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• 21-month COVID-19 wastewater surveil-
lance data in Detroit, USA, were pre-
sented.

• Peak-definingmethods were developed to
identify peak ranges of COVID-19 cases.

• Real-time and post-factum methods were
developed to determine early warnings.

• Hit rates were designed to evaluate the ac-
curacy of early warning methods.

• Thesemethods can help health agencies to
determine early warnings based on WBE.
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Wastewater-based epidemiology (WBE) has drawn great attention since the Coronavirus disease 2019 (COVID-19)
pandemic, not only due to its capability to circumvent the limitations of traditional clinical surveillance, but also
due to its potential to forewarn fluctuations of disease incidences in communities. One critical application of WBE is
to provide “early warnings” for upcoming fluctuations of disease incidences in communities which traditional clinical
testing is incapable to achieve. While intricate models have been developed to determine early warnings based on
wastewater surveillance data, there is an exigent need for straightforward, rapid, broadly applicable methods for
health departments and partner agencies to implement. Our purpose in this study is to develop and evaluate
such early-warning methods and clinical-case peak-detection methods based onWBE data to mount an informed pub-
lic health response. Throughout an extended wastewater surveillance period across Detroit, MI metropolitan area (the
entire study period is from September 2020 to May 2022) we designed eight early-warning methods (three real-time
and five post-factum). Additionally, we designed three peak-detectionmethods based on clinical epidemiological data.
We demonstrated the utility of these methods for providing early warnings for COVID-19 incidences, with their
counterpart accuracies evaluated by hit rates. “Hit rates” were defined as the number of early warning dates (using
wastewater surveillance data) that captured defined peaks (using clinical epidemiological data) divided by the total
number of early warning dates. Hit rates demonstrated that the accuracy of both real-time and post-factum methods
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Table 1
Methods of defining peak-ranges of confirmed COVID

Method Method description

Method I Data sequence numerical increase or dec

Method II Variance / mean

Method III Mean – 0.5standard deviation (SD)
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could reach 100%. Furthermore, the results indicate that the accuracywas influenced by approaches to defining peaks
of disease incidence. The proposed methods herein can assist health departments capitalizing on WBE data to assess
trends and implement quick public health responses to future epidemics. Besides, this study elucidated critical factors
affecting early warnings based on WBE amid the COVID-19 pandemic.
1. Introduction

Coronavirus disease 2019 (COVID-19), caused by severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2), has been spreading
worldwide since its first identification in Wuhan, China, in December
2019. Since SARS-CoV-2 persists in human bodily fluids and excretions, in-
cluding saliva, sputum, urine, and feces, numerous studies have applied
wastewater-based epidemiology (WBE), also known as wastewater surveil-
lance, to monitor COVID-19 infections in various global settings (Ahmed
et al., 2020a; Ahmed et al., 2021, 2022; Barua et al., 2022; Bivins and
Bibby, 2021; Corchis-Scott et al., 2021; Li et al., 2022; Miyani et al.,
2020, 2021; Sherchan et al., 2020; Xiao et al., 2022; Zhao et al., 2022;
Zhu et al., 2022). WBE is a comparatively inexpensive and less laborious
tool than clinical surveillance for tracking disease incidence and/or preva-
lence within a large-scale community (Safford et al., 2022; Xagoraraki,
2020; Xagoraraki and O’Brien, 2020). WBE provides a comprehensive
and anonymous surveillance of both symptomatic and asymptomatic viral
disease, making it an ideal complimentary approach to traditional clinical
surveillance testing (Bibby et al., 2021; Safford et al., 2022). A recent
study reported that WBE can conserve financial resources without altering
surveillance accuracy by replacing some of clinical surveillance programs
withWBE-based surveillance (Safford et al., 2022). Perhaps most critically,
WBE has the potential to provide early warnings of impending disease out-
breaks or surges, if translated effectively to a public health setting (Zhao
et al., 2022). “Early warnings” in this context refers to the early detection
of relevant pathogen fluctuations within a community, providing a critical
window to mount a public health response, prior to lagging parallel trends
in clinical cases (Bibby et al., 2021; Olesen et al., 2021). Recent studies have
proposed early warning algorithms predicated on intricate statistical
models, such as autoregressive time series models (Zhao et al., 2022),
artificial neural network models (Zhu et al., 2022), and other advanced sta-
tistical and machine learning models (Table S1). These sophisticated
models are resource- and time-intensive for health departments to calculate
and interpret, particularly in the context of a possible emerging threat.
Currently, there are scant studies that have investigated or tested early
warning methods for COVID-19, using straightforward, reliable, and rapid
approaches for health departments. Some attempts to determine early
warnings for COVID-19 clinical cases include: using thresholds for waste-
water viral RNA concentrations (Zhu et al., 2021b), calculating Epidemic
Volatility Index (EVI) (Kostoulas et al., 2021), implementing statistical
thresholds such as mean plus two standard deviations (Bowman et al.,
2016; Prabdial-Sing et al., 2021), mean and variance (O’Brien and
Clements, 2021), kurtosis and skewness (Harris et al., 2020), assessing
the ratio between wastewater viral concentrations and clinical cases (w/c
ratio) (D’Aoust et al., 2022; Xiao et al., 2022), estimating the percentage
change ofwastewater viral concentrations and their relationships to clinical
cases (Kumar et al., 2021), etc.
-19 cases.

Early warning level / Cutoff

rease Continual increase for ≥14
Peak range begins at day 0.
Peaks at the maximum, and
Intersection values > varian

Intersection values > mean-

2

Until now, resources have been spent to generate WBE data that are not
fully understood or applied. Wastewater surveillance for pathogens is
only beneficial if public health practitioners and partner agencies can
apply the results to inform policy decisions and guide actions. Henceforth,
we propose three clinical case peak-defining methods (Table 1) and eight
simple-to-calculate early warning methods (Table 2) that can be smoothly
implemented by public health departments and partner agencies to provide
prompt warnings of impending disease incidences or surges. One of the
advantages of these methods is that they encompass both real-time and
post-factum analyses. Moreover, these methods combine WBE data with
clinical data, though a w/c ratio (D’Aoust et al., 2022; Xiao et al., 2022)
using the post-factum methods. Lastly, accuracy of these methods was
evaluated via “hit rate”, which is subsequently defined. Results indicate
that hit rates for all real-time methods and four post-factum methods
could reach 100% under different circumstances, demonstrating successful
discernment of clinical case peaks. Thus, these methods can equip local
public health officials with a toolset that integrates wastewater surveillance
with traditional clinical surveillance data, to provide early warnings for dis-
ease outbreaks or surges, and alert officials and the public when action is
needed based on warnings identified by the methods. Besides, we also elu-
cidated the impact of policy changes due to COVID-19, and social events in
the Detroit metropolitan area on the wastewater viral concentrations and
clinical cases over the past two years. In addition, factors that affect apply-
ing WBE for disease surveillance and accuracy of early warning methods
are discussed.

2. Materials and methods

2.1. Sample collection and laboratory analysis

Untreated wastewater samples were collected twice weekly from
the Water Resource Recovery Facility (WRRF) of the Great Lakes Water
Authority (GLWA) located in Detroit, Michigan, USA, between September
1, 2020, and May 31, 2022. The WRRF receives wastewater via three
main interceptors including the Detroit River Interceptor (DRI), the North
Interceptor-East Arm (NIEA), and the Oakwood-Northwest-Wayne County
Interceptor (ONWI) from its service area that encompasses greater Detroit.
Sampleswere collected from the three interceptors at the point of discharge
into the WRRF. Depending on the suspended solids of wastewater, approx-
imately 10 to 50 L of untreated wastewater passed through NanoCeram
electropositive cartridge filters at a rate not >11 L/min using a previously
described method (Miyani et al., 2021; Zhao et al., 2022). Viruses were
eluted within 24 h after sampling, based on a previously described method
(Supplementary Materials: Sampling and Virus Elution) (Miyani et al.,
2021; Zhao et al., 2022). Bacteriophage Phi6 was used as a proxy virus to
evaluate recovery during virus elution and concentration (Kantor et al.,
2021; Ye et al., 2016; Zhao et al., 2022). Recoveries obtained ranged
level Peak range

consecutive data points.

ends symmetrically

10/6/20–12/24/20, 2/27/21–5/1/21, 7/17/21–10/2/21,
10/29/21–1/22/22, 3/31/22–5/31/22

ce/mean threshold 11/4/20-12/13/20, 3/19/21-5/4/21, 10/18/21-10/25/21,
11/5/21-2/7/22, 5/4/22-5/24/22

0.5SD threshold 9/25/20-9/27/20, 10/24/20-1/20/21, 2/8/21-2/21/21,
3/12/21-5/10/21, 5/15/21-5/31/21, 7/29/21-9/6/21,
9/14/21-2/17/22, 4/18/22-5/31/22



Table 2
Early warning methods.

Type of analysis Early warning parameter Early warning level / cutoff level Abbreviation Data type

Real-time analysis
Data sequence numerical increase or decrease Keep increasing for 3 consecutive data points OBMN1N2

⁎ N1 N2 gene concentrations
Positive percentage change > 40 % PPCN1N2 N1 N2 gene concentrations
Positive percentage change of slope > 200 % PPCS200⁎ N1 N2 gene concentrations

Post-factum analysis

Mean + 2 standard deviation Intersection values higher than mean + 2SD threshold MSD (B1) ⁎ N1 N2 gene concentrations
and
w/c ratio

Variance / mean Intersection values higher than variance/mean threshold VAM (B2)
Skewness Intersection values higher than skewness threshold SKE (B3)
Kurtosis Intersection values higher than kurtosis threshold KUR (B4)
90 percentile Intersection values higher than 90 percentile threshold PER90 (B5) ⁎

Note: (1) B1, B2, B3, B4, B5 are short representation of each statisticalmethod for visualization purposes. (2) *markedmethodswere demonstrated infigures in themain text.

Fig. 1. a. COVID-19 cases in the city of Detroit, as well as Wayne, Macomb, and
Oakland counties; b. 7-day moving average of COVID-19 cases.
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from 10.37 % to 58.96 %, with a mean recovery of 24.91 % (±22.89 %)
(Zhao et al., 2022). Viral RNA was extracted using Viral RNA QIAGEN kit
(QIAGEN, Germantown, MD, USA), following the manufacturer's protocol
with the method described previously (Supplementary Materials: RNA
Extraction) (Miyani et al., 2021; Zhao et al., 2022). RT-ddPCR was
performed on a QX200 AutoDG Droplet Digital PCR system (Bio-Rad,
Hercules, CA, USA), using the One-step RT-ddPCR Advanced Kit for
Probes (Bio-Rad, Hercules, CA, USA) in a previously described method
(Supplementary Materials: RT-ddPCR) (Zhao et al., 2022). The Limit
of Blank (LOB) was determined by examining three types of samples
using RT-ddPCR, across four consecutive days, including interceptor
samples collected before COVID-19 pandemic, nuclease-free water,
and negative process control samples from elution and extraction. The
samples before COVID-19 pandemic were collected on February 18,
2018, from the ONWI, NIEA, and DRI interceptors at GLWA using the
same methods. Limit of Blank (LOB) for N1 gene ddPCR was determined
to be 0.09 gc/μL, and the LOB for N2 gene ddPCR was determined to be
0.08 gc/μL (Zhao et al., 2022). Limit of Detection (LOD) of 0.1 gc/μL
with 72.92 % confidence for the N1 gene ddPCR and 0.1 gc/μL with
81.25 % confidence for the N2 gene ddPCR were determined (Zhao
et al., 2022).

2.2. WBE and clinical data of COVID-19

Throughout our 21-month surveillance of wastewater in the Detroit
metropolitan area, the wastewater surveillance data (September 2020 to
May 2022) together with clinical data were implemented with eight pro-
posed early-warning methods and three proposed clinical case peak-
defining methods. Publicly available clinical data were accessed on August
30, 2022, for the period between September 25, 2020, and May 31, 2022,
for the city of Detroit, as well as Wayne, Macomb, and Oakland counties
(michigan.gov) shown in Fig. 1a. Clinical data presented as a 7-day moving
average (Menkir et al., 2021) was used for further statistical analysis
(Fig. 1b). COVID-19 data was only available per city or county within
study area. Lastly, each interceptor received wastewater from portions of
each city or county, thus, only the total SARS-CoV-2 concentrations could
be correlated to the total COVID-19 cases in each jurisdiction.

2.3. Data analysis and visualization

Data were tracked and organizedwithMicrosoft Excel (version 16.66.1,
Microsoft co. ltd). MATLAB of a 2019b edition (MatLab, 2018) and R
version 4.1.3 (Team, 2022) were utilized to perform the early warning
analyses, depending primarily on the ggplot2 package for visualization,
and the DescTools package for standard deviation, mean, variance, skew-
ness, kurtosis, and quantile for calculation.

Eq. (1). depicts the ratio between the wastewater viral gene concentra-
tions and clinical cases (w/c ratio) (D’Aoust et al., 2022; Xiao et al., 2022),
which was first proposed as an indicator of disease incidence based on
wastewater surveillance in a recent study (Xiao et al., 2022).

CN1 or N2 gene=N1 or N2 gene concentrations (genomic copies/L, gc/L).
3

clinical case=daily confirmed COVID-19 cases (7-day moving average)

w=c ratio ¼ CN1 or N2 gene

clinical case
(1)

2.3.1. Methods of defining peaks of COVID-19 cases
Few recent studies have discussed on approaches to defining peaks

of clinical cases of COVID-19. O'Brien et al. defined the peak-range of
COVID-19 clinical cases to be when the first derivative of cases remains
positive for seven consecutive data points (O’Brien and Clements, 2021).
Similarly, in this study, we define the peak-range to be when the 7-day
moving average of clinical cases continues increasing for over 14 consecu-
tive days (method I, shown in Table 1 and Fig. 2a). The uptick begins at
day 0, peaks at the maximum, and ends symmetrically. Method II defines
the peak where the intersection values are greater than an established var-
iance/mean threshold, shown in Fig. 2b (Eq. (2)). Similarly, method III uses
mean-0.5standard deviation threshold to define the case-peakwhere the in-
tersection values are greater than the threshold, shown in Fig. 2c (Eq. (3)).
Both methods II and III measure the distribution of the clinical cases in the

http://michigan.gov


Fig. 2.Methods of defining peaks for total COVID-19 cases.
a. Method I defined peaks (gray shaded area) of total COVID-19 cases
b. Method II defined peaks (gray shaded area) of total COVID-19 cases
c. Method III defined peaks (gray shaded area) of total COVID-19 cases.
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Detroit metropolitan area. The specific “peak ranges” or “surges” deter-
mined by these three methods are summarized in Table 1.

variance=mean threshold ¼ Vc

Mc
(2)

Vc represents the variance of clinical cases
Mc represents the mean of clinical cases

mean � 0:5standard deviation threshold ¼ Mc � 0:5∗Sc (3)

Sc represents the standard deviation of clinical cases

2.3.2. Real-time early warning methods
As aforementioned, the peak ranges of clinical cases are defined using

three methods, namely, methods I, II, and III (Table 1. and Fig. 2). Subse-
quently, eightmethods of earlywarnings determination (Table 2)were pro-
posed based on literature studies that were elucidated in Section 1. Among
them, OBMN1N2, PPCN1N2, and PPCS200 are applied to real-time analysis.
OBMN1N2 is applied to real-time N1 and N2 gene concentrations (gc/L) in
4

wastewater, with first early warning dates determined on the final of
three consecutively increasing measurements. This method (OBMN1N2)
reduces the possibility a “false warning” due to high possible variations
of the measured data since OBM requires three consecutive increasing
data points to issue a warning. It is also a “non-quantification” method,
consistently applicable regardless of the degree of increasing values. The
PPCN1N2 method identifies early warnings when the positive percentage
change of N1 and N2 gene concentrations (gc/L) are >40 % (Kumar
et al., 2021), depicted as Eq. (4):

PPCN1N2 ¼
Conc:N1 or N2 gene nð Þ−Conc:N1 or N2 gene n−1ð Þ

Conc:N1 or N2 gene n−1ð Þ
� 100% ð4Þ

n indicates the current measurement
n − 1 indicates the previous measurement
Conc.N1 or N2 gene= N1 or N2 gene concentrations (gc/L)
Based on the characteristics of our WBE dataset for the Detroit area,

PPCS200 requires the positive percentage change of slope of N1 and N2
gene concentrations (gc/L) to be >200 % to issue early warnings which is
depicted in Eq. (6). Percentage change of the slope (Sk)measures the degree
of increase between values and can identify values that increased signifi-
cantly. We have assigned the threshold to be 200 % for the PPCS method,
to capture the most meaningful warnings from our WBE data:

Slope Sk ¼
Conc:N1 or N2 gene nð Þ−Conc:N1 or N2 gene n−1ð Þ

Date nð Þ−Date n−1ð Þ
ð5Þ

PPCS200 ¼
S kð Þ−S k−1ð Þ

S k−1ð Þ
� 100% ð6Þ

n indicates the current measurement or date
n − 1 indicates the previous measurement or date
k indicates the current slope
k − 1 indicates the previous slope

2.3.3. Post-factum early warning methods
Post-factum methods identify early warnings when wastewater surveil-

lance data exceed the thresholds proposed in this study. These methods are
designed for post-factum implementations, where both wastewater gene
concentration data and clinical data have been reported. An early warning
is triggered when the threshold criteria is exceeded. The threshold is com-
puted for an investigation period of interest, after the surges of disease
have occurred. For instance, researchers have proposed two standard devi-
ations as an early warning threshold and the time of early warning was de-
termined by the first time the signal exceeded the threshold (Drake and
Griffen, 2010). Five statistical thresholds including mean plus two standard
deviations (MSD), variance divided by mean (VAM), skewness (SKE), kur-
tosis (KUR), and 90th-percentile (PER90), were calculated using N1 and
N2 gene concentrations (gc/L) and w/c ratio (gc/L/case), to determine
early warnings. MSD targets the upper bound limit generated by the two
standard deviations away from the mean (Gao et al., 2021; Wang et al.,
2017), which is equivalent to a 95 % confidence interval. While PER90 tar-
gets the top 10 % of data from the distribution, other studies have applied
70th percentiles, or 80th percentiles to inform early warnings for hand,
foot, and mouth disease in China (Gao et al., 2021). VAM is a similar
method to MSD, which identifies the variability of the data away from
the mean. SKE measures asymmetry of distribution about its mean, and
KUR measures the combined weight of a distribution's tails to its center
(i.e., whether the plotted shape of the distribution is too sharply “peaked”)
(Harris et al., 2020).

2.3.4. Hit rate
Hit rate is introduced to appraise the accuracy of each method – it is

defined as the ratio of the number of early warning dates “m” capturing
the defined peaks to the total number of early warning dates “n” (see
Eq. (7)). The hit rate was calculated in this manner for all early warning
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methods. As reported by our recent study (Zhao et al., 2022), wastewater
signals of N1 and N2 genes preceded the reported clinical cases by up to
5 weeks in the Detroit metropolitan area. Thus, for this study, the number
of early warning dates “m” that are said to capture defined peaks must
satisfy two criteria: (1) identified early warning dates are located inside
the defined peak regions (shaded gray areas in Fig. 2); (2) identified early
warning dates are located within a five-week window preceding the
defined peak regions.

hit rate ¼ number of early warning dates}m} capturing defined peaks
total number of identified early warning dates}n}

� 100% ð7Þ

m= number of early warning dates identified by eight early warning
methods, capturing defined peaks, identified by three peak-defining
methods

n= total number of early warning dates identified by eight early
warning methods

3. Results and discussion

3.1. Wastewater viral concentrations precede disease incidence and can relate
to public health policy or community social events

Analysis of our 21-month wastewater surveillance data reveals that the
trend of total N1 and N2 gene concentrations preceded and forewarned the
trend of total COVID-19 clinical cases (Fig. 3a). Both wastewater viral con-
centrations and clinical data were compared with calendar dates of major
statewide, citywide, and countywide public health policies (Fig. 3a). For in-
stance, both N1 and N2 gene concentrations began to increase shortly after
the State of Michigan allowed the reopening of gyms, pools, and permitted
organized sports on September 3, 2020. This is suggestive of populations
shedding the virus into wastewater after being infected by COVID-19 likely
due to unregulated social gatherings (Fig. 3a). Subsequently, both N1 and
N2 gene concentrations began to gradually decrease, potentially due to
the reduction in SARS-CoV-2 shedding, which persisted up to 24 days
(Zhao et al., 2022), as well as due to the implementation of new COVID-
19 public health orders and guidelines for Detroit onOctober 9 andOctober
14, 2020, respectively (Fig. 3a). Decreasing trends of both wastewater
viral concentrations and clinical cases were observed after city of Detroit
extended the emergency epidemic order on January 1, 2022 (Fig. 3a).
Xiao et al. reported similar trends of wastewater viral concentrations, as
affected by state public health policy in Massachusetts, USA (Xiao et al.,
2022). Major public health orders and guidelines can affect wastewater
viral concentrations as well as subsequent COVID-19 clinical cases by regu-
lating everyday social gatherings and mitigation efforts (Xiao et al., 2022).
Wastewater viral concentrations and clinical data were also comparedwith
public holidays and known large-scale social events in the Detroitmetropol-
itan area (Fig. 3b). Public holidays and social events celebrated in Detroit
were seen to be reflected in both the wastewater viral concentration
and the clinical data (Fig. 3b). It was observed that both N1 and N2
gene concentrations increased after Labor Day (September 7th, 2020)
(Fig. 3b), likely resulting from social gatherings during the holiday, as
well as the policy of easing COVID-19 restrictions (September 3rd,
2020) in Michigan (Fig. 3a), leading to potentially high transmissions
of COVID-19. Similarly, both N1 and N2 gene concentrations began to
increase after Martin Luther King Jr. Day (January 18th, 2021) and
peaked shortly after Presidents Day (February 15th, 2021). This in-
crease in gene concentration preceded an increase in COVID-19 cases
by 4 to 5 weeks (Zhao et al., 2022). Similar observations can be identi-
fied with a steeper increase of wastewater viral concentrations as well
as the clinical cases after Veterans Day (November 11th, 2021). Clinical
cases surged again in early January of 2022 after the Thanksgiving,
Christmas, and New Year's day holidays, when social gatherings might
be expected during holiday celebrations (Fig. 3b). Notably, the increase
of both N1 and N2 gene concentrations in early September of 2020 and
5

early February of 2021, preceding the increase of clinical cases for 4 to
5 weeks (Zhao et al., 2022), can be related to opening of schools, col-
leges, and universities in fall and spring semesters (Xiao et al., 2022).

Wastewater surveillance has the ability to monitor virtually most mem-
bers of a community (with an integrated sewage system), regardless of the
presence of disease symptoms or inequity in testing accessibility (Bibby
et al., 2021). To quantitively compare wastewater data and clinical cases,
a ratio (w/c ratio) between the wastewater viral concentrations and 7-day
moving average of daily confirmed COVID-19 clinical cases is adopted
from recent studies for this purpose (D’Aoust et al., 2022; Xiao et al.,
2022). The w/c ratio could reflect potential undercounting or overcounting
of actual clinical cases (D’Aoust et al., 2022; Xiao et al., 2022).
Undercounting occurs when people do not seek clinical testing, or when ac-
cess to testing is restricted due to resource limitations, or when there is an
elevated rate of asymptomatic infections. This scenario was evident in the
summer of 2021 from June to August where the w/c ratio of both N1 and
N2 genes was high, but the confirmed cases were low (Fig. 3c). Further-
more, during the summer, cases were likely to be undercounted due to
lack of testing and potentially increasing spreading during summer social
activities. Some studies have reported similar issues that can result in
undercounting, when the actual number of cases is 12 times larger than re-
ported cases (Lau et al., 2021), and the case-to-report ratio could reach 26
to 32 at the early stage of the pandemic when testing sources were limited
(Murhekar et al., 2021). Conversely, overcounting can occur when testing
resources are abundant and infected populations get tested multiple times
during the entire period of infection. These individuals are counted and re-
ported repeatedly as individual clinical cases, since the shedding duration
of SARS-CoV-2 can persist up to 24 days prior to the Omicron surge
(Zhao et al., 2022) and throat/nasal swabPCR tests can also remain positive
up to nearly 20 days (Xiao et al., 2022). Note that the introduction of w/c
ratio also eliminates the noises of N1 and N2 gene concentrations among
peaks and accentuate the prominent peaks of N1 and N2 gene w/c ratio
preceding major peaks of clinical cases (Fig. 3c). From the inception of
the pandemic, the increasing trend of w/c ratio in September and October
2020 provided early warnings of upcoming peaks of clinical cases in late
October and November 2020 (Fig. 3c). Similarly, the peaks of w/c ratio
in late February 2021 forewarned the impending surge of clinical cases in
March 2021. The w/c ratio stayed relatively low and stable before the
peak of clinical cases in late December 2021 and early January 2022,
which indicated that testing sources were sufficient. Moreover, the
State of Michigan (michigan.gov/coronavirus) reported that testing ca-
pacity statewide increased to approximately 50,000 test results per day
in December 2021, corroborating the accuracy of the low w/c ratio in
this period. Because as testing capacity increased throughout November
and December of 2021, delayed clinical cases were likely reported
simultaneously with newly reported cases but the delayed clinical
cases did not contribute to the current wastewater viral concentrations,
perhaps resulting from reduced viral shedding, leading to lower w/c
ratio. Moreover, the surge of the Omicron variant in November and
December 2021 in the Detroit metropolitan area could have contributed
to shifting transmission dynamics, leading to a substantial increase
in reported clinical cases, and thus, contributing to the relatively low
w/c ratio (Auwaerter, 2022; Long et al., 2022; Wiersinga et al., 2020;
Zhao et al., 2022).

3.2. Early warnings of COVID-19

Eight early warning methods including both real-time and post-factum
methods shown in Table 2 were implemented on N1 and N2 gene concen-
trations (gc/L) as well as w/c ratio (gc/L/case) to identify early warnings
for defined peaks of clinical cases. The real-time methods include OBM,
PPC, and PPCS, which were applied to direct measurements of N1 and N2
gene concentrations. The post-factum methods include MSD, VAM, SKE,
KUR, and PER, which were applied to N1 and N2 gene concentrations
as well as w/c ratio. The accuracy of each method was evaluated by
hit rates (Table S3).

http://michigan.gov/coronavirus
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3.2.1. Early warnings determined by real-time methods
Among real-time methods, OBM method was applied to N1 gene con-

centration (gc/L) and could reach 100 % hit rate with method I defined
peak (Fig. 4a), where all identified early warnings (shown as blue vertical
lines in Fig. 4a) are in the defined-peak regions or within a five-week win-
dow ahead of the defined-peak regions (shown as gray shaded area in
Fig. 4a). In other words, a 100 % hit rate is representative of all identified
Fig. 3. a.Major statewide, citywide, and countywide COVID-19 public health policies in t
between N1 N2 gene concentrations and 7-day moving average of total COVID-19 case

6

early warnings successfully forewarning subsequent defined peaks in
cases. OBM method could reach 80 % hit rates with both method II and
III defined peaks shown in Fig. 4b and c, respectively. Likewise, the applica-
tion of OBMmethod to N2 gene concentration (gc/L) results in a 100 % of
hit rate with method III defined peaks (Fig. S1c). Specifically, OBMmethod
is based on direct measurements of N1 and N2 gene concentrations and
could be immediately applied by health departments after obtaining the
he Detroitmetropolitan area; b.Major public holidays inMichigan, USA; c.w/c ratio
s.



Fig. 4. Real-time early warning methods: OBM and PPCS based on N1 (gc/L):
a. First early warnings of each peak identified by OBM (N1, gc/L) with Method I defined peaks
b. First early warnings of each peak identified by OBM (N1, gc/L) with Method II defined peaks
c. First early warnings of each peak identified by OBM (N1, gc/L) with Method III defined peaks
d. Early warnings identified by PPCS (N1, gc/L) with Method I defined peaks
e. Early warnings identified by PPCS (N1, gc/L) with Method II defined peaks
f. Early warnings identified by PPCS (N1, gc/L) with Method III defined peaks.
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data to determine rapid warnings on the upcoming fluctuations of clinical
cases. In addition, PPC method could also achieve a 94.44 % hit rate
when it is applied to N1 gene concentrations (Fig. S1l) using method III
defined peaks, and a 100 % hit rate when it is applied to N2 gene concen-
trations with both method I (Fig. S1d) and III defined peaks (Fig. S1f).
The PPCS method, as applied to N1 gene concentrations, performed the
best in terms of higher hit rates where it achieved 90.91 %, 90.91 % and
100 % with method-I, -II, and -III defined peaks, respectively (Fig. 4).
PPCS was applied to N2 gene concentrations where it also achieved
91.67 % and 100 % hit rates with method I and III defined peaks, respec-
tively (Table S3, Fig. S1g, S1i). Therefore, PPCS method based on N1
gene concentrations (gc/L) is recommended as a real-time method to
capture early warnings with its higher hit rates across three methods
for defining clinical peaks. Method III is the recommended as the peak-
defining method since it is also more conservative in terms of capturing
the most surges and fluctuations of cases. All hit rates developed using
real-time methods are summarized in Fig. 6.

3.2.2. Early warnings determined by post-factum methods
Post-factummethods were applied to N1 and N2 gene concentrations as

well as w/c ratio. Selected methods including MSD and PER are illustrated
in Fig. 5. MSD was applied to N1 gene concentrations and reached 100 %
7

hit rates with method I, II, and III defined peaks shown in Fig. 5a, b, and
c, respectively, where all identified warnings successfully forewarned the
defined peaks. Likewise, PER method was applied to w/c ratio of N1 gene
which are illustrated in Fig. 5d, e, and f with method I, II, and III defined
peaks, where the hit rates reached 90 %, 70 %, and 100 %, respectively
(Table S3). Notably, method II defined less peaks of cases leading to warn-
ings identified by PER between May and July 2021 in vain (Fig. 5e). While
method III definedmore peaks of cases and coveredmore data with a wider
time range thus leading to higher hit rates (Fig. 5f). From this, we conclude
that clinical case peak defining approaches can affect hit rates of early
warning methods to forewarn case peaks. Among all post-factum methods
applied to N1 and N2 gene concentrations, MSD achieved 100 % hit rates
with method I, II, and III defined peaks (Table S3, Fig. 5, Fig. S2). Hence,
MSD based on N1 and N2 gene concentrations (gc/L) is recommended as
a post-factum method to identify early warnings. In addition, post-factum
methods applied to w/c ratio, including MSD (Fig. S3), SKE (Fig. S5),
KUR (Fig. S6), and PER (Fig. S2), achieved 100 % hit rates except for
VAM (Fig. S4), where KUR completely achieved 100 % hit rates across
three methods of defining peaks (Fig. S6) and MSD achieved 100 % hit
rates with method-I and -III defined peaks based on both w/c ratio of N1
and N2 genes. Thus, KUR and MSD based on w/c ratio are recommended
for as post-factum methods to identify early warnings.



Fig. 5. Post-factum early warning methods MSD and PER, based on N1 (gc/L) and N1/c (gc/L/case), respectively.
a. Early warnings identified by MSD (N1, gc/L) with Method I defined
b. Early warnings identified by MSD (N1, gc/L) with Method II defined
c. Early warnings identified by MSD (N1, gc/L) with Method III defined
d. Early warnings identified by PER (N1, gc/L/case) with Method I defined peaks
e. Early warnings identified by PER (N1, gc/L/case) with Method II defined peaks
f. Early warnings identified by PER (N1, gc/L/case) with Method III defined peaks.
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Worthy of noting, early warning methods achieved generally higher
hit rate when they were implemented on N1 and N2 gene concentrations
(gc/L) than on the w/c ratio (gc/L/case) dataset. Following this, w/c
ratio did not significantly improve the hit rate of early warning methods
in our study. Nevertheless, w/c ratio could still be used as an indicator of
relationship between actual cases and testing capacity as discussed in
Section 3.1 and in recent studies (D’Aoust et al., 2022; Xiao et al., 2022).
Among all post-factum methods, MSD method achieved higher hit rates
compared with PER, VAM, and SKE methods for both N1 and N2 gene
concentrations (gc/L) and w/c ratio (gc/L/case) datasets. In addition,
method III could define more peak-ranges and is associated with higher
hit rates for both real-time and post-factum methods when compared to
method-I and-II.

3.3. Factors affecting early warnings based on WBE and other uncertainties

Few studies have reported on straightforward, easily applied, and rapid
early warning methods based on WBE for COVID-19 or other diseases
(Bowman et al., 2016; Harris et al., 2020; Kostoulas et al., 2021; O’Brien
and Clements, 2021; Prabdial-Sing et al., 2021; Zhu et al., 2021b). The
early warning methods developed in the present study including both
real-time and post-factum methods, effectively provide early warnings
for defined peaks of COVID-19 cases in the Detroit metropolitan area.
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These methods can potentially be applied to other geographic regions and
pathogens; however, further analysis will be necessary. None of the
methods designed in this study is perfectly accurate when capturing early
warnings of diseases, as numerous complex factors can affect WBE or asso-
ciated reporting of clinical cases, including physiological, health system,
laboratory-based and logistic factors (summarized in Table S2) (Bibby
et al., 2021; Kumar et al., 2021; Zhu et al., 2022). According to the authors
of a recent WBE study conducted in Boston, Massachusetts, USA, WBE-
based early warning methods should not be used in isolation, but rather
in conjunction with other methods, given the complexity of factors and
various unknowns (Xiao et al., 2022). Despite this recommendation,
WBE-based early warning methods, could be essential in providing prompt
warnings to impending epidemics, thus aiding health departments to
mobilize and craft policy. Critical factors and uncertainties related to
early warning methods are elucidated in the following sections.

3.3.1. Physiological factors
Shifting viral shedding cycles and dynamics may affect the accuracy of

the relationship betweenWBE and case incidence, and therefore may affect
the early warning potential of WBE (Bibby et al., 2021). Viral shedding
dynamics can vary among individuals, variants, and so forth (Bibby et al.,
2021; Zhao et al., 2022). Shedding of SARS-CoV-2 began for up to 7 days
prior to symptoms onset during the initial stage of the COVID-19 pandemic,



Fig. 6.Hit rates of real-time early warningmethods: OBM, PPC, and PPCS, with three peak-definingmethods: method I, method II, andmethod III, based on N1 and N2 gene
concentrations (gc/L).
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but this duration declined to maximum of 3 days during the Omicron surge
(Auwaerter, 2022; Cheng et al., 2020; Long et al., 2022; Wiersinga et al.,
2020; Zhao et al., 2022). Shedding duration of SARS-CoV-2 shortened
from a maximum of 24 days to 10 days during the Omicron surge
(Lamers et al., 2022; Zhao et al., 2022). All of the aforementioned dynamics
would affect the measured relationship between wastewater viral concen-
trations and clinical cases, such as the w/c ratio.

Another physiological factor is the poorly understood role of asymptom-
atic disease transmitters, which lead to an undercounting of true infection
cases in communities that employ traditional clinical testing methods
(Bibby et al., 2021). Clinical case numbers are not an ideal measure of
disease prevalence in a given community, particularly when asymptomatic
infections dominate. In this setting, early warning methods based on WBE
may not be able to effectively provide early warnings of cases as it will be
difficult to establish case-number as reference or baseline. In addition,
peak defining approaches can be significantly affected by underestima-
tions, leading to inaccuracy in early warning methods.

The proportion of infected populations who shed detectable levels of
virus in their stool and viral load distribution throughout a day, are both
significant factors since they have a direct impact on wastewater viral
concentrations (Jones et al., 2020). Some studies estimate 48 % to 67 %
of infected individuals shed SARS-CoV-2 in their stool (Ahmed et al.,
2021). It was also demonstrated that 40 % of infected populations shed
SARS-CoV-2 virus RNA in their stool (Kirby et al., 2021). Viral load in
wastewater throughout a given day is not evenly distributed, and therefore,
some studies have suggested that optimization of sampling strategy coupled
with a standardization based on toilet flushing frequency and wastewater
travel time could improve the accurate detection of viral signals (Zhu
et al., 2021a; Zhu et al., 2021b).

3.3.2. Health system factors
Health system factors encompass a wide range of variables, including

the delay of clinical data reporting (Torres et al., 2021; Zhao et al., 2022),
prolonged duration of clinical data processing (Contreras et al., 2020),
under-reporting of the true number of cases (Kronbichler et al., 2020;
Salath et al., 2020), and other inconsistencies in reporting. These factors
have the potential to have a prodigious effect on the accuracy of peak-
defining methods, including those outlined in this study. These factors
also contribute to the disparities of clinical case-numbers, which affect clin-
ical cases used as the reference or benchmark for early warning methods,
such as the w/c ratio (Fig. 3c). For instance, at the beginning of the
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COVID-19 pandemic, several clinical studies reported a delay of nearly
7 days from onset of symptoms to clinical testing, resulting in delayed
reporting of clinical cases which already contributed to the wastewater
viral concentrations (Huang et al., 2020; Zhao et al., 2022). In some
cases, jurisdictions or countries accumulate delays of between 4 and
18 days (Català et al., 2021). Disparities in clinical data can furthermore
be influenced by testing hesitancy or eagerness (Jimenez et al., 2021), the
turnaround time for screening of cases (Larremore et al., 2021), the avail-
ability and accessibility of diagnostic tests (Olesen et al., 2021), and so
forth. A shortage of testing supplies and lack of testing in some resource-
constrained countries has caused a pileup of clinical samples awaiting
results and delays in reporting cases, therefore, inevitably leading to inaccu-
rate representation of actual cases (Torres et al., 2021), which could affect
methods of defining peaks thus affecting the accuracy of early warning
methods based on WBE.

3.3.3. Laboratory analysis and other uncertainties
Detectable viral signals in wastewater are critical to achieve early warn-

ing methods based on WBE. Therefore, potential decay of virus during
wastewater transport in the municipal wastewater collection system, sam-
pling, and transportation of samples to laboratories may alter the accuracy
of early warning methods (Ahmed et al., 2020b; Bibby et al., 2021). Some
recent studies pointed out that sample transportation and laboratory pro-
cessing including sample concentration, nucleic acid extraction, and PCR-
based nucleic acid quantification, may take from one to three days (Bibby
et al., 2021; Zhao et al., 2022), but under some scenarios this time range
could be easily exceeded, leading to inevitable decay of viral signals in
any of the processes. Moreover, recovery efficiency could also vary
among different sampling and analyticalmethods (Ahmed et al., 2020c), in-
troducing more uncertainties in the results.

Recent studies have investigated additional factors that can influence
early warning potential of WBE, including sample site geographic distribu-
tion, fair sample representation of demographics/communities, uneven
mixing of wastewater during sampling and laboratory analysis, dilution of
viral RNA during rainfall events, and climate variability (Ahmed et al.,
2020b; Bibby et al., 2021; Butler et al., 1995; Kumar et al., 2021; Zhao
et al., 2022; Zhu et al., 2022). In addition, the persistence of SARS-CoV-2
in wastewater may be affected by environmental factors. These include
temperature, organic matter, and microorganisms, which contribute to
more uncertainties of measuring wastewater viral concentrations, ulti-
mately affecting accuracy of early warning methods (Xiao et al., 2022).
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Overall, the accuracy of reported clinical data and WBE workflows are the
primary influencers of effective early warning methods.

3.3.4. Discussions, limitations, and future directions
Real-timemethods focus on rapid earlywarnings using current or recent

wastewater measurements for predicting future surging of cases. Real-time
methods can be implemented rapidly upon obtaining the wastewater mea-
surements. For instance, the OBM method only requires three consecutive
increasing measurements to issue an early warning. The early warning sig-
nals determined by real-time methods precede the upcoming increase in
cases. Thus, these methods can trigger alerts in real time before surging
COVID-19 cases that are subsequently reported by health agencies. Real-
time methods can be an effective decision-making tool for public health
officials during an on-going epidemic.

Post-factum methods focus on after-the-fact analysis of wastewater
and clinical data over an entire period and provide analysis of warnings
for surges of cases after they have occurred. Post-factum methods can
be used as complementary methodologies to real-time methods. Post-
factum methods, such as the MSD method, concentrate on providing an
overall picture of early warnings for an entire period of investigations
which can identify all early warnings for an entire time (Bowman et al.,
2016; Prabdial-Sing et al., 2021). Post-factum methods can be useful to
health agencies to plan and design health measures for the next potential
epidemic.

Admittedly, this study has various limitations. First, eight early warning
methods and three peak-defining methods were successfully applied to
WBE data collected from the Detroit metropolitan area, but these methods
have not been validated in other regions. More in-depth investigations are
warranted to develop and apply early warningmethods based on this study.
Secondly, the w/c ratio was adopted from a study that assumed that viral
shedding did not change significantly over the course of the entire pan-
demic (Xiao et al., 2022). However, viral shedding patterns and dynamics
changed during the study period for the Detroit area where the dominant
variant changed from Alpha to Beta, Gamma, Delta, and Omicron variants
and so forth (Xiao et al., 2022; Zhao et al., 2022). For example, the lag
time of wastewater surveillance preceding the clinical testing declined
from five weeks to two weeks during the Omicron surge owning predomi-
nately to the changing viral shedding dynamics (Zhao et al., 2022), poten-
tially affecting the performance of early warning methods. Third, the w/c
ratio did not capture the third major peak of clinical cases in late December
of 2021 and the beginning of January 2022, which perhaps was a conse-
quence of changing shedding dynamics associated with Omicron, as well
as the rapidly increasing testing capacity in December 2021 in the State
of Michigan leading redundant counting of clinical cases, which we dis-
cussed thoroughly in 3.1. Finally, the approaches of defining peaks of
COVID-19 cases were potentially specific to our sampling demographic
and geographic sampling distribution in the Detroit metropolitan area in
this study. Exploration of other methods for defining peaks of clinical
cases for other regions seems warranted.

Overall, numerous prospects extended from this study could inspire ap-
plications of WBE data and development of early warning methods of WBE
for public health benefits. The eight early warning methods described here
are straightforward and easily applied, and could forewarn defined peaks
with high hit rates, especially the real-time methods OBM and PPCS. The
real-time methods require merely the direct measurements of N1 and N2
gene concentrations as well as simple statistical calculations, which are eas-
ily applied tools for public health departments to apply on WBE datasets to
determine early warnings rapidly. Threemethods of defining peaks are eas-
ily applied as well. The early warning methods and peak-defining methods
proposed in this study attempt to provide rapid and straightforward
approaches to determine early warnings for health departments, partner
agencies, and the public, instead of applying intricate and sophisticated
models. Additionally, this study demonstrates the impact of public policies
on wastewater viral concentrations and subsequent clinical cases in Detroit
metropolitan area for approximately two years. Combining wastewater
data with clinical cases for the Detroit area, such as application of w/c
10
ratio, could allow health departments to understand the actual infections
and testing conditions in communities. However, more studies are war-
ranted to establish a standard framework for defining peaks of clinical
cases, apply and develop early warning methods that are easily applied
by health departments, to use early warnings in a timely manner. This
study highlights the impact of public health policy onmeasuredwastewater
viral concentrations and clinical COVID-19 cases in Detroit. Future research
should integrate public policy at a granular level.

4. Conclusions

This study introduced eight (three real-time andfive post-factum) early-
warning methods based on wastewater surveillance data and three peak-
defining methods based on clinical data that can be easily implemented
by public health departments and partner agencies to warn of viral disease
fluctuations. Hit rates were calculated to evaluate the efficacy of early
warningmethods in predicting clinical case surges. Applying thesemethods
to a 21-month WBE data set in the Detroit metropolitan area in Michigan
amid the COVID-19 pandemic, we conclude that wastewater viral signals
preceded the reported clinical cases. Both viral signal and clinical cases
corresponded to social events and reflected implementation of public
health policies. The early-warning methods based on WBE were proven to
be efficient during the study period, as evinced by hit rates. Hit rates for
early warning methods were affected by the method for defining peaks in
clinical cases. Method III for defining peaks (peak defined as clinical data
values higher than mean – 0.5 standard deviation of all values) identified
most peaks in clinical cases and was associated with higher hit rates across
all WBE based early-warning methods. Among all real-time methods, PPCS
method (positive percentage change of slope >200 %) achieved higher hit
rates. Among all post-factum methods, KUR (values greater than kurtosis)
and MSD (values greater than mean + 2 standard deviation) methods
achieved higher hit rates.
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