Skip to main content
. 2022 Dec 19;20(12):789. doi: 10.3390/md20120789

Table 1.

Resume of the main anti-inflammatory potential disclosed for seaweeds specialized metabolites.

Compound (Number) Source * Concentration Tested Experimental Model Pharmacological Markers
Phloroglucinol (1) 1 [40] Ecklonia cava 10 μΜ RAW 264.7 cells
HT1080 cells
↓ TNF-α, IL-1β e IL-6, PGE2
Inhibit MMP-2 and MMP-9
Dieckol (2) 2 [42,47] Eisenia sp. 10 and 20 μΜ HUVECs
Mice treated by high mobility group box 1 protein (HMGB1)
↓ LPS-mediated hyperpermeability (74.9%)
↓ LPS-induced HMGB1 release
↓ acetic acid induced-hyperpermeability and carboxymethylcellulose-induced leukocytes migration (55%)
Eckol (3) 3 [43] Eisenia sp.
Eckonia sp.
1–10 μΜ Propionibacterium acnes induced
HaCaT cells
↓ TNF-α
↓ COX-2, iNOS
Phlorofucofuroeckol B 4 (4a) [45] Eisenia arborea 75 μΜ ICR strain mouse inhibition of ear edema induced by AA (42.2%), by TPA (38.4%),
and by OXA (41.0%). EGCG
inhibits 12.9%, 13.8%, and 5.7% of
ear edema induced by AA, TPA,
and OXA, respectively
Phlorofucofuroeckol A 5 (4b) [41,45] Eisenia arborea
Ecklonia stolonifera Okamura 1913 a
40 μΜ
10 μΜ
75 μΜ
LPS-stimulated BV-2 cells
RBL-2H3 cells
ICR strain mouse
↓ TNF-α, IL-1β e IL-6
↓ COX-2, NO
↓ phosphorylation Akt, ERK, JNK
↓ histamine, leukotriene B4, PEG2
inhibition of ear edema induced by AA (30.5%), TPA (31.7%), and OXA (23.4%). EGCG inhibits 12.9%, 13.8%, and 5.7% of
by AA, TPA, and OXA, respectively
Fucofuroeckol-A (5) 6 [39] Eisenia bicyclis (Kjellman) Setchell 1905 1–100 μΜ LPS-induced RAW 264.7 cells ↓ NO, PGE2, iNOS
↓ TNF-α, IL-1β, IL-6
↓ COX-2
6,6′-Bieckol (6) 7 [44,45] Ecklonia cava
Eisenia arborea
100 and 200 μΜ
75 μΜ
LPS-induced RAW 264.7 cells
ICR strain mouse
↓ NO, PGE2, iNOS
↓ TNF-α, IL-6
↓ COX-2
inhibition of ear oedema induced by AA (41.9%), TPA (34.2%), and OXA (17.8%). EGCG inhibits 12.9%, 13.8%, and 5.7% of by AA, TPA, and OXA, respectively
6,8′-Bieckol (7) 8 [45] Eisenia arborea 10 μΜ
75 μΜ
RBL-2H3 cells
ICR strain mouse
↓ COX-2 mRNA expression
inhibition of ear oedema induced by AA (39.8%), TPA (49.4%), and OXA (77.8%). EGCG inhibits 12.9%, 13.8%, and 5.7% of
by AA, TPA, and OXA, respectively
8,8′-Bieckol (8) 9 [45] Eisenia arborea 10 μΜ
75 μΜ
RBL-2H3 cells
ICR strain mouse
↓ histamine, leukotriene B4, PEG2
inhibition of ear oedema induced by AA (21.0%), TPA (31.7%), and OXA (32.3%). EGCG inhibits 12.9%, 13.8%, and 5.7% of by AA, TPA, and OXA, respectively
Octaphlorethol A (9) 10 [46] Ishige foliacea 6.2 and 12.5 μΜ CpG-stimulated BMCD and BMDM ↓ TNF-α, IL-6, IL12 p40
Vidalol A (10) 11 [52] Vidalia obtusiloba n. r. phorbol ester
(PMA)—induced swelling of the mouse ear
Enzymatic activity
↓ eodema (58–82%)
↓ phospholipase A2
Vidalol B (11)12 [52] Vidalia obtusiloba n. r. phorbol ester
(PMA)—induced swelling of the mouse ear
Enzymatic activity
↓ eodema (58–82%)
↓ phospholipase A2
3-BDB (12) 13 [53,54] Polysiphonia morrowii
Polysiphonia urceolata
Rhodomela confervoides
12.5, 25, 50, and 100 μM
100 mg/kg
LPS-stimulated RAW 264.7
BALB/c mice induced by DNCB
↓ IL-6, phosphorylation NF-ΚB
↓ STAT1; Tyr 701
↓ edema inflammation, AD symptoms, Ig2
BEMB (13) 14 [56] Polysiphonia morrowii 12.5–50 μM LPS-stimulated RAW 264.7 and zebrafish embryos ↓ NO, iNOS, COX-2, NF-ƘB
BBDE (14) 15 [57] Polysiphonia morrowii 0.1, 1, 2 μM LPS-stimulated RAW 264.7 ↓ NO, iNOS, COX-2, PGE2, TNF-α, IL-6, IL-1β
Compound (15) 16 [58] Gracilaria opuntia n. r. Enzymatic activity ↓ COX-2, 5-LOX
Compound (16) 17 [59] Gracilaria opuntia n. r. Enzymatic activity ↓ 5-LOX
Compound (17) 18 [59] Gracilaria opuntia n. r. Enzymatic activity ↓ 5-LOX
Compound (18) 19 [60] Gracilaria salicornia n. r. Enzymatic activity ↓ COX-2, 5-LOX
Compound (19) 20 [60] Gracilaria salicornia n. r. Enzymatic activity ↓ COX-2, 5-LOX
Rutin (20) 21 [61] Porphyra dentata 80–250 μM LPS-stimulated RAW 264.7 ↓ NO, iNOS, NF-ƘB
5β-Hydroxypalisadin B 22 (21) [64] Laurencia snackeyi 50 μM
0.25, 0.1 and
1 µg/mL
LPS-induced RAW 264.7
LPS-induced zebrafish embryo
↓ NO, COX-2, iNOS
↓ NO, Improved survival, heart rate and yolk sac oedema size
Neorogioltriol (22)23 [66,67] Laurencia glandulifera 8 μM
1 mg/kg
LPS-induced RAW 264.7
Writhing test in mice
Formalin test in rats
↓ NO, iNOS
↓ macrophage activation
induce Arginase 1, MRC1, miRNA miR-146a
↓ writhing response induced by acetic acid by 88.9%
↓ 2° phase formalin test in 48.7%
Neorogioldiol (23) 24 [67] Laurencia sp 62.5 μM LPS-induced RAW 264.7
C57BL/6 mice
↓ NO, iNOS
↓ macrophage activation
induce Arginase 1, MRC1, miRNA miR-146a
↓ tissue damage, TNF-α, IL-6, IL-12
Compound (24) 25 [67] Laurencia sp 10 μM LPS-induced RAW 264.7
C57BL/6 mice
↓ NO, iNOS
↓ macrophage activation
induce Arginase 1, MRC1, miRNA miR-146a
↓ tissue damage, TNF-α, IL-6, IL-12
Compound (25) 26 [68] Gracilaria Salicornia n. r. Enzymatic activity ↓ 5-LOX
Fucoxanthin (26) 27 [74,77,82] Sargassum siliquastrum (Mertens ex Turner) C.Agardh 1820 0.1–1 mg/kg
15, 30, 60 μM
LPS-induced sepsis in mice
LPS-induced RAW 264.7
LPS-activated BV-2 microglia
↓ TNF-α, IL-6, IL-12, NF-ƘB
↑ rate of survival
↓ iNOS, COX-2, mRNA, TNF-α, IL-6
↓ iNOS, COX-2, mRNA, TNF-α, IL-6
↓ Akt, NF-Κb, ERK, p38 MAPK
Fucosterol (27) 28 [90,91,93] Undaria pinnatifida
Hizikia fusiformis (Harvey) Okamura 1932 b
Panida australis c
15, 30, 60 mg/kg
1–10 µM
0.004, 0.2, 10 µM
LPS-induced ALI in mise
CoCl2-induced hypoxia in keratinocytes
LPS or Aβ-induced BV2 (microglial) cells
↓ lung histopathologic changes, wet-to-dry ratio
↓ TNF-α, IL-6, IL-1β, NF-κB
↓ IL-6, IL-1β, TNF-α, pPI3K and pAkt and HIF1-α accumulation
↓ L-6, IL-1β, TNF-α, NO, PGE2
Caulerpin (28) 29 [97,98] Caulerpa racemosa (Forsskål) J.Agardh 1873
Caulerpa sertularioide
100 μmol/kg
4 mg/kg
Swiss albino mice
C57BL/6 mice with colitis induced DSS
↓ formalin effects in both phases by 35.4% and 45.6%.
reduction 55.8% on capsaicin-induced ear oedema model
↓ recruit cells (48.3%) on carrageenan-induced peritonitis
triggering improvement of DAI and attenuating the colon shortening/ damage
↓ TNF-α, IFN-γ, IL-6, IL-17, NFκB p65
↑ IL-10 in the colon tissue
Z-4,7,10,13,16,19-Docosahexaenoic acid-DHA (29) [102,104,106] Sargassum natans (Linnaeus) Gaillon 1828 n. r.
3 g/day
21 volunteers (9 men and 12 postmenopausal women) with chronic inflammation and some characteristics of metabolic syndrome RvE1 protect tissue
counterregulates pro-inflammatory gene expression
↓ fumarate, pyruvate, citrate, isocitrate, malate, α-ketoglutarate
↑ succinate, glucuronate
Z-5,8,11,14,17-Eicosapentaenoic acid-EPA (30) [99,104,106] Vertebrata lanosa (Linnaeus) T.A.Christensen 1967
Palmaria palmata (Linnaeus) F.Weber and D.Mohr 1805
Laminaria digitata (Hudson) J.V.Lamouroux 1813
n. r.
3 g/day
21 volunteers (9 men and 12 postmenopausal women) with chronic inflammation and some characteristics of metabolic syndrome RvE1 protect tissue
counterregulates pro-inflammatory gene expression
↓ fumarate, α-ketoglutarate
↑ UDP-glucuronate, glucuronate
E-9-Oxooctadec-10-enoic acid (34) [105] Gracilaria verrucose (Hudson) Papenfuss, nom. Rejic. 1950 d 50–100 μM LPS-induced RAW 264.7 ↓ NO, TNF-α, IL-6
↓ NF-ƘB, JAK/STAT
E-10-Oxooctadec-8-enoic acid (35) [105] Gracilaria verrucose d 50–100 μM LPS-induced RAW 264.7 ↓ NO, TNF-α, IL-6
↓ NF-ƘB, JAK/STAT

* The macroalgae full names are accordingly the Algaebase (https://www.algaebase.org/ (accessed on 18 December 2022)); 1 benzene-1,3,5-triol; 2 4-(4-((6-(3,5-dihydroxyphenoxy)-4,7,9-trihydroxydibenzo[b,e][1,4]dioxin-2-yl)oxy)-3,5-dihydroxyphenoxy)dibenzo[b,e][1,4]dioxine-1,3,6,8-tetraol; 3 4-(3,5-dihydroxyphenoxy)dibenzo[b,e][1,4]dioxine-1,3,6,8-tetraol; 4 4,9-bis(3,5-dihydroxyphenoxy)benzo[b]benzo[5,6][1,4]dioxino[2,3-e]benzofuran-1,3,6,10,12-pentaol; 5 4-(3,5-dihydroxy-phenoxy)benzo[b]benzo[5,6][1,4]dioxino[2,3-e]benzofuran-1,3,6,9,10,12-hexaol; 6 4-(3,5-dihydroxyphenoxy)benzo[b]benzo[5,6][1,4]dioxino[2,3-e]benzofuran-1,3,6,9,10,12-hexaol; 7 6,6′-bis(3,5-dihydroxyphenoxy)-[1,1′-bidibenzo[b,e][1,4]dioxin]-2,2′,4,4′,7,7′,9,9′-octaol; 8 6,9′-bis(3,5-dihydroxyphenoxy)-[1,2′-bidibenzo[b,e][1,4]dioxin]-1′,2,3′,4,6′,7,8′,9-octaol; 9 9,9′-bis(3,5-dihydroxyphenoxy)-[2,2′-bidibenzo[b,e][1,4]dioxin]-1,1′,3,3′,6,6′,8,8′-octaol; 10 2-(4-(4-(4-(4-(4-(4-(3,5-dihydroxyphenoxy)-3,5-dihydroxyphenoxy)-3,5-dihydroxyphenoxy)-3,5-dihydroxyphenoxy)-2,6-dihydroxyphenoxy)-2,6-dihydroxyphenoxy)-2,6-dihydroxyphenoxy)benzene-1,3,5-triol; 11 2-bromo-4-(2,3-dibromo-4,5-dihydroxybenzyl)benzene-1,3,5-triol; 12 2-bromo-4,6-bis(2,3-dibromo-4,5-dihydroxybenzyl)benzene-1,3,5-triol; 13 3-bromo-4,5-dihydroxybenzaldehyde; 14 3-bromo-5-(ethoxymethyl)benzene-1,2-diol; 15 bis(3-bromo-4,5-dihydroxybenzyl)ether; 16 2-acetoxy-2-(5-acetoxy-4-methyl-2-oxotetrahydro-2H-pyran-4-yl)ethyl 4-(3-methoxy-2(methoxymethyl)-7-ethyl-3,4,4a,7,8,8a-hexahydro-2H-chromen-4-yloxy)-5-methylheptanoate; 17 5-[7-(5-ethyl-3,4-dimethoxycyclooctyl)benzofuran-6-yl]-7-methyl-3,4,7,8-tetrahydro-2H-oxocin-2-one; 18 2-(3-ethyl-9-(2-methoxyethoxy)-1-oxo-2,3,4,9-tetrahydro-1H-xanthen-2-yl)ethyl 5-hydroxy-9-methoxy-7,8-dimethyl-8-(5-methylfuran-2-yl)nona-3,6-dienoate; 19 4′-[10′-[7-hydroxy-2,8-dimethyl-6-(pentyloxy)-2H-chromen-2-yl]ethyl]-3′,4′-dimethyl-cyclohexanone; 20 3′-[10′-(8-hydroxy-5-methoxy-2,6,7-trimethyl-2H-chromen2-yl)ethyl]-3′-methyl-2′-methylene cyclohexyl butyrate; 21 2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3-(((2S,4S,5S,6R)-3,4,5-trihydroxy-6-((((2R,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyltetrahydro-2H-pyran-2-yl)oxy)methyl)tetrahydro-2H-pyran-2-yl)oxy)-4H-chromen-4-one; 22 (2R,5R,7S,9aS)-7-bromo-2-(bromomethyl)-3,6,6,9a-tetramethyl-2,5,5a,6,7,8,9,9a-octahydrobenzo[b]oxepin-5-ol; 23 (1R,5S,6S)-5-(1-((3R,4S)-3-bromo-4-hydroxy-4-methylcyclohexyl)vinyl)-1,4,4-trimethyloctahydropentalene-1,6-diol; 24 (1R,6S)-6-bromo-5-(1-((3R,4S)-3-bromo-4-hydroxy-4-methylcyclohexyl)vinyl)-1,4,4-trimethyloctahydropentalen-1-ol; 25 O11,15-cyclo-14-bromo-14,15-dihydrorogiol-3,11-diol; 26 methyl 16(1314)-abeo-7-labdebe-(12-oxo)carboxylate; 27 (3R)-3-hydroxy-4-((3E,5E,7E,9E,11E,13E,15E)-18-((1S,4S,6R)-4-hydroxy-2,2,6-trimethyl-7-oxabicyclo[4.1.0]heptan-1-yl)-3,7,12,16-tetramethyl-17-oxooctadeca-1,3,5,7,9,11,13,15-octaen-1-ylidene)-3,5,5-trimethylcyclohexyl acetate; 28 (3S,10R,13R,17R)-17-((2R)-5-hydroxy-5-isopropylhept-6-en-2-yl)-10,13-dimethyl-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-3-ol; 29 dimethyl(6E,13E)-5,12-dihydrocycloocta[1,2-b:5,6-b’]diindole-6,13-dicarboxylate; a Current accepted name Ecklonia cava subsp. stolonifera (Okamura), S. Akita, K. Hashimoto, T. Hanyuda and H. Kawai, 2020; b Current accepted name Sargassum fusiforme (Harvey) Setchell 1931; c Unknown name, others authors indicate Posidonia australis Hooker F., 1858; d Current accepted name Gracilaripsis longissimi (S. G. Gmelin) Steentoft, L. M. Irvine and Farnham, 1995; n. r. = non revealed.