
Citation: Dauptain, X.; Koné, A.;

Grolleau, D.; Cerezo, V.;

Gennesseaux, M.; Do, M.-T.

Conception of a High-Level

Perception and Localization System

for Autonomous Driving. Sensors

2022, 22, 9661. https://doi.org/

10.3390/s22249661

Academic Editors: Shuo Pang and

Teng Ma

Received: 27 October 2022

Accepted: 6 December 2022

Published: 9 December 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Conception of a High-Level Perception and Localization System
for Autonomous Driving
Xavier Dauptain 1,2, Aboubakar Koné 1,2,*, Damien Grolleau 2, Veronique Cerezo 1 , Manuela Gennesseaux 1

and Minh-Tan Do 1

1 AME-EASE, Université Gustave Eiffel, IFSTTAR, F-44344 Bouguenais, France
2 Sherpa Engineering, Site Nantes, 2 Rue Alfred Kastler, F-44307 Nantes, France
* Correspondence: a.kone@sherpa-eng.com

Abstract: This paper describes the conception of a high level, compact, scalable, and long autonomy
perception and localization system for autonomous driving applications. Our benchmark is composed
of a high resolution lidar (128 channels), a stereo global shutter camera, an inertial navigation system,
a time server, and an embedded computer. In addition, in order to acquire data and build multi-modal
datasets, this system embeds two perception algorithms (RBNN detection, DCNN detection) and
one localization algorithm (lidar-based localization) to provide real-time advanced information such
as object detection and localization in challenging environments (lack of GPS). In order to train and
evaluate the perception algorithms, a dataset is built from 10,000 annotated lidar frames from various
drives carried out under different weather conditions and different traffic and population densities.
The performances of the three algorithms are competitive with the state-of-the-art. Moreover, the
processing time of these algorithms are compatible with real-time autonomous driving applications.
By providing directly accurate advanced outputs, this system might significantly facilitate the work
of researchers and engineers with respect to planning and control modules. Thus, this study intends
to contribute to democratizing access to autonomous vehicle research platforms.

Keywords: perception; localization; mapping; autonomous vehicles; self-driving cars; deep
learning; clustering

1. Introduction

Over the last two decades, academic research and the automotive industry have shown
a strong interest in the development of advanced driver assistance systems (ADAS) and
automated driving systems (ADS). ADAS and ADS are a set of technologies using multiple
sensors and information processing algorithms to inform the driver or to operate a vehicle
with limited or no human interactions [1–3]. As shown in Figure 1, the main approach for
the development of such complex systems is to divide the driving task into three subtasks:
(1) a perception and localization task, (2) a planning task, and (3) a control task.

Sensors 2022, 22, x FOR PEER REVIEW 2 of 16

the vehicle to follow the planning module’s trajectory by activating the appropriate actu-
ator [4–7].

Figure 1. Modular architecture of automated driving system.

By dividing the driving task into sub-tasks, the modular approach has the advantage
of bringing together different disciplines (robotics, computer vision, vehicle dynamics,
etc.). This allows it to benefit from the accumulated knowledge and major advances of
these different fields. However, designing the interconnection of these modules by select-
ing the best inputs and outputs of each module is a complex task [8]. Moreover, the mod-
ular approach has the disadvantage of being subject to error propagation [9]. Thus, an
error in the perception module can lead to an erroneous trajectory planning, which in turn
can lead to a risky situation. Hence, there is a need to develop, test, and validate the algo-
rithms of each module under controlled conditions very close to reality.

However, most perception and localization algorithms for self-driving applications
are tested and evaluated on public datasets. Similarly, most path planning and control
algorithms are evaluated on data from simulations [10,11]. This is due to the fact that most
research teams do not have autonomous vehicle research platforms. Indeed, the develop-
ment and maintenance of these platforms are complex tasks [12,13].

One answer to this problem can be found in the initiative of research teams to convert
commercial vehicles into drive-by-wire vehicles. For example, the research team at the
LS2N laboratory in France have converted a Renault ZOE ZE into a drive-by-wire vehicle
using a kit developed in-house. This kit allows the speed, steering, brake and gear shift of
the car to be controlled directly by using the vehicle CAN bus [14]. By equipping these
vehicles with high-level perception and localization systems, it is possible to obtain a
ready-to-use autonomous driving platform, allowing for testing and validation of algo-
rithms under controlled conditions very close to reality.

In this work, we describe the conception of a high-level, compact, scalable, and long
autonomy perception and localization system for data acquisition and algorithm testing
and validation in an autonomous driving context. In addition, in order to acquire data for
use in building multi-modal datasets, this system embeds two perceptions (RBNN detec-
tion, DCNN detection) algorithms and one localization (lidar based localization) algo-
rithm to provide real time advanced information such as object detection and localization
in challenging environments (i.e., lack of GPS).

As mentioned before, our object detection application is carried out using clustering
and deep learning methods. As deep learning methods require a massive amount of data
for training and testing purposes, a part of this work consists of building an annotated
dataset. To the best of our knowledge, the literature reports very few multi-modal datasets
built with a 128-channel lidar [15–19], of which only one is annotated [20]. This study
intends to contribute to the literature in order to fill this need.

Figure 1. Modular architecture of automated driving system.

Sensors 2022, 22, 9661. https://doi.org/10.3390/s22249661 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22249661
https://doi.org/10.3390/s22249661
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0001-9913-2422
https://orcid.org/0000-0003-2649-7521
https://orcid.org/0000-0002-2755-7058
https://doi.org/10.3390/s22249661
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22249661?type=check_update&version=2

Sensors 2022, 22, 9661 2 of 16

The perception task aims to provide a contextual understanding of the driving scene
by using exteroceptive sensors such as RGB and thermal cameras, lidar, radar, or ultrasonic
sensors. The localization task refers to the ability to permanently determine the vehicle
position and movement using proprioceptive sensors such as GNSS, IMU, INS, odometers,
and exteroceptive sensors (cameras and lidar). The planning task consists of making
decisions about the destination of the vehicle by generating trajectories allowing it to avoid
static and dynamic obstacles in the road scene. The motion control task allows the vehicle
to follow the planning module’s trajectory by activating the appropriate actuator [4–7].

By dividing the driving task into sub-tasks, the modular approach has the advantage
of bringing together different disciplines (robotics, computer vision, vehicle dynamics, etc.).
This allows it to benefit from the accumulated knowledge and major advances of these
different fields. However, designing the interconnection of these modules by selecting
the best inputs and outputs of each module is a complex task [8]. Moreover, the modular
approach has the disadvantage of being subject to error propagation [9]. Thus, an error in
the perception module can lead to an erroneous trajectory planning, which in turn can lead
to a risky situation. Hence, there is a need to develop, test, and validate the algorithms of
each module under controlled conditions very close to reality.

However, most perception and localization algorithms for self-driving applications
are tested and evaluated on public datasets. Similarly, most path planning and control
algorithms are evaluated on data from simulations [10,11]. This is due to the fact that
most research teams do not have autonomous vehicle research platforms. Indeed, the
development and maintenance of these platforms are complex tasks [12,13].

One answer to this problem can be found in the initiative of research teams to convert
commercial vehicles into drive-by-wire vehicles. For example, the research team at the
LS2N laboratory in France have converted a Renault ZOE ZE into a drive-by-wire vehicle
using a kit developed in-house. This kit allows the speed, steering, brake and gear shift
of the car to be controlled directly by using the vehicle CAN bus [14]. By equipping these
vehicles with high-level perception and localization systems, it is possible to obtain a ready-
to-use autonomous driving platform, allowing for testing and validation of algorithms
under controlled conditions very close to reality.

In this work, we describe the conception of a high-level, compact, scalable, and long
autonomy perception and localization system for data acquisition and algorithm testing and
validation in an autonomous driving context. In addition, in order to acquire data for use
in building multi-modal datasets, this system embeds two perceptions (RBNN detection,
DCNN detection) algorithms and one localization (lidar based localization) algorithm
to provide real time advanced information such as object detection and localization in
challenging environments (i.e., lack of GPS).

As mentioned before, our object detection application is carried out using clustering
and deep learning methods. As deep learning methods require a massive amount of data
for training and testing purposes, a part of this work consists of building an annotated
dataset. To the best of our knowledge, the literature reports very few multi-modal datasets
built with a 128-channel lidar [15–19], of which only one is annotated [20]. This study
intends to contribute to the literature in order to fill this need.

2. Related Works

Perception and/or localization systems can be divided in two parts: (1) low-level
systems based on raw sensor outputs, and (2) high-level systems, which process raw sensor
outputs using algorithms in order to provide advanced outputs [21–23]. It is worth noting
that the existing high-level perception and/or localization systems are mainly built for
UAVs (unmanned aerial vehicles).

In the autonomous driving context, the literature reports several low-level perception
and localization systems, which have mainly been developed to build datasets. These
systems vary in terms of their application focus, sensor setup, data format, size, and other
aspects. For example, the KITTI dataset consists of data collected by four cameras, one

Sensors 2022, 22, 9661 3 of 16

lidar, and one GPS/IMU system [24]. Similar to the KITTI dataset, the AppolloScape, HD3,
and A*3D datasets contain forward-facing cameras, lidars, and GPS/IMU systems [25–27].
the KAIST dataset sensor setup is similar, and include a thermal camera for night driving
conditions [28], while the nuScenes, Argoverse, and Waymo datasets provide 360 FOV
coverage with their camera configurations in addition to others sensors (i.e., lidar, IMU/GPS
systems, and radars for the nuScenes dataset) [29–31]. The Oxford RoboCar Dataset has
been released for localization and mapping purposes only. It includes data from one stereo-
camera, three cameras, three lidars, and one GPS/IMU system; however, it contains no
object annotations [32]. More recently, the CADC dataset has been designed to provide data
on varying degrees of snowfall [33]. Our approach here is to develop a high level, compact,
scalable, and long autonomy perception and localization system. In addition, in order to
acquire data from multiple sensors to build the dataset, this system embeds three algorithms
to provide real-time advanced information such as object detection or localization in
challenging environments (lack of GPS) using data from exteroceptive sensors.

It is worth noting that object detection mainly involves on-road pedestrians and
vehicles, traffic lights, and traffic signs. In the literature, most algorithms target the detection
of objects using 2D image from cameras. These algorithms are split into conventional
detection algorithms and deep learning-based methods. Most traditional detection methods
are composed of two steps. First, important features are extracted from raw camera images.
These features allow the valuable information to be efficiently represented, and are robust
against illumination conditions, scaling of objects, and view angle. Next, after the features
are made available, a learning algorithm is applied to recognize the objects within the
image. More recently, deep learning methods in which feature extraction is fully and
automatically integrated into the learning process from a training dataset have shown
superior performance compared to conventional methods [34–36].

Image-based 2D object detection algorithms using deep learning methods can be
classified into two categories: (1) two-stage (or region-based) detectors and (2) single-
stage (or unified) detectors [37]. Two-stage algorithms such as R-CNN (region-based
convolutional neural network) [38], Faster R-CNN [39], Mask R-CNN [40], and others
generate a region of interest in the first stage using a region proposal network (RPN). These
proposal regions are thereafter used as inputs to a second network, which regresses the
exact bounding box and performs classifications. On the other hand, one-stage algorithms
such as YOLO [41], SSD [42], and others treat object detection as a regression problem by
extracting global features in order to predict object positions (bounding boxes) and class
probabilities. In general, two-stage detectors are more accurate than one-stage detectors.
However one-stage detector are faster than two-stage detectors [43]. Thus, depending on
the targeted application, a trade-off has to be made between accuracy and efficiency.

Three-dimensional object detection based on point cloud representations can be split
into three categories: (1) projection-based methods, (2) voxel-based methods, and (3) point-
based methods [44]. In projection-based methods such as YOLO3D [45], PIXOR [46], and
others, a 3D lidar or 3D camera point cloud is projected in a cylindrical way (front view
projection) or in bird’s eye view to form a 2D compact map. This allows the 2D detectors
cited earlier to be adapted for 3D detection tasks. Contrary to projection-based methods,
voxel-based methods such as SECOND [47], VoxelNet [48], and others attempt to exploit
the 3D structure of the point cloud by discretizing the 3D space into a set of voxel grids
in order to predict object positions and class probabilities. Point-based methods such as
PointNet [49], PointNet++ [50], and others use the native point clouds (i.e., no voxelization
or projection) to directly learn features and identify objects in the point cloud data.

The next section briefly describes the sensors embedded on the platform and the
software architecture that allows the whole system to work properly in real time.

3. Platform Description

The perception and localization system installed on an experiment vehicle is shown in
Figure 2. It includes:

Sensors 2022, 22, 9661 4 of 16

• A SBG systems inertial navigation system integrating a dual-antenna GNSS receiver
for vehicle localization, inertial (acceleration, angular velocity), and attitude (roll, pitch,
yaw) measurements.

• Two FLIR global shutter cameras coupled with 90◦ Fujinon lenses to capture images
of the front half of the vehicle; each camera-lens pair is installed in an autoVimation
IP67 waterproof housing for protection against splashing and dust.

• An Ouster 128-channel rotating lidar with a vertical field of view and vertical resolution
of 45◦ and 0.35◦, providing a 3D point cloud mapping of the vehicle’s environment.

• A GPS time server for sensor data timestamping.
• Two ethernet connections for data transfer.
• A ruggedized embedded computer based on Nvidia Jetson AGX, with an expanded

memory using a 4 TB SSD device for data storage.

Sensors 2022, 22, x FOR PEER REVIEW 4 of 16

methods, voxel-based methods such as SECOND [47], VoxelNet [48], and others attempt
to exploit the 3D structure of the point cloud by discretizing the 3D space into a set of
voxel grids in order to predict object positions and class probabilities. Point-based meth-
ods such as PointNet [49], PointNet++ [50], and others use the native point clouds (i.e., no
voxelization or projection) to directly learn features and identify objects in the point cloud
data.

The next section briefly describes the sensors embedded on the platform and the soft-
ware architecture that allows the whole system to work properly in real time.

3. Platform Description
The perception and localization system installed on an experiment vehicle is shown

in Figure 2. It includes:
• A SBG systems inertial navigation system integrating a dual-antenna GNSS receiver

for vehicle localization, inertial (acceleration, angular velocity), and attitude (roll,
pitch, yaw) measurements.

• Two FLIR global shutter cameras coupled with 90° Fujinon lenses to capture images
of the front half of the vehicle; each camera-lens pair is installed in an autoVimation
IP67 waterproof housing for protection against splashing and dust.

• An Ouster 128-channel rotating lidar with a vertical field of view and vertical resolu-
tion of 45° and 0.35°, providing a 3D point cloud mapping of the vehicle’s environ-
ment.

• A GPS time server for sensor data timestamping.
• Two ethernet connections for data transfer.
• A ruggedized embedded computer based on Nvidia Jetson AGX, with an expanded

memory using a 4 TB SSD device for data storage.
Except for the power supply battery inside the vehicle, all platform components are

installed on a mechanically screwed structure coupled with an ASA (Acrylonitrile Styrene
Acrylate) shell. The latter protects the components of the system from all solid projectiles
(stones, hail, insects) while ensuring good heat dissipation. The entire system is powered
by an external lithium iron phosphate battery (LiFePO4) with an integrated BMS (Battery
Management System). This allows the system to be energy self-sufficient and to operate
safely. In standard operation (Table 1), the system’s autonomy easily covers a 12-h day.

(a) (b)

Figure 2. (a) Perception and localization system installed on an experimental vehicle; (b) zoom of
the PLS.

Figure 2. (a) Perception and localization system installed on an experimental vehicle; (b) zoom of
the PLS.

Except for the power supply battery inside the vehicle, all platform components are
installed on a mechanically screwed structure coupled with an ASA (Acrylonitrile Styrene
Acrylate) shell. The latter protects the components of the system from all solid projectiles
(stones, hail, insects) while ensuring good heat dissipation. The entire system is powered
by an external lithium iron phosphate battery (LiFePO4) with an integrated BMS (Battery
Management System). This allows the system to be energy self-sufficient and to operate
safely. In standard operation (Table 1), the system’s autonomy easily covers a 12-h day.

Table 1. Sensor frequencies in standard operating mode.

Sensors Frequencies (Hz)

Lidar 10
GPS (INS) 10
IMU (INS) 50

Time Server PTP 1
Camera 10

Figure 3 shows how sensor data and time synchronization are distributed across the
platform. Two types of information are defined: (1) data from the sensors and (2) informa-
tion related to the synchronization and data timestamping. For data acquisition, transfer,
compression, saving, and visualization, we use an ROS open-source framework. ROS is a
flexible development middleware available as an overlay on Debian-based Linux distribu-
tion. It provides various tools and libraries to facilitate the design of software, mainly for
robotics systems.

Sensors 2022, 22, 9661 5 of 16

Sensors 2022, 22, x FOR PEER REVIEW 5 of 16

Table 1. Sensor frequencies in standard operating mode.

Sensors Frequencies (Hz)
Lidar 10

GPS (INS) 10
IMU (INS) 50

Time Server PTP 1
Camera 10

Figure 3 shows how sensor data and time synchronization are distributed across the
platform. Two types of information are defined: (1) data from the sensors and (2) infor-
mation related to the synchronization and data timestamping. For data acquisition, trans-
fer, compression, saving, and visualization, we use an ROS open-source framework. ROS
is a flexible development middleware available as an overlay on Debian-based Linux dis-
tribution. It provides various tools and libraries to facilitate the design of software, mainly
for robotics systems.

Figure 3. Data and synchronization communication scheme.

The perception systems are mostly composed of lidars and vision systems (RGB cam-
era and/or infrared camera), providing complementary information of the observed scene.
Cameras provide details on the texture of objects, while lidars provide accurate depth
information. Merging these two types of information can significantly improve the per-
formance of classification algorithms or build very accurate maps. The efficient use of in-
formation from different sources requires precise synchronization and calibration of the
sensors involved. The followings segments describe the platform sensor synchronization
and calibration proceedings.

3.1. Sensor Synchronization
In order to guarantee accurate interpretation of the driving scene, all sensor acquisi-

tion is carried out in a synchronized manner and dated on a common time base.
As shown in Figure 4, a pulse signal generated by the lidar is used to trigger the

acquisition of the cameras through the electronic card, when the lidar beam passes be-
tween the two cameras. In addition, the lidar has a PTP (Precision Time Protocol) synchro-
nization input. The latter is connected to the output of the time server, and allows the
cameras and lidar data to be time-stamped using the international atomic time (TAI). The

Figure 3. Data and synchronization communication scheme.

The perception systems are mostly composed of lidars and vision systems (RGB
camera and/or infrared camera), providing complementary information of the observed
scene. Cameras provide details on the texture of objects, while lidars provide accurate
depth information. Merging these two types of information can significantly improve the
performance of classification algorithms or build very accurate maps. The efficient use of
information from different sources requires precise synchronization and calibration of the
sensors involved. The followings segments describe the platform sensor synchronization
and calibration proceedings.

3.1. Sensor Synchronization

In order to guarantee accurate interpretation of the driving scene, all sensor acquisition
is carried out in a synchronized manner and dated on a common time base.

As shown in Figure 4, a pulse signal generated by the lidar is used to trigger the
acquisition of the cameras through the electronic card, when the lidar beam passes between
the two cameras. In addition, the lidar has a PTP (Precision Time Protocol) synchronization
input. The latter is connected to the output of the time server, and allows the cameras and
lidar data to be time-stamped using the international atomic time (TAI). The time-stamps of
these data are then brought back to the coordinated universal time (UTC) by subtracting the
leap seconds separating the TAI from the UTC times. In addition, the inertial measurement
unit provides the GNSS and IMU data directly synchronized and time-stamped in UTC. As
shown in Figure 5, this configuration ensures the temporal synchronization of all sensors
of the perception and localization system.

3.2. Sensors Calibration

Any optical system composed of a camera or a camera coupled with a lens produces
images with aberrations (radial and tangential distortions) due to the properties of the lens
and the manufacturing defects. These distortions can significantly alter the rendering of the
captured scene by giving a curvilinear aspect to linear objects. The two types of distortion
most commonly encountered are: (1) radial distortion (barrel distortion), characterized by
a curvature of the straight lines outwards from the center of the image, and (2) tangential
distortion (pincushion distortion), characterized by curvature of the straight lines towards
the center of the image. These aberrations can be corrected using the Brown-Contrary or
Kanalla–Brandt camera distortion models to determine the distortion coefficients, (k1, k2,
k3) and (p1, p2), respectively, of the radial and the tangential distortion coefficients [51,52].

Sensors 2022, 22, 9661 6 of 16

These parameters are determined by carrying out a series of acquisitions of a pattern with
known dimensions (checkerboard) under different points of view.

Sensors 2022, 22, x FOR PEER REVIEW 6 of 16

time-stamps of these data are then brought back to the coordinated universal time (UTC)
by subtracting the leap seconds separating the TAI from the UTC times. In addition, the
inertial measurement unit provides the GNSS and IMU data directly synchronized and
time-stamped in UTC. As shown in Figure 5, this configuration ensures the temporal syn-
chronization of all sensors of the perception and localization system.

Figure 4. Data synchronization and time-stamping scheme.

Figure 5. Timeline of data acquisition from the perception and localization platform’s sensors.

3.2. Sensors Calibration
Any optical system composed of a camera or a camera coupled with a lens produces

images with aberrations (radial and tangential distortions) due to the properties of the
lens and the manufacturing defects. These distortions can significantly alter the rendering
of the captured scene by giving a curvilinear aspect to linear objects. The two types of
distortion most commonly encountered are: (1) radial distortion (barrel distortion), char-
acterized by a curvature of the straight lines outwards from the center of the image, and
(2) tangential distortion (pincushion distortion), characterized by curvature of the straight
lines towards the center of the image. These aberrations can be corrected using the Brown-
Contrary or Kanalla–Brandt camera distortion models to determine the distortion coeffi-
cients, (k1, k2, k3) and (p1, p2), respectively, of the radial and the tangential distortion coef-
ficients [51,52]. These parameters are determined by carrying out a series of acquisitions
of a pattern with known dimensions (checkerboard) under different points of view.

On the other hand, considering each lidar/camera combination as a unit of independ-
ent sensors, the extrinsic calibration consists in finding the rigid transformation between
the camera and lidar coordinate systems. This rigid transformation, represented by a ro-
tation matrix (R) and a translation vector (T), defines the extrinsic parameters of a lidar–

Figure 4. Data synchronization and time-stamping scheme.

Sensors 2022, 22, x FOR PEER REVIEW 6 of 16

time-stamps of these data are then brought back to the coordinated universal time (UTC)
by subtracting the leap seconds separating the TAI from the UTC times. In addition, the
inertial measurement unit provides the GNSS and IMU data directly synchronized and
time-stamped in UTC. As shown in Figure 5, this configuration ensures the temporal syn-
chronization of all sensors of the perception and localization system.

Figure 4. Data synchronization and time-stamping scheme.

Figure 5. Timeline of data acquisition from the perception and localization platform’s sensors.

3.2. Sensors Calibration
Any optical system composed of a camera or a camera coupled with a lens produces

images with aberrations (radial and tangential distortions) due to the properties of the
lens and the manufacturing defects. These distortions can significantly alter the rendering
of the captured scene by giving a curvilinear aspect to linear objects. The two types of
distortion most commonly encountered are: (1) radial distortion (barrel distortion), char-
acterized by a curvature of the straight lines outwards from the center of the image, and
(2) tangential distortion (pincushion distortion), characterized by curvature of the straight
lines towards the center of the image. These aberrations can be corrected using the Brown-
Contrary or Kanalla–Brandt camera distortion models to determine the distortion coeffi-
cients, (k1, k2, k3) and (p1, p2), respectively, of the radial and the tangential distortion coef-
ficients [51,52]. These parameters are determined by carrying out a series of acquisitions
of a pattern with known dimensions (checkerboard) under different points of view.

On the other hand, considering each lidar/camera combination as a unit of independ-
ent sensors, the extrinsic calibration consists in finding the rigid transformation between
the camera and lidar coordinate systems. This rigid transformation, represented by a ro-
tation matrix (R) and a translation vector (T), defines the extrinsic parameters of a lidar–

Figure 5. Timeline of data acquisition from the perception and localization platform’s sensors.

On the other hand, considering each lidar/camera combination as a unit of indepen-
dent sensors, the extrinsic calibration consists in finding the rigid transformation between
the camera and lidar coordinate systems. This rigid transformation, represented by a
rotation matrix (R) and a translation vector (T), defines the extrinsic parameters of a lidar–
camera system, and the objective of the extrinsic calibration procedure is to estimate them.
Thus, similar to intrinsic calibration, a checkerboard can be used to simultaneously detect
points of interest in the camera and lidar coordinate system frame. Then, the optimal rigid
transformation can be determined to match the two sets of points. Using the extrinsic
calibration parameters, the intrinsic distortion coefficients, and intrinsic camera parameters
such as focal length (fx, fy) and optical centers (cx, cy), it become possible to project the
lidar cloud point cloud onto camera images (Figure 6).

Sensors 2022, 22, x FOR PEER REVIEW 7 of 16

camera system, and the objective of the extrinsic calibration procedure is to estimate them.
Thus, similar to intrinsic calibration, a checkerboard can be used to simultaneously detect
points of interest in the camera and lidar coordinate system frame. Then, the optimal rigid
transformation can be determined to match the two sets of points. Using the extrinsic cal-
ibration parameters, the intrinsic distortion coefficients, and intrinsic camera parameters
such as focal length (fx, fy) and optical centers (cx, cy), it become possible to project the
lidar cloud point cloud onto camera images (Figure 6).

Figure 6. Lidar point cloud projected onto camera images.

4. Dataset
We used the perception and location system to collect data in order to build a dataset.

The drives were carried out in the center and outskirts of Nantes between March and Oc-
tober 2021. In order to obtain a varied data set, these drives were carried out under differ-
ent weather conditions and different traffic and population densities. In compliance with
data protection regulations (RGPD), the acquired data were anonymized. One hundred
and two (102) continuous sequences of 10 s each were selected from the different acquisi-
tions and then annotated by an annotation partner. Within each sequence, about 100 syn-
chronous lidar/camera/GNSS/IMU samples formed a temporally coherent sequence. It is
worth noting that the images were rectified and the lidar point clouds corrected for defor-
mation due to the ego-vehicle movement. The class distribution is shown in Figure 7. This
dataset is composed of about 10,000 annotated lidar samples, which corresponds to about
130,000 boxes. The dataset was used to train and evaluate the performance of the percep-
tion algorithms. The results of these studies are presented in the next section.

Figure 7. Class distribution.

Figure 6. Lidar point cloud projected onto camera images.

Sensors 2022, 22, 9661 7 of 16

4. Dataset

We used the perception and location system to collect data in order to build a dataset.
The drives were carried out in the center and outskirts of Nantes between March and Octo-
ber 2021. In order to obtain a varied data set, these drives were carried out under different
weather conditions and different traffic and population densities. In compliance with data
protection regulations (RGPD), the acquired data were anonymized. One hundred and two
(102) continuous sequences of 10 s each were selected from the different acquisitions and
then annotated by an annotation partner. Within each sequence, about 100 synchronous
lidar/camera/GNSS/IMU samples formed a temporally coherent sequence. It is worth
noting that the images were rectified and the lidar point clouds corrected for deforma-
tion due to the ego-vehicle movement. The class distribution is shown in Figure 7. This
dataset is composed of about 10,000 annotated lidar samples, which corresponds to about
130,000 boxes. The dataset was used to train and evaluate the performance of the perception
algorithms. The results of these studies are presented in the next section.

Sensors 2022, 22, x FOR PEER REVIEW 7 of 16

camera system, and the objective of the extrinsic calibration procedure is to estimate them.
Thus, similar to intrinsic calibration, a checkerboard can be used to simultaneously detect
points of interest in the camera and lidar coordinate system frame. Then, the optimal rigid
transformation can be determined to match the two sets of points. Using the extrinsic cal-
ibration parameters, the intrinsic distortion coefficients, and intrinsic camera parameters
such as focal length (fx, fy) and optical centers (cx, cy), it become possible to project the
lidar cloud point cloud onto camera images (Figure 6).

Figure 6. Lidar point cloud projected onto camera images.

4. Dataset
We used the perception and location system to collect data in order to build a dataset.

The drives were carried out in the center and outskirts of Nantes between March and Oc-
tober 2021. In order to obtain a varied data set, these drives were carried out under differ-
ent weather conditions and different traffic and population densities. In compliance with
data protection regulations (RGPD), the acquired data were anonymized. One hundred
and two (102) continuous sequences of 10 s each were selected from the different acquisi-
tions and then annotated by an annotation partner. Within each sequence, about 100 syn-
chronous lidar/camera/GNSS/IMU samples formed a temporally coherent sequence. It is
worth noting that the images were rectified and the lidar point clouds corrected for defor-
mation due to the ego-vehicle movement. The class distribution is shown in Figure 7. This
dataset is composed of about 10,000 annotated lidar samples, which corresponds to about
130,000 boxes. The dataset was used to train and evaluate the performance of the percep-
tion algorithms. The results of these studies are presented in the next section.

Figure 7. Class distribution. Figure 7. Class distribution.

5. Embedded Algorithms

In order to achieve high-level perception and localization tasks, three algorithms were
developed and embedded within the system: (1) a lidar data-based clustering analysis,
(2) a lidar-based deep learning classification and detection algorithm, and (3) a lidar based
localization algorithm. In the following, we briefly describe the functioning of these
three algorithms.

5.1. Clustering Analysis by RBNN (Radially-Bounded Nearest Neighbor)

Clustering analysis aims to divide sample data into a set of distinct groups in an
unsupervised way, that is, without learning. Each group (cluster) is built from points
sufficiently close to each other with respect to the points of the other clusters. The clustering
algorithm embedded in the perception and localization system is based on a radially-
bounded nearest neighbor (RBNN) strategy [53–55]. As shown in Figure 8, the algorithm
takes the raw lidar data as input and provides the convex hull of the objects within the
road scene as outputs.

Unlike other clustering algorithms, such as K-Means, agglomerative clustering, and
Gaussian mixture model, RBNN does not require a priori knowledge of the number of
objects contained in the scene. Indeed, the main hyperparameters to tune are: (1) the
minimal number of points for a cluster to be considered as valid and (2) the radius search.
We implemented the RBNN algorithm using a Kd-tree search structure. The processing
time is less than 20 ms with a 10 cm sub-sampling grid, which is consistent with real time
self-driving applications.

Sensors 2022, 22, 9661 8 of 16

Sensors 2022, 22, x FOR PEER REVIEW 8 of 16

5. Embedded Algorithms
In order to achieve high-level perception and localization tasks, three algorithms

were developed and embedded within the system: (1) a lidar data-based clustering anal-
ysis, (2) a lidar-based deep learning classification and detection algorithm, and (3) a lidar
based localization algorithm. In the following, we briefly describe the functioning of these
three algorithms.

5.1. Clustering Analysis by RBNN (Radially-Bounded Nearest Neighbor)
Clustering analysis aims to divide sample data into a set of distinct groups in an un-

supervised way, that is, without learning. Each group (cluster) is built from points suffi-
ciently close to each other with respect to the points of the other clusters. The clustering
algorithm embedded in the perception and localization system is based on a radially-
bounded nearest neighbor (RBNN) strategy [53–55]. As shown in Figure 8, the algorithm
takes the raw lidar data as input and provides the convex hull of the objects within the
road scene as outputs.

(a) (b)

Figure 8. Clustering analysis: (a) camera image for illustration and (b) results of lidar clustering
detection.

Unlike other clustering algorithms, such as K-Means, agglomerative clustering, and
Gaussian mixture model, RBNN does not require a priori knowledge of the number of
objects contained in the scene. Indeed, the main hyperparameters to tune are: (1) the min-
imal number of points for a cluster to be considered as valid and (2) the radius search. We
implemented the RBNN algorithm using a Kd-tree search structure. The processing time
is less than 20 ms with a 10 cm sub-sampling grid, which is consistent with real time self-
driving applications.

The performance of the clustering algorithm was evaluated using the dataset (de-
scribed in Section 3) by determining the true positive rate (TPR). An object was considered
as correctly detected if the cluster satisfied two requirements: (1) the ratio of the intersec-
tion of the convex hull and the ground truth (from the dataset) on the convex hull was
greater than the threshold of 0.1, and (2) the cluster had at least 20 lidar impact points.
Otherwise, the object was considered a false negative.

Table 2 shows the detection results by distance intervals. It can be observed that the
detection rate is maximal when the objects are close to the lidar. Indeed, a detection rate
of 98.76% is obtained for objects located within a radius of 10 m around the lidar. How-
ever, this value decreases as objects become farther from the lidar. Indeed, the detection
rate drops to 80% for objects located between 40 and 50 m from the lidar.

Table 2. Clustering detection results.

Distances (m) 2 to 10 10 to 20 20 to 30 30 to 40 40 to 50
TPR (%) 98.76 97.69 94.79 89.38 80.85

Figure 8. Clustering analysis: (a) camera image for illustration and (b) results of lidar clustering detection.

The performance of the clustering algorithm was evaluated using the dataset (de-
scribed in Section 3) by determining the true positive rate (TPR). An object was considered
as correctly detected if the cluster satisfied two requirements: (1) the ratio of the intersection
of the convex hull and the ground truth (from the dataset) on the convex hull was greater
than the threshold of 0.1, and (2) the cluster had at least 20 lidar impact points. Otherwise,
the object was considered a false negative.

Table 2 shows the detection results by distance intervals. It can be observed that the
detection rate is maximal when the objects are close to the lidar. Indeed, a detection rate of
98.76% is obtained for objects located within a radius of 10 m around the lidar. However,
this value decreases as objects become farther from the lidar. Indeed, the detection rate
drops to 80% for objects located between 40 and 50 m from the lidar.

Table 2. Clustering detection results.

Distances (m) 2 to 10 10 to 20 20 to 30 30 to 40 40 to 50

TPR (%) 98.76 97.69 94.79 89.38 80.85

5.2. Object Detection by DCNN (Deep Convolutional Neural Network)

Unlike clustering algorithms, deep learning-based detection methods aim to predict
the content of a scene in a supervised way (with learning). The detection algorithm
embedded in the perception and localization system is based on a deep convolutional
neural network architecture. As shown in Figure 9, the algorithm takes lidar data as input
and provides three-dimensional bounding boxes of the objects within the road scene as
outputs. Each predicted box is described by nine parameters (u, v, d, w, l, h, α, c, s):

• (u, v, d): represent the center of the box
• (w, l, h): represent the 3D dimensions of the box
• α: the orientation of the box in top view (yaw angle)
• c: the class of the box (type of object)
• s: the confidence score associated with the prediction

Sensors 2022, 22, x FOR PEER REVIEW 9 of 16

5.2. Object Detection by DCNN (Deep Convolutional Neural Network)
Unlike clustering algorithms, deep learning-based detection methods aim to predict

the content of a scene in a supervised way (with learning). The detection algorithm em-
bedded in the perception and localization system is based on a deep convolutional neural
network architecture. As shown in Figure 9, the algorithm takes lidar data as input and
provides three-dimensional bounding boxes of the objects within the road scene as out-
puts. Each predicted box is described by nine parameters (u, v, d, w, l, h, α, c, s):
• (u, v, d): represent the center of the box
• (w, l, h): represent the 3D dimensions of the box
• α: the orientation of the box in top view (yaw angle)
• c: the class of the box (type of object)
• s: the confidence score associated with the prediction

(a) (b)

Figure 9. Object detection by DCNN: (a) camera image for illustration and (b) result of lidar DCNN
detection.

For this study, our preference was for a voxel-based method over a bird’s eye view
(BEV) projection, as we wanted to preserve the initial 3D structure of the lidar point cloud.
The input of the DCNN algorithm consists of fixed-size voxel grid combined with a 1 × 1
convolution window. This results in representation of the lidar data in pillar form, which
is well known to improve backbone efficiency. It follows a PointPillars backbone and a
single shot detection (SSD) head detection with output encoding similar to CenterPoint
[56,57]. This single-stage architecture (Figure 10) allows for a good trade-off between run-
time performance and prediction quality.

Figure 10. The DCNN architecture.

Figure 9. Object detection by DCNN: (a) camera image for illustration and (b) result of lidar
DCNN detection.

Sensors 2022, 22, 9661 9 of 16

For this study, our preference was for a voxel-based method over a bird’s eye view
(BEV) projection, as we wanted to preserve the initial 3D structure of the lidar point
cloud. The input of the DCNN algorithm consists of fixed-size voxel grid combined
with a 1 × 1 convolution window. This results in representation of the lidar data in
pillar form, which is well known to improve backbone efficiency. It follows a PointPillars
backbone and a single shot detection (SSD) head detection with output encoding similar to
CenterPoint [56,57]. This single-stage architecture (Figure 10) allows for a good trade-off
between run-time performance and prediction quality.

Sensors 2022, 22, x FOR PEER REVIEW 9 of 16

5.2. Object Detection by DCNN (Deep Convolutional Neural Network)
Unlike clustering algorithms, deep learning-based detection methods aim to predict

the content of a scene in a supervised way (with learning). The detection algorithm em-
bedded in the perception and localization system is based on a deep convolutional neural
network architecture. As shown in Figure 9, the algorithm takes lidar data as input and
provides three-dimensional bounding boxes of the objects within the road scene as out-
puts. Each predicted box is described by nine parameters (u, v, d, w, l, h, α, c, s):
• (u, v, d): represent the center of the box
• (w, l, h): represent the 3D dimensions of the box
• α: the orientation of the box in top view (yaw angle)
• c: the class of the box (type of object)
• s: the confidence score associated with the prediction

(a) (b)

Figure 9. Object detection by DCNN: (a) camera image for illustration and (b) result of lidar DCNN
detection.

For this study, our preference was for a voxel-based method over a bird’s eye view
(BEV) projection, as we wanted to preserve the initial 3D structure of the lidar point cloud.
The input of the DCNN algorithm consists of fixed-size voxel grid combined with a 1 × 1
convolution window. This results in representation of the lidar data in pillar form, which
is well known to improve backbone efficiency. It follows a PointPillars backbone and a
single shot detection (SSD) head detection with output encoding similar to CenterPoint
[56,57]. This single-stage architecture (Figure 10) allows for a good trade-off between run-
time performance and prediction quality.

Figure 10. The DCNN architecture.

Figure 10. The DCNN architecture.

The DCNN was trained to classify objects of three types: (1) passenger vehicles (car),
(2) medium vehicles (van, pickup, minivan), and (3) large vehicles (bus, truck). The dataset
containing 10,000 lidar scans was split into a training set of 7500 samples and a validation
set of 2500 samples. The network was trained for 200 epochs by a single GPU with two
samples per batch, and the Adam optimizer was adopted. The learning rate was 1 × 10−4

and the loss functions were focal loss for the classification task (c, s) and smooth L1 for
the regression task (u, v, d, w, l, h, α). Using Nvidia’s Tensor Rt framework and mixed
precision (FP16) inference optimization, the network achieved a total prediction time of
less than 30 ms with an inference time of about 10–15 ms.

The DCNN detection performance was evaluated by determining the true positive rate
(TPR, Equation (1)) and the false discovery rate (FDR, Equation (2)) for both distance inter-
vals. TPR and FDR are estimated using the intersection on union (IoU) of the prediction
box over the ground truth annotation:

TPR =
TP

TP + FN
(1)

FDR =
FP

FP + TP
(2)

Here, TP, FP, and FN are, respectively, true positive predictions, false positive predic-
tions, and false negative predictions.

The results (Figure 11) show good detection between 2–20 m (around 95% for TPR
and 6% for FDR) for cars and medium vehicles, then the detection performance decreases
beyond 20 m. The same trend can be seen for large vehicles (truck, bus, etc.) though with
lower detection performance. This is due to the fact that the last class includes objects
with varied sizes and which are under-represented in the dataset. This makes the learning
process more difficult for this class.

Sensors 2022, 22, 9661 10 of 16

Sensors 2022, 22, x FOR PEER REVIEW 10 of 16

The DCNN was trained to classify objects of three types: (1) passenger vehicles (car),
(2) medium vehicles (van, pickup, minivan), and (3) large vehicles (bus, truck). The da-
taset containing 10,000 lidar scans was split into a training set of 7500 samples and a vali-
dation set of 2500 samples. The network was trained for 200 epochs by a single GPU with
two samples per batch, and the Adam optimizer was adopted. The learning rate was 1 × 10ିସ and the loss functions were focal loss for the classification task (c, s) and smooth
L1 for the regression task (u, v, d, w, l, h, α). Using Nvidia’s Tensor Rt framework and
mixed precision (FP16) inference optimization, the network achieved a total prediction
time of less than 30 ms with an inference time of about 10–15 ms.

The DCNN detection performance was evaluated by determining the true positive
rate (𝑇𝑃𝑅, Equation (1)) and the false discovery rate (𝐹𝐷𝑅, Equation (2)) for both distance
intervals. 𝑇𝑃𝑅 and 𝐹𝐷𝑅 are estimated using the intersection on union (IoU) of the pre-
diction box over the ground truth annotation: 𝑇𝑃𝑅 = 𝑇𝑃𝑇𝑃 + 𝐹𝑁 (1)

𝐹𝐷𝑅 = 𝐹𝑃𝐹𝑃 + 𝑇𝑃 (2)

Here, 𝑇𝑃, 𝐹𝑃, and 𝐹𝑁 are, respectively, true positive predictions, false positive pre-
dictions, and false negative predictions.

The results (Figure 11) show good detection between 2–20 m (around 95% for 𝑇𝑃𝑅
and 6% for 𝐹𝐷𝑅) for cars and medium vehicles, then the detection performance decreases
beyond 20 m. The same trend can be seen for large vehicles (truck, bus, etc.) though with
lower detection performance. This is due to the fact that the last class includes objects with
varied sizes and which are under-represented in the dataset. This makes the learning pro-
cess more difficult for this class.

(a) (b)

Figure 11. DCNN detection results: (a) true positive rate and (b) false discovery rate.

A detailed analysis of the positioning, size, and orientation errors of the predictions
confirms the impact of distance on the detection quality. As shown on Figure 12, while
the estimates are fairly accurate, the standard deviation for each prediction parameter in-
creases with distance. This is particularly the case for orientation, for which the estimation
may be valid modulo 90 deg due to an ambiguity that the network is unable to resolve. A
solution may be to inject the lidar intensity signal as input for the DCNN. This could help
the network to find the correct orientation by using the reflective properties of the vehi-
cle's license plates.

Figure 11. DCNN detection results: (a) true positive rate and (b) false discovery rate.

A detailed analysis of the positioning, size, and orientation errors of the predictions
confirms the impact of distance on the detection quality. As shown on Figure 12, while the
estimates are fairly accurate, the standard deviation for each prediction parameter increases
with distance. This is particularly the case for orientation, for which the estimation may
be valid modulo 90 deg due to an ambiguity that the network is unable to resolve. A
solution may be to inject the lidar intensity signal as input for the DCNN. This could help
the network to find the correct orientation by using the reflective properties of the vehicle’s
license plates.

Sensors 2022, 22, x FOR PEER REVIEW 11 of 16

(a) (b)

Figure 12. Estimation errors: (a) position and (b) size.

Table 3 presents the average precision (AP) calculated individually for each class us-
ing the area under the precision–recall curve (AUC-PR) for an IoU threshold of 0.70. Table
4 shows that the medium average precision (mAP) for cars and medium vehicles is similar
to the values reported in the literature.

Table 3. Average precision results.

Vehicles Car Medium Big Vehicle
AP 0.87 0.87 0.71

Table 4. Medium average precision results.

Methods mAP (Moderate)
Our 0.87

PointPillars [57] 0.86
PIXOR++ [46] 0.83
VoxelNet [48] 0.84
SECOND [47] 0.79

5.3. Lidar-Based Loccalization
Localization refers to a mechanism for determining the position of an object on a map.

Depending on the technology used, the positioning accuracy can vary from meters to a
few centimeters. In a navigation context, the most commonly used technology is based on
a satellite system called GNSS (global navigation system satellites). However, positioning
by satellite has several limitations. Meteorological conditions can affect satellite visibility,
resulting in weak positional accuracy. In addition, satellite signals may not be available
inside structures such as in a building, garage, parking, structure, or tunnel. This makes
satellite positioning systems alone incompatible with autonomous driving applications.

Exteroceptive localization algorithms aim to provide a continuous and accurate po-
sition service using a pre-built map. The map building process consists of creating proba-
bilistic occupancy grid submaps (Figure 13a) using lidar, inertial, and GNSS data. Each
submap is a discretization of the environment into a set of two-dimensional regular cells
characterized by assigning a probability value that a cell will be occupied by an obstacle.
More specifically, local submaps are built by iteratively adding lidar scans in a fixed ref-
erence frame. The successive poses of the lidar are obtained using a Monte Carlo localiza-
tion filter, and the large drift inherent to long-term exploration is avoided using GNSS
injection and loop closures inside a pose graph optimization. After the map has been built,
essentially using lidar and inertial measurement data, localization is performed by

Figure 12. Estimation errors: (a) position and (b) size.

Table 3 presents the average precision (AP) calculated individually for each class using
the area under the precision–recall curve (AUC-PR) for an IoU threshold of 0.70. Table 4
shows that the medium average precision (mAP) for cars and medium vehicles is similar
to the values reported in the literature.

Table 3. Average precision results.

Vehicles Car Medium Big Vehicle

AP 0.87 0.87 0.71

5.3. Lidar-Based Loccalization

Localization refers to a mechanism for determining the position of an object on a map.
Depending on the technology used, the positioning accuracy can vary from meters to a few
centimeters. In a navigation context, the most commonly used technology is based on a

Sensors 2022, 22, 9661 11 of 16

satellite system called GNSS (global navigation system satellites). However, positioning
by satellite has several limitations. Meteorological conditions can affect satellite visibility,
resulting in weak positional accuracy. In addition, satellite signals may not be available
inside structures such as in a building, garage, parking, structure, or tunnel. This makes
satellite positioning systems alone incompatible with autonomous driving applications.

Table 4. Medium average precision results.

Methods mAP (Moderate)

Our 0.87
PointPillars [57] 0.86
PIXOR++ [46] 0.83
VoxelNet [48] 0.84
SECOND [47] 0.79

Exteroceptive localization algorithms aim to provide a continuous and accurate posi-
tion service using a pre-built map. The map building process consists of creating probabilis-
tic occupancy grid submaps (Figure 13a) using lidar, inertial, and GNSS data. Each submap
is a discretization of the environment into a set of two-dimensional regular cells charac-
terized by assigning a probability value that a cell will be occupied by an obstacle. More
specifically, local submaps are built by iteratively adding lidar scans in a fixed reference
frame. The successive poses of the lidar are obtained using a Monte Carlo localization filter,
and the large drift inherent to long-term exploration is avoided using GNSS injection and
loop closures inside a pose graph optimization. After the map has been built, essentially
using lidar and inertial measurement data, localization is performed by correlating an
actual lidar scan to the map (Figure 13b). The algorithm operation can be summarized
as follows:

Sensors 2022, 22, x FOR PEER REVIEW 12 of 16

correlating an actual lidar scan to the map (Figure 13b). The algorithm operation can be
summarized as follows:

(a) (b)

Figure 13. Lidar-based localization algorithm: (a) map building process and (b) localization operat-
ing schemes.

• Step 1 (Initialization)—the algorithm randomly generates a number N (N = 500 in our
application) of discrete poses (Equation (3)). Each pose (called a particle) is a possible
location of the vehicle within the map. Because there is an equal probability that the
vehicle is anywhere on the map and facing any direction, the poses have the same
weight (𝑤).

𝑞 = 𝑥𝑦𝜃൩ , 𝑖 = 1, … , 𝑁 (3)

Here, (𝑥, 𝑦) and 𝜃 are the 2D coordinates and the orientation of the “i” pose, re-
spectively.

• Step 2—Using the speed (𝑣) and the yaw rate (𝜑) of the vehicle (from the IMU sensor),
the algorithm moves all the particles using the motion model in Equation (4).

𝑞(𝑡 + 𝑑𝑡) = 𝑞(𝑡) + ⎣⎢⎢
⎢⎡𝑣𝜑 (− sin 𝜃 + sin(𝜃 + 𝜑 ∗ 𝑑𝑡))𝑣𝜑 (cos 𝜃 − cos(𝜃 + 𝜑 ∗ 𝑑𝑡))𝜃 + 𝜑 ∗ 𝑑𝑡 ⎦⎥⎥

⎥⎤ (4)

where 𝑑𝑡 is the time between two IMU measurements.
• Step 3—When a lidar scan becomes available, for each pose (particle) the algorithm

calculates the relative likelihood between the actual lidar scan and the point cloud
data of the map surrounding the pose. Then, it updates the weight of each pose.

• Step 4—The particles are resampled using a low-variance resampling algorithm
• Step 5—The particles are used to estimate the vehicle's pose by determining the cen-

troid of the particles (Equation (5)) after weight normalization (Equation (6)).

ቈ𝑥𝑦𝜃 = ൦ ∑ 𝑤 ∗ 𝑥ேୀଵ∑ 𝑤 ∗ 𝑦ேୀଵ𝑎𝑡𝑎𝑛2(∑ 𝑤 ∗ sin 𝜃 ேୀଵ , ∑ 𝑤 ∗ cos 𝜃ேୀଵ)൪ (5)

𝑤 = ଵே ∗ ∑ 𝑤ேୀଵ (6)

• Step 6—Return to Step 2.
The processing time of the embedded localization algorithm is about 15 ms. As

shown in Table 5, using the lidar localization algorithm we are able to attain an accuracy
of a few centimeters.

Figure 13. Lidar-based localization algorithm: (a) map building process and (b) localization
operating schemes.

• Step 1 (Initialization)—the algorithm randomly generates a number N (N = 500 in our
application) of discrete poses (Equation (3)). Each pose (called a particle) is a possible
location of the vehicle within the map. Because there is an equal probability that the
vehicle is anywhere on the map and facing any direction, the poses have the same
weight (wi).

qi =

xi
yi
θi

, i = 1, . . . , N (3)

Here, (xi, yi) and θi are the 2D coordinates and the orientation of the “i” pose, respectively.
• Step 2—Using the speed (v) and the yaw rate (ϕ) of the vehicle (from the IMU sensor),

the algorithm moves all the particles using the motion model in Equation (4).

Sensors 2022, 22, 9661 12 of 16

qi(t + dt) = qi(t) +

v
ϕ (− sin θi + sin(θi + ϕ ∗ dt))

v
ϕ (cos θi − cos(θi + ϕ ∗ dt))

θi + ϕ ∗ dt

 (4)

where dt is the time between two IMU measurements.
• Step 3—When a lidar scan becomes available, for each pose (particle) the algorithm

calculates the relative likelihood between the actual lidar scan and the point cloud
data of the map surrounding the pose. Then, it updates the weight of each pose.

• Step 4—The particles are resampled using a low-variance resampling algorithm.
• Step 5—The particles are used to estimate the vehicle’s pose by determining the

centroid of the particles (Equation (5)) after weight normalization (Equation (6)).

x
y
θ

 =

N
∑

j=1
w ∗ xj

N
∑

j=1
w ∗ yj

atan2

(
N
∑

j=1
w ∗ sin θj ,

N
∑

j=1
w ∗ cos θj

)

(5)

w =
1
N

∗
N

∑
j=1

wj (6)

• Step 6—Return to Step 2.

The processing time of the embedded localization algorithm is about 15 ms. As shown
in Table 5, using the lidar localization algorithm we are able to attain an accuracy of a
few centimeters.

Table 5. Localization algorithm performance. The performance of the algorithm was evaluated by
comparing the path from localization to the RTK position.

Errors Lateral Mean Error Lateral Mean Std Longitudinal
Mean Error

Longitudinal
Mean Std

Values (cm) 1.6 5.3 5.0 9.5

6. Discussion

Building a high-level perception and localization system is a complex task that in-
cludes both hardware and software components. The hardware part is not limited to
putting together the sensors; indeed, it implies that requirements such as calibration, syn-
chronization, and timestamping must be satisfied. In this regard, our system is similar to
the existing ones in the literature. However, we focused on system autonomy in term of
energy consumption and memory stockage, on the one hand, and system usability and
extensibility on the other. Thus, our system can be installed or uninstalled on different
vehicles without breaking the exteroceptive calibration, and new sensors can be added
while maintaining the same software architecture.

The other part of this work consist in building perception and localization algorithms
in order to provide advanced outputs. Using our constructed dataset, the performances
of the perception algorithms were evaluated considering the distance factor. The RBNN
method has the advantage of not requiring training data, and the algorithm reaches more
than 97% correct detection in the 20 first meters around the vehicle. Nevertheless, clustering
does not provide any information on the type of target detected. On the other hand, the
DCNN algorithm shows good detection for the same distances (around 95% for TPR and 6%
for FDR and 0.87 for AP) for cars and medium vehicles and lower detection performance
for large vehicles (truck, bus, etc.). DCNN detection performance could be improved with

Sensors 2022, 22, 9661 13 of 16

a larger dataset or by fusing lidar and camera data for multi-modal object detection [58–61].
Nevertheless, the perception algorithms do not provide a full description of the vehicle
environment. Indeed, the DCNN was not trained to detect pedestrians and cyclists. In
addition, the perception task does not provide traffic sign and drivable surface detection.
The next step for the perception task is to develop and validate these algorithms.

Lastly, the localization algorithm is able to reach centimetric accuracy using a pre-
build card. However, 2D localization algorithms have limitations, particularly with respect
to certain types of building such as multi-level parking structures. Upgrading this 2D
algorithm to a 3D solution would lead to a more complete and robust localization tool.

7. Conclusions

This paper presents the concept of a high-level perception and localization system
composed of a 128-channel lidar, two global shutter cameras, an INS (IMU + GNSS), a
time server, and an embedded computer. In addition, the system embeds three algorithms
which process raw sensors outputs and provide real time advanced outputs, such as objects
in road scene or localization in challenging environments. The performance of the three
algorithms are competitive with the state-of-the-art. Moreover, the processing times of
these algorithms are compatible with real-time autonomous driving applications. However,
the perception task needs to be enriched by traffic signs and drivable surface detection
algorithms. Similarly, upgrading the 2D exteroceptive localization algorithm into a 3D
solution can lead to a more complete and robust localization tool.

After the system reaches maturity, it might be possible to equip drive-by-wire vehicles,
thereby converting the latter into autonomous vehicle research platforms.

The literature reports very few annotated multi-modal datasets built with a 128-channel
lidar. The present study contributes to filling this need.

Author Contributions: Conceptualization, D.G. and V.C.; Software, X.D.; Validation, V.C., M.G. and
M.-T.D.; Data curation, M.G.; Writing—original draft, X.D. and A.K.; Supervision, V.C. and M.-T.D.;
Project administration, D.G., V.C. and M.-T.D. All authors have read and agreed to the published
version of the manuscript.

Funding: This research was funded by ADEME (French Environment and Energy Management Agency)
within the framework of ENA project (Autonomous Shuttle Experiments), grant number 1982C0050.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author. The data are not publicly available due to confidentiality agreement within
the framework of ENA project.

Acknowledgments: This study is performed in the framework of ENA project (Autonomous Shuttle
Experiments) supported under the Investments for the Future Program (PIA) operated by French
Environment and Energy Management Agency—ADEME (financing agreement no. 1982C0050). The
ENA project is labeled by the CARA European Cluster for Mobility Solutions with which a labeling
agreement was signed on 16 July 2019. The authors thank Philippe VEZIN (project coordinator),
Sébastien Buisson, Angélique Guilloux and Samuel Louis (technical staff) for their contributions to
the success of this project.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Nidamanuri, J.; Nibhanupudi, C.; Assfalg, R.; Venkataraman, H. A Progressive Review: Emerging Technologies for ADAS Driven

Solutions. IEEE Trans. Intell. Veh. 2022, 7, 326–341. [CrossRef]
2. de Gelder, E.; Paardekooper, J.-P. Assessment of Automated Driving Systems Using Real-Life Scenarios. In Proceedings of the

2017 IEEE Intelligent Vehicles Symposium (IV), Los Angeles, CA, USA, 11–14 June 2017; pp. 589–594.
3. De-Las-Heras, G.; Sánchez-Soriano, J.; Puertas, E. Advanced Driver Assistance Systems (ADAS) Based on Machine Learning

Techniques for the Detection and Transcription of Variable Message Signs on Roads. Sensors 2021, 21, 5866. [CrossRef] [PubMed]

http://doi.org/10.1109/TIV.2021.3122898
http://doi.org/10.3390/s21175866
http://www.ncbi.nlm.nih.gov/pubmed/34502757

Sensors 2022, 22, 9661 14 of 16

4. Behere, S.; Torngren, M. A Functional Architecture for Autonomous Driving. In Proceedings of the 2015 First International
Workshop on Automotive Software Architecture (WASA), Montréal, QC, Canada, 4 May 2015; pp. 3–10.

5. Velasco-Hernandez, G.; Yeong, D.J.; Barry, J.; Walsh, J. Autonomous Driving Architectures, Perception and Data Fusion: A Review.
In Proceedings of the 2020 IEEE 16th International Conference on Intelligent Computer Communication and Processing (ICCP),
Cluj-Napoca, Romania, 3–5 September 2020; pp. 315–321.

6. Gog, I.; Kalra, S.; Schafhalter, P.; Wright, M.A.; Gonzalez, J.E.; Stoica, I. Pylot: A Modular Platform for Exploring Latency-Accuracy
Tradeoffs in Autonomous Vehicles. In Proceedings of the 2021 IEEE International Conference on Robotics and Automation
(ICRA), Xi’an, China, 30 May–5 June 2021; pp. 8806–8813.

7. Liu, S.; Tang, J.; Zhang, Z.; Gaudiot, J.-L. Computer Architectures for Autonomous Driving. Computer 2017, 50, 18–25. [CrossRef]
8. Tampuu, A.; Semikin, M.; Muhammad, N.; Fishman, D.; Matiisen, T. A Survey of End-to-End Driving: Architectures and Training

Methods. IEEE Trans. Neural Netw. Learn. Syst. 2022, 33, 1364–1384. [CrossRef]
9. Yurtsever, E.; Lambert, J.; Carballo, A.; Takeda, K. A Survey of Autonomous Driving: Common Practices and Emerging

Technologies. IEEE Access 2020, 8, 58443–58469. [CrossRef]
10. Zhang, Y.; Chen, H.; Waslander, S.L.; Gong, J.; Xiong, G.; Yang, T.; Liu, K. Hybrid Trajectory Planning for Autonomous Driving in

Highly Constrained Environments. IEEE Access 2018, 6, 32800–32819. [CrossRef]
11. Althoff, M.; Koschi, M.; Manzinger, S. CommonRoad: Composable Benchmarks for Motion Planning on Roads. In Proceedings of

the 2017 IEEE Intelligent Vehicles Symposium (IV), Los Angeles, CA, USA, 11–14 June 2017; pp. 719–726.
12. Arango, J.F.; Bergasa, L.M.; Revenga, P.A.; Barea, R.; López-Guillén, E.; Gómez-Huélamo, C.; Araluce, J.; Gutiérrez, R. Drive-By-

Wire Development Process Based on ROS for an Autonomous Electric Vehicle. Sensors 2020, 20, 6121. [CrossRef]
13. Wei, J.; Snider, J.M.; Kim, J.; Dolan, J.M.; Rajkumar, R.; Litkouhi, B. Towards a Viable Autonomous Driving Research Platform. In

Proceedings of the 2013 IEEE Intelligent Vehicles Symposium (IV), Gold Coast, Australia, 23–26 June 2013; pp. 763–770.
14. Dominguez, S.; Garcia, G.; Hamon, A.; Frémont, V. Longitudinal Dynamics Model Identification of an Electric Car Based on

Real Response Approximation. In Proceedings of the 2020 IEEE Intelligent Vehicles Symposium (IV), Las Vegas, NV, USA, 19
October–13 November 2020.

15. Shan, T.; Englot, B.; Duarte, F.; Ratti, C.; Rus, D. Robust Place Recognition Using an Imaging Lidar. In Proceedings of the 2021
IEEE International Conference on Robotics and Automation (ICRA), Xi’an, China, 30 May–5 June 2021; pp. 5469–5475.

16. Zhang, L.; Camurri, M.; Wisth, D.; Fallon, M. Multi-Camera LiDAR Inertial Extension to the Newer College Dataset. arXiv 2022,
arXiv:2112.08854.

17. Li, L.; Ismail, K.N.; Shum, H.P.H.; Breckon, T.P. DurLAR: A High-Fidelity 128-Channel LiDAR Dataset with Panoramic Ambient
and Reflectivity Imagery for Multi-Modal Autonomous Driving Applications. In Proceedings of the International Conference on
3D Vision, Surrey, London, UK, 1–3 December 2021.

18. Burnett, K.; Wu, Y.; Yoon, D.J.; Schoellig, A.P.; Barfoot, T.D. Are We Ready for Radar to Replace Lidar in All-Weather Mapping
and Localization? IEEE Robot. Autom. Lett. 2022, 7, 10328–10335. [CrossRef]

19. Carballo, A.; Lambert, J.; Monrroy, A.; Wong, D.; Narksri, P.; Kitsukawa, Y.; Takeuchi, E.; Kato, S.; Takeda, K. LIBRE: The Multiple
3D LiDAR Dataset. In Proceedings of the 2020 IEEE Intelligent Vehicles Symposium (IV), Las Vegas, NV, USA, 19 October–13
November 2020; pp. 1094–1101.

20. Burnett, K.; Yoon, D.J.; Wu, Y.; Li, A.Z.; Zhang, H.; Lu, S.; Qian, J.; Tseng, W.-K.; Lambert, A.; Leung, K.Y.K.; et al. Boreas: A
Multi-Season Autonomous Driving Dataset. arXiv 2022, arXiv:2203.10168.

21. Sambolek, S.; Ivasic-Kos, M. Automatic Person Detection in Search and Rescue Operations Using Deep CNN Detectors. IEEE
Access 2021, 9, 37905–37922. [CrossRef]

22. Tijtgat, N.; Van Ranst, W.; Volckaert, B.; Goedemé, T.; De Turck, F. Embedded Real-Time Object Detection for a UAV Warning
System. In Proceedings of the 2017 IEEE International Conference on Computer Vision Workshops (ICCVW), Venice, Italy, 22–29
October 2017; pp. 2110–2118.

23. Lygouras, E.; Santavas, N.; Taitzoglou, A.; Tarchanidis, K.; Mitropoulos, A.; Gasteratos, A. Unsupervised Human Detection with
an Embedded Vision System on a Fully Autonomous UAV for Search and Rescue Operations. Sensors 2019, 19, 3542. [CrossRef]
[PubMed]

24. Geiger, A.; Lenz, P.; Urtasun, R. Are We Ready for Autonomous Driving? The KITTI Vision Benchmark Suite. In Proceedings of
the 2012 IEEE Conference on Computer Vision and Pattern Recognition, Providence, RI, USA, 16–21 June 2012; pp. 3354–3361.

25. Huang, X.; Wang, P.; Cheng, X.; Zhou, D.; Geng, Q.; Yang, R. The ApolloScape Open Dataset for Autonomous Driving and Its
Application. IEEE Trans. Pattern Anal. Mach. Intell. 2020, 42, 2702–2719. [CrossRef] [PubMed]

26. Patil, A.; Malla, S.; Gang, H.; Chen, Y.-T. The H3D Dataset for Full-Surround 3D Multi-Object Detection and Tracking in Crowded
Urban Scenes. In Proceedings of the 2019 International Conference on Robotics and Automation (ICRA), Montreal, QC, Canada,
20–24 May 2019; pp. 9552–9557.

27. Pham, Q.-H.; Sevestre, P.; Pahwa, R.S.; Zhan, H.; Pang, C.H.; Chen, Y.; Mustafa, A.; Chandrasekhar, V.; Lin, J. A 3D Dataset:
Towards Autonomous Driving in Challenging Environments. In Proceedings of the 2020 IEEE International Conference on
Robotics and Automation (ICRA), Paris, France, 31 May–1 August 2020; pp. 2267–2273.

28. Choi, Y.; Kim, N.; Hwang, S.; Park, K.; Yoon, J.S.; An, K.; Kweon, I.S. KAIST Multi-Spectral Day/Night Data Set for Autonomous
and Assisted Driving. IEEE Trans. Intell. Transp. Syst. 2018, 19, 934–948. [CrossRef]

http://doi.org/10.1109/MC.2017.3001256
http://doi.org/10.1109/TNNLS.2020.3043505
http://doi.org/10.1109/ACCESS.2020.2983149
http://doi.org/10.1109/ACCESS.2018.2845448
http://doi.org/10.3390/s20216121
http://doi.org/10.1109/LRA.2022.3192885
http://doi.org/10.1109/ACCESS.2021.3063681
http://doi.org/10.3390/s19163542
http://www.ncbi.nlm.nih.gov/pubmed/31416131
http://doi.org/10.1109/TPAMI.2019.2926463
http://www.ncbi.nlm.nih.gov/pubmed/31283496
http://doi.org/10.1109/TITS.2018.2791533

Sensors 2022, 22, 9661 15 of 16

29. Caesar, H.; Bankiti, V.; Lang, A.H.; Vora, S.; Liong, V.E.; Xu, Q.; Krishnan, A.; Pan, Y.; Baldan, G.; Beijbom, O. NuScenes: A
Multimodal Dataset for Autonomous Driving. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 11621–11631.

30. Chang, M.-F.; Lambert, J.; Sangkloy, P.; Singh, J.; Bak, S.; Hartnett, A.; Wang, D.; Carr, P.; Lucey, S.; Ramanan, D.; et al. Argoverse:
3D Tracking and Forecasting With Rich Maps. In Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019; pp. 8740–8749.

31. Sun, P.; Kretzschmar, H.; Dotiwalla, X.; Chouard, A.; Patnaik, V.; Tsui, P.; Guo, J.; Zhou, Y.; Chai, Y.; Caine, B.; et al. Scalability in
Perception for Autonomous Driving: Waymo Open Dataset. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, Seattle, WA, USA, 14–19 June 2020; pp. 2446–2454.

32. Maddern, W.; Pascoe, G.; Linegar, C.; Newman, P. 1 Year, 1000 Km: The Oxford RobotCar Dataset. Int. J. Robot. Res. 2017, 36, 3–15.
[CrossRef]

33. Pitropov, M.; Garcia, D.; Rebello, J.; Smart, M.; Wang, C.; Czarnecki, K.; Waslander, S. Canadian Adverse Driving Conditions
Dataset. Int. J. Robot. Res. 2021, 40, 681–690. [CrossRef]

34. O’Mahony, N.; Campbell, S.; Carvalho, A.; Harapanahalli, S.; Hernandez, G.V.; Krpalkova, L.; Riordan, D.; Walsh, J. Deep
Learning vs. Traditional Computer Vision. In Advances in Computer Vision, Proceedings of the 2019 Computer Vision Conference (CVC),
Las Vegas, NE, USA, 2–3 May 2019; Arai, K., Kapoor, S., Eds.; Springer International Publishing: Berlin/Heidelberg, Germany,
2020; pp. 128–144.

35. Lopez, M.M.; Kalita, J. Deep Learning Applied to NLP. arXiv 2017, arXiv: 1703.03091.
36. Brunetti, A.; Buongiorno, D.; Trotta, G.F.; Bevilacqua, V. Computer Vision and Deep Learning Techniques for Pedestrian Detection

and Tracking: A Survey. Neurocomputing 2018, 300, 17–33. [CrossRef]
37. Feng, D.; Haase-Schütz, C.; Rosenbaum, L.; Hertlein, H.; Glaeser, C.; Timm, F.; Wiesbeck, W.; Dietmayer, K. Deep Multi-Modal

Object Detection and Semantic Segmentation for Autonomous Driving: Datasets, Methods, and Challenges. IEEE Trans. Intell.
Transp. Syst. 2021, 22, 1341–1360. [CrossRef]

38. Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014;
pp. 580–587.

39. Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. IEEE
Trans. Pattern Anal. Mach. Intell. 2017, 39, 1137–1149. [CrossRef]

40. He, K.; Gkioxari, G.; Dollar, P.; Girshick, R. Mask R-CNN. In Proceedings of the IEEE International Conference on Computer
Vision, Venice, Italy, 22–29 October 2017; pp. 2961–2969.

41. Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You Only Look Once: Unified, Real-Time Object Detection. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016.

42. Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.-Y.; Berg, A.C. SSD: Single Shot MultiBox Detector. In Computer
Vision–ECCV 2016, Proceedings of the European Conference on Computer Vision, Amsterdam, The Netherlands, 11–14 October 2016;
Springer: Berlin/Heidelberg, Germany, 2016; Volume 9905, pp. 21–37.

43. Jiao, L.; Zhang, F.; Liu, F.; Yang, S.; Li, L.; Feng, Z.; Qu, R. A Survey of Deep Learning-Based Object Detection. IEEE Access 2019,
7, 128837–128868. [CrossRef]

44. Wu, Y.; Wang, Y.; Zhang, S.; Ogai, H. Deep 3D Object Detection Networks Using LiDAR Data: A Review. IEEE Sens. J. 2021,
21, 1152–1171. [CrossRef]

45. Ali, W.; Abdelkarim, S.; Zahran, M.; Zidan, M.; Sallab, A.E. YOLO3D: End-to-End Real-Time 3D Oriented Object Bounding
Box Detection from LiDAR Point Cloud. In Proceedings of the European Conference on Computer Vision (ECCV) Workshops,
Munich, Germany, 8–14 September 2018.

46. Yang, B.; Luo, W.; Urtasun, R. PIXOR: Real-Time 3D Object Detection from Point Clouds. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019.

47. Yan, Y.; Mao, Y.; Li, B. SECOND: Sparsely Embedded Convolutional Detection. Sensors 2018, 18, 3337. [CrossRef] [PubMed]
48. Zhou, Y.; Tuzel, O. VoxelNet: End-to-End Learning for Point Cloud Based 3D Object Detection. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017.
49. Qi, C.R.; Su, H.; Mo, K.; Guibas, L.J. PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation. In Proceedings

of the IEEE Conference on Computer Vision and Pattern Recognition, Minneapolis, MN, USA, 17–22 June 2017.
50. Qi, C.R.; Yi, L.; Su, H.; Guibas, L.J. PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space. In Advances

in Neural Information Processing Systems; MIT Press: Cambridge, MA, USA, 2017.
51. Stankiewicz, O.; Lafruit, G.; Domański, M. Chapter 1–Multiview Video: Acquisition, Processing, Compression, and Virtual View

Rendering. In Academic Press Library in Signal Processing; Chellappa, R., Theodoridis, S., Eds.; Academic Press: Cambridge, MA,
USA, 2018; Volume 6, pp. 3–74, ISBN 978-0-12-811889-4.

52. Kannala, J.; Brandt, S.S. A Generic Camera Model and Calibration Method for Conventional, Wide-Angle, and Fish-Eye Lenses.
IEEE Trans. Pattern Anal. Mach. Intell. 2006, 28, 1335–1340. [CrossRef] [PubMed]

53. Klasing, K.; Wollherr, D.; Buss, M. A Clustering Method for Efficient Segmentation of 3D Laser Data. In Proceedings of the 2008
IEEE International Conference on Robotics and Automation, Pasadena, CA, USA, 19–23 May 2008; pp. 4043–4048.

http://doi.org/10.1177/0278364916679498
http://doi.org/10.1177/0278364920979368
http://doi.org/10.1016/j.neucom.2018.01.092
http://doi.org/10.1109/TITS.2020.2972974
http://doi.org/10.1109/TPAMI.2016.2577031
http://doi.org/10.1109/ACCESS.2019.2939201
http://doi.org/10.1109/JSEN.2020.3020626
http://doi.org/10.3390/s18103337
http://www.ncbi.nlm.nih.gov/pubmed/30301196
http://doi.org/10.1109/TPAMI.2006.153
http://www.ncbi.nlm.nih.gov/pubmed/16886867

Sensors 2022, 22, 9661 16 of 16

54. Zhao, Y.; Zhang, X.; Huang, X. A Technical Survey and Evaluation of Traditional Point Cloud Clustering Methods for LiDAR
Panoptic Segmentation. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, QC, Canada,
10–17 October 2021.

55. Liu, K.; Wang, W.; Wang, J. Pedestrian Detection with Lidar Point Clouds Based on Single Template Matching. Electronics 2019,
8, 780. [CrossRef]

56. Yin, T.; Zhou, X.; Krähenbühl, P. Center-Based 3D Object Detection and Tracking. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021.

57. Lang, A.H.; Vora, S.; Caesar, H.; Zhou, L.; Yang, J.; Beijbom, O. PointPillars: Fast Encoders for Object Detection from Point
Clouds. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20
June 2019.

58. Li, Y.; Yu, A.W.; Meng, T.; Caine, B.; Ngiam, J.; Peng, D.; Shen, J.; Lu, Y.; Zhou, D.; Le, Q.V.; et al. DeepFusion: Lidar-Camera
Deep Fusion for Multi-Modal 3D Object Detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, New Orleans, LA, USA, 19–24 June 2022; pp. 17182–17191.

59. Eitel, A.; Springenberg, J.T.; Spinello, L.; Riedmiller, M.; Burgard, W. Multimodal Deep Learning for Robust RGB-D Object
Recognition. In Proceedings of the 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Hamburg,
Germany, 28 September–3 October 2015.

60. Zhao, X.; Sun, P.; Xu, Z.; Min, H.; Yu, H. Fusion of 3D LIDAR and Camera Data for Object Detection in Autonomous Vehicle
Applications. IEEE Sens. J. 2020, 20, 4901–4913. [CrossRef]

61. Fayyad, J.; Jaradat, M.A.; Gruyer, D.; Najjaran, H. Deep Learning Sensor Fusion for Autonomous Vehicle Perception and
Localization: A Review. Sensors 2020, 20, 4220. [CrossRef]

http://doi.org/10.3390/electronics8070780
http://doi.org/10.1109/JSEN.2020.2966034
http://doi.org/10.3390/s20154220

	Introduction
	Related Works
	Platform Description
	Sensor Synchronization
	Sensors Calibration

	Dataset
	Embedded Algorithms
	Clustering Analysis by RBNN (Radially-Bounded Nearest Neighbor)
	Object Detection by DCNN (Deep Convolutional Neural Network)
	Lidar-Based Loccalization

	Discussion
	Conclusions
	References

