomal miRNA-mediated cell-to-cell signaling in the tumor microenvironment plays a 
significant role in the progression of cancer[114,115]. The proliferation and invasive properties of 
surrounding cancer cells were shown to be modulated by PDAC exosomal miR-222[116], which was 
related to poor outcome in PDAC patients[116]. PDAC cells releases exosomes enriched with miR-301a 
under hypoxic conditions, where circulating exosomal miR-301a-3p levels were positively associated 
with depth of invasion, lymph node metastasis, late TNM stage, and poor prognosis of PDAC patients
[117]. Exosomal miRNAs have been studied to assess PDAC growth, migration, and invasion; further 
longitudinal studies are essential to identify exosomal miRNAs as prognostic biomarkers for PDAC. 
Exosomal proteins also play a significant role in PDAC diagnosis. The levels of GPC1 are associated 
with tumor size and disease burden of PDAC[118]. Macrophage migration inhibitory factor (MIF) is 
highly expressed in PDAC-derived exosomes and its blockade prevented liver pre-metastatic niche 
formation and metastasis[119]. MIF was markedly higher in exosomes from patients of stage I PDAC, 
who later developed liver metastasis, in comparison with advanced PDAC patients, suggesting that 
increased levels of exosomal MIF could be a biomarker for developing liver metastasis in PDAC patients 
(Table 2).

Recurrence monitoring 
A liquid biopsy is a promising tool to detect minimal residual disease in various gastrointestinal 
malignancies. Predicting cancer recurrence earlier improves prognosis and provides more options for 
early consideration of anticancer drugs and operations. Longitudinal monitoring of ctDNA demon-
strated to show tumor dynamics in colorectal cancer due to its short half-life[74], which could be 
available for PDAC.

The monitoring of ctDNA in PDAC patients after surgery reflects early recurrence[97,98,103,120-123]. 
Multivariate analysis revealed that detection of KRAS mutations in postoperative serum was an 
independent prognostic factor for disease-free survival (DFS), which is associated with recurrence (P = 
0.027)[97]. Increase of KRAS mutated ctDNA after surgery, during periods of adjuvant chemotherapy 
and observation, was a highly predictive dynamic marker of early relapse[120]. We reported that 
detection of KRAS mutated ctDNA after surgery was associated with OS regardless of recurrence (P = 
0.005) while increase of CA19-9 was associated with recurrence (P < 0.001) but not OS (P = 0.692)[98]. 
Yamaguchi et al[124] reported that detection of ctDNA before surgery was significantly associated with 
poor DFS. Detection of ctDNA before surgery is likely to be associated with recurrence comparing to the 
monitoring of ctDNA after surgery[125-128]. KRAS mutated ctDNA before surgery, especially KRAS 
G12D mutation, serves as a biomarker for early relapsein resectable PDAC patients[125]. Lee et al[126] 
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Table 2 Liquid biopsy in the predicting prognosis of pancreatic cancer

Ref. Journal year No. of 
patients Biomarker Method Main findings

Singh et al[91], 
2015

Cancer Invest 2015 cfDNA Higher level of plasma DNA (> 62 
ng/mL) was found to associate 
significantly with lower overall 
survival time (P = 0.002), presence of 
vascular encasement (P = 0.030) and 
metastasis (P = 0.001)

Lapin et al[92], 
2018

J Transl Med 2018 61 cfDNA 2100 Bioanalyzer Pre-treatment cfDNA levels could 
independently predict prognosis for 
both PFS (HR = 3.049, P = 0.005) and 
OS (HR = 2.236, P = 0.028)

Wang et al[93], 
2021

Pancreas 2021 97 cfDNA PCR The 1- and 5-year survivals for those 
with high cfDNA were poorer; 70.2% 
and 21.2%, respectively, as compared 
with 93.4% and 23.7% for those with 
low cfDNA level

Castells et al[94], 
1999

J Clin Oncol 1999 47 ctDNA PCR-RFLP and SSCP Plasma KRAS mutations were 
identified as the only independent 
prognostic factor (odds ratio, 1.51; 
95%CI: 1.02 to 2.23)

Ako et al[95], 2017 Pancreatology 2017 40 ctDNA ddPCR KRAS mutation at G12V in the plasma 
or serum conferred a significantly 
poorer prognosis than without the 
mutation (P < 0.01)

Hadano et al[96], 
2016

Br J Cancer 2016 105 ctDNA ddPCR Patients who were preoperative 
ctDNA+ had a significantly poorer 
prognosis with respect to OS (P < 
0.0001)

Nakano et al[97], 
2018

Br J Cancer 2018 45 ctDNA PNA directed, PCR 
clamping

There were no significant differences in 
DFS and OS between patients with and 
without KRAS mutations from 
preoperative serum

Watanabe et al
[98], 2019

PLoS One 2019 78 ctDNA ddPCR No effect of the presence of KRAS-
mutated ctDNA before surgery on RFS 
(median: 16.9 mo vs 32.4 mo) was 
observed

Bernard et al[99], 
2019

Gastroenterology 2019 34 ctDNA and 
exosome DNA

ddPCR Increased exosome DNA levels after 
neoadjuvant therapy were significantly 
associated with disease progression (P 
= 0.003)

Kinugasa et al
[100], 2015

Cancer 2015 75 ctDNA ddPCR KRAS mutations in plasma correlated 
with poor OS (P = 0.002)

Tjensvoll et al
[101], 2016

Mol Oncol 2016 14 ctDNA PNA clamp PCR Kaplan-Meier survival analyses 
indicated that patients with a positive 
ctDNA before or after initiation of 
chemotherapy had shorter PFS and OS

Chen et al[102], 
2010

Eur J Surg Oncol 2010 91 ctDNA Direct sequencing KRAS codon 12 mutation from plasma 
DNA was an independent negative 
prognostic factor (HR, 7.39; 95%CI: 
3.69-14.89)

Sausen et al[103], 
2015

Nat Commun 2015 101 ctDNA Next-generation 
sequencing and digital 
PCR

ctDNA was an independent prognostic 
marker of OS in advanced disease, 
with OS of 6.5 mo vs 19.0 mo for 
ctDNA-positive and negative patients, 
respectively

Khoja et al[105], 
2012

Br J Cancer 2012 54 CTC Cellsearch and ISET The PFS and OS for patients without vs 
those with CTCswas 140 d vs 94 d (P = 
0.13) and 164 d vs 127 d (P = 0.26), 
respectively

Earl et al[106], 2015 BMC Cancer 2015 45 CTC Cellsearch A Cox regression analysis showed a 
significant difference in OS for CTC 
positive vs negative patients with a HR 
of 3.0 (P = 0.023)
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Zhang et al[107], 
2015

Int J Cancer 2015 61 CTC The EpCAM-
independent method

CTCs positive pancreatic cancer 
patients exhibit a worse (P = 0.0458) 
survival rate

Okubo et al[108], 
2017

Eur J Surg Oncol 2017 65 CTC Cellsearch A multivariate analysis identified the 
presence or absence of CTCs as an 
independent prognostic factor (P = 
0.049)

Ankeny et al[76], 
2016

Br J Cancer 2016 100 CTC Microfluidic 
NanoVelcro CTC chip

A cut-off of  3 CTCs in 4 mL venous 
blood was able to discriminate between 
local/regional and metastatic disease 
(AUROC = 0.885; 95%CI: 0.800-0.969; 
and P < 0.001)

Chang et al[109], 
2016

Clin Chem 2016 63 CTM anti-EpCAM 
conjugated supported 
lipid bilayer-coated 
microfluidic chips

CTM was an independent prognostic 
factor of OS and PFS (P  0.0001 and P = 
0.003, respectively)

Bidard et al[110], 
2013

Ann Oncol 2013 79 CTC Cellsearch CTC positivity was associated with 
poor tumor differentiation (P = 0.04), 
and with shorter OS in multivariable 
analysis (P = 0.01)

Kurihara et al
[111], 2008

J Hepatobiliary 
Pancreat Surg

2008 47 CTC Cellsearch MST of the CTC-positive and -negative 
patients were 110.5 and 375.8 d (P < 
0.001)

de Albuquerque et 
al[112], 2008

Oncology 2012 74 CTC Median PFS time was 66.0 d for 
patients with baseline CTC positivity 
and 138.0 days for CTC-negative 
patients (P = 0.01)

Kulemann et al
[81], 2015

Pancreas 2015 21 CTC ScreenCell The presence of CTC did not adversely 
affect MST: 16 mo in CTC-positive (n = 
18) vs 10 mo in CTC-negative (n = 3) 
patients

Li et al[116], 2018 Cell Physiol Biochem 2018 73 miRNA Arraystar Human 
miRCURYTM LNA 
Array

Multivariate analyses showed that 
exosomal miR-222 was independent 
risk factors for PDAC survival (P = 
0.046)

Wang et al[117], 
2018

Cancer Res 2018 50 miRNA qRT-PCR Exosomal miR-301a-3p overexpression 
predicted late TNM stage and poor 
survival in human PDAC (P = 0.0182)

Frampton et al
[118], 2018

Oncotarget 2018 43 GPC1+ 
circulating 
exosomes

ELISA Patients with high crExos GPC1 levels 
have significantly larger PDACs (> 4 
cm; P = 0.012)

Costa-Silva et al
[119], 2015

Nat Cell Biol 2015 55 Exosome ELISA Increased levels of MIF in exosomes 
isolated from patients with PDAC with 
progression of disease post-diagnosis 
compared with PDAC patients with no 
evidence of disease five years post-
diagnosis (P < 0.01) and with healthy 
controls (P < 0.01), but not patients 
with liver metastasis

AUROC: Area under the curve; cfDNA: Cell-free DNA; ctDNA: Circulating tumor DNA; CTC: Circulating tumor cell; CTM: Circulating tumor 
microemboli; DFS: Disease-free survival; ddPCR: Droplet digital polymerase chain reaction; ELISA: Enzyme-linked immuno-sorbent assay; EPCAM: 
Epithelial cell adhesion molecule; ISET: Isolation by size of epithelial tumor cells; HR: Hazard ratio; MST: Median survival time; MIF: Macrophage 
migration inhibitory factor; miRNA: microRNA; OS: Overall survival; PFS: Progression-free survival; PCR: Polymerase chain reaction; PCR-RFLP: 
Polymerase chain reaction-restriction fragment length polymorphism; PNA: Peptide nucleic acid; PDAC: Pancreatic ductal adenocarcinoma; qRT-PCR: 
Quantitative reverse transcription polymerase chain reaction; RFS: Recurrence-free survival; SSCP: Single-strand conformation polymorphism.

reported that KRAS mutated ctDNA before and after surgery was associated with shorter recurrence-
free survival in resectable PDAC patients and all patients with ctDNA had a recurrence. Recurrence 
after surgery is likely identified earlier by ctDNA than imaging study of computed tomography[103,
121], suggesting that ctDNA may serve as postoperative surveillance.

While preoperative CTCs have been reported to predict tumor recurrence, postoperative CTC 
monitoring has been rarely evaluated. Park et al[129] reported that 12 of 40 patients with CTC (33.3%) in 
preoperative blood showed a significantly frequent rate of systemic recurrence (distant metastases and 
peritoneal dissemination). Multivariable logistic regression analysis showed the detection of CTC was 
an independent risk factor for early recurrence and systemic recurrence.
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The detection of exosome-derived KRAS with MAFs of > 1% is associated with worse DFS after 
resection in patients with localized PDAC[130]. Exosomal miR-451a in plasma of PDAC patients is 
linked to recurrence after surgery[131]. miRNA derived from portal vein blood exosomes (miR-4525, 
miR-451a, and miR-21), as well as CTCs, can be utilized for the evaluation of PDAC recurrence[132] 
(Table 3).

Therapeutic effect monitoring 
An accurate real-time understanding of tumor dynamics during chemotherapy helps to select 

adequate drugs and avoid unnecessary side effects. For this purpose, more sensitive and novel 
biomarkers are required to overcome disadvantages of conventional biomarkers including CA19-9; 
however, only few studies have described monitoring using liquid biopsy during chemotherapy in 
unresectable PDAC, and most of them reported that the prognosis is poor when each marker is detected
[78,84,98,99,108,133-137].

The importance of long-term monitoring of ctDNA its predictive ability for the prognosis of PDAC
[98,133,134]. In 2018, Kruger et al[134] highlighted the cut-off value of ctDNA for detecting early drug 
response in metastatic PDAC patients who underwent chemotherapy: an increase in ctDNA at day 14 
correlated with disease progression determined by subsequent imaging study with a sensitivity of 83% 
and specificity of 100%. Yin et al[138] evaluated ctDNA in patients with PDAC with pathologic complete 
response (pCR) to neoadjuvant chemotherapy and found its associations with the outcome. They 
reported that ctDNA existed even in patients with PDAC with pCR to neoadjuvant chemotherapy, 
thereby predicting early recurrence and reduced survival. These data were obtained using somatic 
mutations in tumor tissues and CTCs in addition to ctDNA.

Change in number of CTCs was reported in response to neoadjuvant chemotherapy in patients with 
advanced stage PDAC[138-140]. In a study of 57 PDAC patients who underwent surgery, patients who 
received neoadjuvant chemotherapy had significantly lower number of CTC than those who were 
chemotherapy-naive at the time of surgery[139]. Another study, however, demonstrated no differences 
in 16 patients who received neoadjuvant chemotherapy[140]. Wei et al[135] evaluated CTCs in patients 
with PDAC who underwent surgery and chemotherapy (modified FOLFIRINOX; oxaliplatin, 
leucovorin, irinotecan, and fluorouracil, or gemcitabine plus nab-paclitaxel chemotherapy). They 
reported that the number of CTC decreased or remained same in 12 (92.3%) patients with drug response 
(either tumor shrinkage or stable tumor burden). Negative enrichment, immunofluorescence, and in situ 
hybridization of chromosome 8 was applied to capturing CTC and determine the role of chromosomal 
instability in patients with PDAC. Improvement in detection rate of CTCs by using this system revealed 
the significance of triploid CTCs for the prediction of drug response to chemotherapy in these patients. 
In addition, CTMs correlated with poor response to chemotherapy in patients having stage IV PDAC
[78].

The abundance of exosomal miRNAs was applied to assess therapeutic response. The expression 
levels of serum miRNAs (miR-221) was significantly upregulated at an earlier time, 3-6 wk of 
chemotherapy in patients with PDAC without drug response to lapatinib and capecitabine, compared to 
those without drug response. The expression levels of miRNA (specifically miR-221) increased in PDAC 
patients who did not respond to lapatinib and 5-fluorouracil (the active form of capecitabine), indicating 
that the increased level of specific serum miRNAs was associated with resistance to lapatinib and 
capecitabine treatment[136]. The levels of exosomes in serum at serial time points throughout chemora-
diotherapy correlated with treatment resistance in 10 patients with locally advanced PDAC[137]. The 
levels of EphA2-EV in plasma were strongly associated with treatment response described in the early 
diagnosis section, reflecting the drug response to neoadjuvant therapy in 23 PDAC patients[84] 
(Table 4).

CONCLUSION
Liquid biopsy is gaining attention as a non-invasive methodology and is involved in obtaining 
important tumor information via blood-based biomarkers for early diagnosis and treatment of cancer. 
Tumor components such as CTCs, cfDNA, ctDNA, miRNAs, and exosomes in liquid biopsy have 
promising value for diagnosis, prognosis, and treatment prediction of surgery and chemotherapy. In 
particular, the most significant advantage of liquid biopsy over tissue biopsy is its ability to monitor 
disease progression and treatment efficacy longitudinally in "real time." However, liquid biopsy is not 
yet considered a standard means of confirming or diagnosing various diseases, including cancer.

The main limitation of liquid biopsy is its lack of sensitivity and accuracy in identifying various types 
of tumor compared to tissue biopsy. In addition, the ability to detect liquid biopsy is difficult because 
CTCs, ctDNA, and RNA are relatively scarce compared to other blood components. Furthermore, there 
are no standard separation, enrichment, and detection methodologies. Applying different techniques 
and assays to detect CTCs and ctDNA will result in varying sensitivity and specificity[141,142]. Usually, 
enriched CTCs are identified using tumor-associated biomarkers, either at the protein or mRNA level. 
However, in patients with epithelial tumors, epithelial markers are downregulated in the process of 
epithelial mesenchymal transition, making it difficult to identify them, leading to false-negative results
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Table 3 Liquid biopsy in recurrence monitoring of pancreatic cancer

Ref. Journal No. of 
patients Biomarker Method Main findings

Nakano et al
[97], 2018

Br J Cancer 45 ctDNA PNA-directed PCR 
clamping

Multivariate analysis revealed that KRAS mutations in 
postoperative serum are an independent prognostic factor for 
DFS (P = 0.027). Furthermore, the change from not detecting 
mutant KRAS in preoperative to mutant KRAS in postoperative 
cfDNA was an independent prognostic factor for OS (P = 0.004)

Hussung et al
[120], 2021

BMC Cancer 25 ctDNA ddPCR, PCR An increased KRAS mutated ctDNA during adjuvant 
chemotherapy and follow-up was a highly predictive dynamic 
marker of early relapse and poor OS

Watanabe et 
al[98], 2019

PLoS One 78 ctDNA ddPCR Detection of mutant KRAS on postoperative ctDNA was 
associated with OS regardless of recurrence (P = 0.005)

Groot et al
[121], 2019

Clin Cancer 
Res

59 ctDNA ddPCR ctDNA detected during follow-up predicted clinical recurrence 
(sensitivity 90%, specificity 88%) with a median lead time of 84 
d

Sausen et al
[103], 2015

Nat Commun 20 (surgery 
group)

ctDNA Next-generation 
sequencing and 
digital PCR

Patients with detectable ctDNA after surgical resection (n = 10) 
were more likely to relapse and die from disease compared with 
those with undetectable ctDNA (P = 0.0199)

Jiang et al
[122], 2020

Front Oncol 27 ctDNA Next-generation 
sequencing

Patients with ctDNA-positive status postoperatively had a 
markedly reduced DFS compared to those with ctDNA-negative 
status (P = 0.019)

Kim et al
[123], 2018

Clin Chem 106 ctDNA ddPCR Patients who had increased KRAS MAF values at 6 mo had a 
shorter OS (P = 0.036) than those who had decreased values

Yamaguchi et 
al[124], 2021

Ann Surg 
Oncol

97 ctDNA ddPCR The multivariate analysis showed that the presence of 
preoperative ctDNA was associated with poorer OS (P = 0.008) 
and that postoperative ctDNA was not associated with either 
RFS or OS

Guo et al
[125], 2020

Br J Cancer 113 and 44 
(discovery and 
validation 
cohorts)

ctDNA ddPCR Survival analysis showed that plasma KRAS mutations, 
especially KRAS G12D mutation, had significant association 
with OS and RFS of resectable PDAC. Plasma KRAS G12D 
mutation showed a strong correlation with early distant 
metastasis

Lee et al
[126], 2019

Ann Oncol 42 ctDNA PCR-based-SafeSeqS 
assays

Preoperative ctDNA detection was associated with inferior RFS 
(P = 0.002) and OS (P = 0.015). Detectable ctDNA following 
curative intent resection was associated with inferior RFS (P < 
0.0001) and OS (P = 0.003)

Pietrasz et al
[127], 2017

Clin Cancer 
Res

31 ctDNA Next-generation 
sequencing

The presence of ctDNA was associated with a shorter DFS (4.6 
mo vs 17.6 mo; P = 0.03) and shorter OS (19.3 mo vs.32.2 mo; P = 
0.027)

Okada et al
[128], 2020

J Gastroenterol 66 (surgery 
group)

ctDNA Digital PCR Patients with preoperative ctDNA MAF > 0.45% exhibited 
significantly shorter disease-free survival than those with lower 
MAF (HR 3.179, 95%CI: 1.025-9.859; P = 0.0452)

Park et al
[129], 2021

Sci Rep 40 CTC CD-PRIM kit On multivariable logistic regression analysis, CTC positivity 
was an independent risk factor for early recurrence (P = 0.027) 
and systemic recurrence (P = 0.033)

Allenson et al
[130], 2017

Ann Oncol 142 and 121 
(discovery and 
validation 
cohort)

Exosome 
and ctDNA

Electron microscopy, 
flow cytometry and 
particle analysis and 
ddPCR

Higher exosome KRAS MAFs were associated with decreased 
disease-free survival in patients with localized disease (P = 
0.031)

Takahasi et al
[131], 2018

J Hepatobiliary 
Pancreat Sci

50 miRNA qRT-PCR In cox proportional hazards model analysis, exosomal miR-451a 
showed significance to OS and DFS (P = 0.001, P = 0.004)

Kawamura et 
al[132], 2019

J Hepatobiliary 
Pancreat Sci

55 miRNA qRT-PCR miR-4525, miR-451a, and miR-21 from portal vein can be 
utilized for the evaluation of pancreatic cancer recurrence (P = 
0.002, 0.001 and 0.002, respectively)

ctDNA: Circulating tumor DNA; cfDNA: Cell-free survival; CTC: Circulating tumor cell; DFS: Disease-free survival; ddPCR: Droplet digital polymerase 
chain reaction; HR: Hazard ratio; MAF: Mutant allele frequency; miRNA: microRNA; OS: Overall survival; PNA: Peptide nucleic acid; PCR: Polymerase 
chain reaction; PDAC: Pancreatic ductal adenocarcinoma; qRT-PCR: Quantitative reverse transcription polymerase chain reaction; RFS: Recurrence-free 
survival; SafeSeqS: Safe-sequencing system.
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Table 4 Liquid biopsy in the therapeutic effect monitoring of pancreatic cancer

Ref. Journal No. of patients Biomarker Method Main findings

Del Re et al[133], 
2017

Sci Rep 27 ctDNA ddPCR There was a statistically significant difference in 
PFS and OS in patients with increase vs 
stability/reduction of ctDNA in the sample 
collected at day 15 (P = 0.03 and P = 0.009, 
respectively)

Kruger et al
[134], 2018

Ann Oncol 54 ctDNA BEAMing An increase in ctDNA at day 14 correlated with 
disease progression on subsequent imaging 
with a sensitivity of 83% and specificity of 100%

Watanabe et al
[98], 2019

PLoS One 39 ctDNA ddPCR The emergence of KRAS ctDNA in longitudinal 
tests was associated with prognosis (P < 0.005)

Wei et al[135], 
2019

Cancer Lett 13 (chemotherapy 
group)

CTC Vimentin or 
EpCAM 
immobilized 
microfluidic chip

In patients exhibiting a response, their CTC 
counts decreased or remained the same, except 
for one case

Okubo et al
[108], 2017

Eur J Surg Oncol 65 CTC Cellsearch The overall survival rate was significantly lower 
in patients with than in those without CTCs 
even after chemotherapy and chemoradio-
therapy (P = 0.045)

Xu et al[78], 2017 Int J Mol Sci 83 CTC NE-iFISH The proportion of triploid CTC detected by the 
NE-iFISH was significantly decreased after 
chemotherapy (P < 0.001)

Tian et al[136], 
2016

Oncol Lett 17 microRNA RT-qPCR Significant upregulation of serum miRNAs 
(miR-21, miR-210, miR-221 and miR-7), at 
earlier time points (3-6 wk) was observed in 
non-responders of chemotherapy compared to 
responders

Bernard et al
[99], 2019

Gastroenterology 104 (chemotherapy 
group)

exosome and 
ctDNA

ddPCR In the longitudinal analysis in chemotherapy 
group, a MAF peak above 1% in exosome DNA 
was significantly associated with radiologic 
progression (P = 0.0003)

An et al[137], 
2017

J Proteome Res 10 exosome iTRAQ They analyzed exosomes before treatment, after 
one cycle of induction gemcitabine-based 
chemotherapy, and at 3 wk after starting 
chemoradiation therapy and compared these 
samples to serum derived from healthy 
volunteers. They identified eight proteins that 
changed during a course of therapy in all 
patients

Liang et al[84], 
2017

Nat Biomed Eng 23 (neoadjuvant 
chemotherapy 
group)

EV nPES EphA2-EVs were also informative in detecting 
early responses to neoadjuvant therapy (P < 
0.05)

Yin et al[138], 
2021

Clin Cancer Res 36 somatic 
mutations, CTCs, 
and ctDNA

Next-generation 
sequencing & ISET

Somatic mutations, CTCs, and ctDNA existed 
even in patients with PDAC with pathologic 
complete response to NAT, which could 
possibly predict early recurrence and reduced 
survival

Poruk et al[140], 
2016

Ann Surg 50 CTC ISET The detection of CTCs expressing both vimentin 
and cytokeratin was predictive of recurrence (P 
= 0.01)

Gemenetzis et al
[139], 2018

Ann Surg 57 CTC ISET Patients who received neoadjuvant 
chemotherapy had significantly lower total 
CTCs (tCTCs, P = 0.007), eCTCs (P = 0.007), and 
mCTCs (P = 0.034), compared with untreated 
patients eligible for upfront resection

ctDNA: Circulating tumor DNA; CTC: Circulating tumor cell; CR: Complete response; ddPCR: Droplet digital polymerase chain reaction; eCTCs: Epithelial 
circulating tumor cell; EpCAM: Epithelial cell adhesion molecule; EphA2: Ephrin type-A receptor 2; EV: Extracellular vesicles; iTRAQ: Isobaric tag for 
relative and absolute quantitation; ISET: Isolation by size of epithelial tumor cells; MAF: Mutant allele frequency; mCTCs: Mesenchymal circulating tumor 
cell; nPES: Nanoplasm-enhanced scattering; NAT: Neoadjuvant chemotherapy; NE-iFISH: Negative enrichment immunofluorescence and in situ 
hybridization of chromosome 8; OS: Overall survival; PFS: Progression-free survival; RT-qPCR: Quantitative reverse transcription polymerase chain 
reaction; tCTC: Total circulating tumor cell.



Watanabe F et al. Future directions in liquid biopsy of pancreatic cancer

WJG https://www.wjgnet.com 6489 December 14, 2022 Volume 28 Issue 46

[143]. Another limitation is the low specificity due to the presence of cfDNA from normal tissue. 
Furthermore, cfDNA is released from normal cells as a diluent for trace amounts of ctDNA, so an 
additional pre-step is needed in the analysis to avoid an increase in non-neoplastic cfDNA[144]. 
Establishing blood noncoding RNA as a biomarker is more complicated than in other common 
biomarkers due to its lack of suitable housekeeping noncoding RNA reference analytes, and high intra-
patient variability. Thus, these limitations can lead to a lack of consistency between biomarkers 
identified in different studies[145]. Exosomes are more manageable to isolate than CTCs or cfDNA in 
tumors. Therefore, more studies focus on exosomes in the early diagnosis of cancer. However, they still 
have limitations in clinical application, such as low targeting efficiency and easy phagocytosis by the 
immune system. In addition, methods for isolating and purifying exosomes are time and labor-
consuming. More multicentered, large-scale, and long-term studies, including clinical trials, are urgently 
needed to make liquid biopsy clinically available.

Similar to other tumors, cfDNA, ctDNA, CTCs, exosomes, and miRNAs are promising new 
biomarkers in the treatment of PDAC. However, the use of liquid biopsies in the same manner as 
conventional tumor markers of PDAC is not clear yet. These liquid biopsies are at least as effective as 
currently used tumor markers. Furthermore, cost-effectiveness is significant when the marker is used for 
clinical practice. With the advent of KRAS12c inhibitors, liquid biopsy will be performed many times 
during treatment. It is also possible that oncocytic carcinomas may acquire somatic mutations, such as 
EGFRT 790M in lung cancer, which must be monitored. Although liquid biopsy is minimally invasive, 
new and innovative technologies are needed to reduce the time and effort required for multiple 
analyses. With advances in cancer genomic medicine, new base mutation-specific inhibitors have been 
developed or new genetic mutations directly linked to drug resistance have been identified. So, 
strategies for various cancers may change at an unprecedented pace. Since it is practically difficult to 
make next-generation sequence analysis mandatory many times during treatment, it will be important 
in the future to assemble an appropriate analytical system that is as minimal as necessary.
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