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Abstract

Blood and cerebrospinal fluid (CSF) pulse and flow throughout the brain, driven by

the cardiac cycle. These fluid dynamics, which are essential to healthy brain function,

are characterized by several noninvasive magnetic resonance imaging (MRI) methods.

Recent developments in fast MRI, specifically simultaneous multislice acquisition

methods, provide a new opportunity to rapidly and broadly assess cardiac-driven

flow, including CSF spaces, surface vessels and parenchymal vessels. We use these

techniques to assess blood and CSF flow dynamics in brief (3.5 min) scans on a con-

ventional 3 T MRI scanner in five subjects. Cardiac pulses are measured with a photo-

plethysmography (PPG) on the index finger, along with functional MRI (fMRI) signals

in the brain. We, retrospectively, align the fMRI signals to the heartbeat. Highly reli-

able cardiac-gated fMRI temporal signals are observed in CSF and blood on the time-

scale of one heartbeat (test–retest reliability within subjects R2 > 50%). In blood

vessels, a local minimum is observed following systole. In CSF spaces, the ventricles

and subarachnoid spaces have a local maximum following systole instead. Slower

resting-state scans with slice timing, retrospectively, aligned to the cardiac pulse,

reveal similar cardiac-gated responses. The cardiac-gated measurements estimate the

amplitude and phase of fMRI pulsations in the CSF relative to those in the arteries,

an estimate of the local intracranial impedance. Cardiac aligned fMRI signals can pro-

vide new insights about fluid dynamics or diagnostics for diseases where these

dynamics are important.
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1 | INTRODUCTION

It is important to understand the connection between the brain's car-

diovascular health and cognition. Preclinical studies in aging rodents

show that arterial changes may precede cognitive decline (Nation

et al., 2019). In COVID-19, which is primarily thought to affect cardio-

vascular function, long-term neuropsychiatric sequelae involving

attention and working memory have been observed (Boldrini
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et al., 2021). The ability to assess cardiovascular efficacy within spa-

tially resolved brain regions, and to connect this assessment to behav-

ior, is also an important direction in magnetic resonance imaging (MRI)

research (Wåhlin & Nyberg, 2019). A comprehensive characterization

of the status of the brain's fluid dynamics in individual participants

can become an important diagnostic tool for cognitive and affective

neuroscience. Including this assessment as part of a typical cognitive

neuroscience functional MRI (fMRI) experiment may also help to clar-

ify a source of differences between experimental participants.

Blood and cerebrospinal fluid (CSF) pulse through the brain, in

synchrony with the cardiac cycle (Womersley, 1955). About each sec-

ond, a heartbeat produces a pressure wave; blood from the heart tra-

verses the arterial to venous network during multiple heartbeats

(Mihara et al., 2003). Various noninvasive MR methods provide spe-

cific information about the structure and function of the neurovascu-

lar system. MR angiography sequences provide insight into the

integrity of the vascular anatomy either by the use of intravenous

contrast to enhance blood signal, by designing sequences to manipu-

late the blood signal relative to be much darker than other tissue

(black-blood), much brighter (bright-blood) (Nakao et al., 2018), or by

introducing flow-sensitive encoding (phase-contrast) (Pelc

et al., 1991). Arterial spin labeling quantitatively and noninvasively

estimates brain perfusion with arterial blood water (Bambach

et al., 2020; Telischak et al., 2015).

Other measurements can be cardiac-gated to assess the dynamic

properties of the cardiac pulse. Acquiring one slice at various times

after scanning software detects a peak in the heartbeat in real time. In

MR elastography, a vibrating source is used during scanning to deform

the tissue and estimate its stiffness (Glaser et al., 2012; Kruse

et al., 2008; Manduca et al., 2001). A cardiac-gated MR elastography

sequence showed that cerebral vascular compliance, the degree to

which tissue absorbs the cardiac pulse, decreases in older individuals

(Schrank et al., 2020). Cardiac gated cine MRI methods have also been

used to measure dynamic changes in the MR signal (Curtis &

Cheng, 2021) and assess the velocity of blood flow in a few slices per-

pendicular to the major cerebral arteries or the cerebral aqueduct

(Enzmann et al., 1994).

These methods are not part of the standard suite of tools used in

cognitive neuroscience despite the fact that the spatial distribution of

the pulsatile dynamics in blood and CSF spaces change in multiple

neurological and neuropsychiatric diseases (Nation et al., 2019; Wåh-

lin & Nyberg, 2019). For example, aging and Alzheimer's disease alter

the rigidity of the arteries, impacting the shape of the flow pulsations.

Transcranial Doppler ultrasonography has revealed that increased vas-

cular rigidity increases the pulsatility of the blood flow in the circle of

Willis (Roher et al., 2006). Increases in pulsatility with aging may also

occur deeper in the microvasculature, which may result in lesions in

many brain areas (for reviews, see Tsvetanov et al., 2021; Wåhlin &

Nyberg, 2019). In addition, Alzheimer's disease can result in increases

in the variability of the fMRI signal (Tuovinen et al., 2020). Variability

in resting-state fMRI signals have been related to cardiovascular

dynamics (Bayrak et al., 2021; Chang et al., 2009; Chen et al., 2020;

Shmueli et al., 2007) These studies suggest that more detailed

information about cardiac pulsations is present in rapidly sampled

fMRI data (Tong et al., 2014), but these studies typically focus on

understanding the location of the physiological noise in functional

data and developing methods to reduce this noise (Frank et al., 2001).

Mapping of the pulsatile waveforms of cardiac-aligned BOLD

responses is relevant to understanding disease and for fMRI studies in

general, because cardiac pulsations can affect vascular changes in tis-

sue that impact fMRI responses in studies of perception, action and

cognition.

The method we describe here builds on these technologies but

focuses on a computational approach to extract the waveform shape

of the pulsatile cardiac fMRI signal and characterizing its amplitude

and timing. Recent development of simultaneous multislice (SMS)

methods permits investigators to sample the fMRI signal of the whole

brain multiple times within a single cardiac cycle (Larkman et al., 2001;

Setsompop et al., 2012). Individual slices can be acquired with a dura-

tion of less than 50 ms, and multiple groups of slices are obtained

within a single cardiac cycle. Studies measuring this fMRI signal have

shown that changes in heart rate can result in changes in the fMRI sig-

nal that span several heartbeats (Chang et al., 2009). In single slice

acquisitions measured at 7 T, cardiac pulsations could be measured in

blood vessels and CSF spaces (Bianciardi et al., 2016; Viessmann

et al., 2017). We measure whole-brain fMRI signals and assess how

well the pulse pressure waveform of these signals can be character-

ized at 3 T. By aggregating measurements over multiple cardiac cycles

and, retrospectively, aligning the measurements to the cardiac cycle

onset, we obtain a highly reliable noninvasive assessment of the pres-

sure wave and flow of the vasculature and the CSF in many locations

across the cranium, that can be well described by a statistical model

with two components.

2 | MATERIALS AND METHODS

In this work, we, retrospectively, align fMRI signals measured at 3 T to

the cardiac pulse using a widely used SMS protocol. In this sequence,

forty slices are measured in five groups, each group comprising eight

separated planes. The data in a single group of planes are acquired

simultaneously over a 50 ms interval; the entire brain—all five

groups—is measured every 250 ms. The typical cardiac cycle duration

is about 1000 ms. The measurements cover the whole-brain and pro-

vide spatially-resolved information of 4 mm isotropic voxels. We com-

pared these responses to fMRI responses measured during a typical

resting-state fMRI scan (TR = 2 s, 240 volumes). Even within a single-

subject, the cardiac-aligned time series modulations can be very reli-

able when splitting data in half across the 3.5 min scan. Within sub-

jects, the most reliable cardiac aligned modulations are located near

the principal arteries and veins, portions of the CSF, and certain gray

matter regions. Blood vessels showed local minima around the time of

the PPG peak while CSF spaces showed local maxima. These response

features were consistent across the SMS and slow fMRI sequence.

This article describes the measurements, analytical methods and sig-

nals in healthy subjects.
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2.1 | Subjects and IRB statement

Data from 10 healthy subjects are analyzed in the study. The study

was approved by the Stanford University Institutional Review Board

and all subjects provided informed consent to participate in the study.

Five subjects (age 24–63 years old, two males) were recruited specifi-

cally for measurements using fast SMS methods. One of these sub-

jects was scanned twice, separated by a 3-year interval. We analyzed

additional data from five subjects (age 30–60 years old, three males)

who were part of a different study that obtained resting-state data as

a control condition (Hack et al., 2021). The acquisition parameters for

both sets of subjects are described below.

2.2 | Anatomical MRI

All subjects were scanned on a 3 T General Electric MRI 750 scanner

at the Stanford Center for Cognitive and Neurobiological Imaging. In

order to localize different anatomical gray matter regions and CSF

spaces, we acquired a T1-weighted anatomical image (1 � 1 � 1 mm

voxels). We segmented the T1 weighted scan using Freesurfer

(http://surfer.nmr.mgh.harvard.edu/, (Fischl, 2012)). In order to under-

stand the effects of the arterial pulsations, we assigned each gray

matter region from the Desikan-Killiany Atlas (Desikan et al., 2006) to

a “distance” level varying in four steps from closest to furthest from

one of the main three arterial branches: the anterior cerebral artery

(ACA), middle cerebral artery (MCA), and posterior cerebral artery

(PCA). To map veins, we collected an MR venogram

(0.43 � 0.43 � 2 mm voxels) and thresholding this image allowed us

to select the superior sagittal sinus.

In order to compare the location of reliable cardiac averaged

responses across subjects, the nonlinear transformation to MNI152

space was calculated based on the T1 scan using unified segmentation

in SPM12 (Ashburner & Friston, 2005).

2.3 | Cardiac cycle measurements using PPG

To estimate the cardiac cycle a pulse oximeter was attached to a

finger and the photoplethysmography (PPG) signal was measured

during MRI scanning (Figure 1a). Peak detection was performed

using custom code in MATLAB (The MathWorks, Inc.), which is

shared on our Github webpage (the physioGet.m function in

https://github.com/vistalab/BrainBeat). In this code, the peak in

the autocorrelation of the PPG signal is detected to reveal the heart

rate, such that peak detection (using MATLAB's findpeaks function)

could be done with a minimum peak distance of 70% of the heart-

beat cycle. Before detecting the peaks, PPG data were low-pass fil-

tered at 5 Hz using a third-order Butterworth filter in two

directions. This allowed the detection of the peaks in the PPG sig-

nal (known to be related to systole) that occurred around every

heartbeat cycle.

We found this method to be overall more reliable compared to

the peaks detected by the scanner software (Supplemental Figure 1).

We also compared the detection of peaks in the PPG signal to the

peaks detected in the ECG signal that was simultaneously measured

in two of the subjects (Supplemental Figure 2), and find that, while

the ECG signals suffer from relatively more contamination of scanner

noise, there was little variability across the relative differences

between the PPG and ECG peaks, indicating that the timing of the

PPG peaks show little beat to beat variability.

To ensure that there were no large within subject variations in

heart rate during the scans, we calculated heart rate variability. Since

the scans only had a duration of 220 s, we quantified heart rate vari-

ability across ultrashort intervals (20 s) as in Salahuddin et al. (2007),

using the root mean square of successive differences (Supplemental

Figure 3). If the heart rate variability was typically less than a slice

acquisition duration (50 ms), no further within scan corrections were

deemed necessary. Supplemental Figure 6 further shows that the

respiratory rate was quite stable within subjects across the scan.
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F IGURE 1 Temporal alignment of magnetic resonance imaging
(MRI) measurements to heartbeat. (a) The photoplethysmography
(PPG) signal was measured with a pulse oximeter. Peaks in the signal
were detected (dotted lines). (b) The functional magnetic resonance
imaging (fMRI) signal from a voxel near the superior sagittal sinus was
measured every 250 ms, for a duration of 50 ms. (c) Signals were
aligned to even and odd heartbeat peaks, gray lines indicate the
50 ms within which each time-point was measured. This example
shows the signals from the eight heartbeats in (b). (d) The signals
averaged for all even and odd heartbeats form a smooth curve of the
cardiac-gated response, sampled every 50 ms.
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2.4 | Functional MRI

In five subjects, we acquired SMS, fMRI measurements to map brain

wide cardiac-gated fMRI signal variations. Whole-brain fMRI data were

acquired using several gradient echo EPI sequences with whole brain

coverage and SMS (sometimes also called multiband or hyperband)

(Larkman et al., 2001; Setsompop et al., 2012). First, an SMS sequence

was used with 4 mm isotropic voxels, a flip angle of 48�, TR = 250 ms,

TE = 11.6 ms, FOV = 224 � 224 and 40 slices with multiband factor

8. This resulted in a slice acquisition time of 50 ms. A total of 878 vol-

umes were acquired within a total scan duration of 220 s.

In five additional subjects, we analyzed data from a typical

resting-state fMRI study (Hack et al., 2021) where PPG signals were

acquired. A whole brain EPI sequence was used with 3 mm isotropic

voxels, a flip angle of 77�, TR = 2 s, TE = 27.5 ms, FOV = 216 � 216

and 45 slices. A total of 240 volumes were acquired within a total

scan duration of 480 s.

Every slice is acquired at a different time with respect to the car-

diac pulse, and we wanted to preserve the 50 ms (SMS) and 44.4 ms

(resting state) sampling per slice. It was therefore essential to preserve

the measured voxel time series and not perform slice timing correc-

tion. The fMRI data were inspected for motion and no data were

excluded for motion. The linear transformation matrix to spatially align

the fMRI with the anatomical data were calculated to align the func-

tional volumes.

2.5 | Calculation of cardiac aligned responses

We calculated cardiac averaged responses as follows. The first three

volumes were removed. The remaining time measurements were

transformed to units of percent modulation and linear trends were

removed (Figure 1b). For every voxel in each slice, the slice time was

noted with respect to the heartbeat peaks on the PPG signal mea-

sured on a finger (Figure 1c). Each slice was measured within a 50 ms

temporal window, and the average PPG-peak-aligned signal was cal-

culated pooling from the entire acquisition (Figure 1d). Given that

heartbeats are spaced about 1 s duration, there are about 20 sample

windows between heartbeats.

To calculate reliability of these cardiac-gated responses, we aver-

aged signals separately from the even and odd PPG peaks (Figure 1d).

We then calculated the coefficient of determination between even

and odd heartbeats. The coefficient of determination (R2) is a standard

statistical measure of the reliability with a maximum of 100, that is

here used to quantify the reliability of the cardiac-gated time series.

R2 ¼100� 1�SSresiduals
SSdata

� �

SSresiduals ¼
X

i
yi� fið Þ2

SSdata ¼
X

i
yið Þ2

where yi is the even response amplitude and fi is the odd response

amplitude for time point i. Note that R2 is defined here with respect

to zero, rather than with respect to the mean response, to avoid the

arbitrariness of the mean.

For visualization purposes, results in individual subjects are dis-

played with R2 > 50. When averages across the subjects are calculated

for voxels converted without smoothing to MNI152 space, results are

displayed for average R2 > 30.

2.6 | Statistical modeling of cardiac averaged
responses

Capturing the amplitude and temporal delay of the cardiac pulsatility in

different cranial compartments may be important to further understand

disease mechanisms. In order to quantify the temporal delay and ampli-

tude of the responses, we developed a parameterized model of these

waveforms using singular value decomposition (SVD) based on the SMS

time series time series data. The amplitude of the temporal waveforms of

the cardiac averaged responses in each voxel was set to the R2, such that

the largest responses entering the SVD are the ones that are the most

reliable across the cardiac cycle, and the smallest responses were those

that are the least reliable. This results in a matrix M of dimensions voxels

by time, which was decomposed using SVD: M¼UΣV�. The columns of

U contain the eigenvectors as a function of time, and V contains the

spatial weighting for these vectors across the brain. The SVD was per-

formed on half the data from the odd heartbeats. We then calculated

the number of components that explained over 70% of variance in the

other half of the data from the even heartbeats.

We used the following strategy to develop a model across the sub-

jects. The principal components were calculated in each individual sub-

ject as a function of time. To compare waveforms across subjects,

waveforms were normalized in time and resampled across the heartbeat

cycle to create standardized responses as a function of heartbeat cycle.

A second SVD was then done on these components, leaving one subject

out for cross-validation, resulting in a set of canonical principal compo-

nents. A weighted combination of these canonical components could

then be used to predict the cardiac aligned responses from the odd

heartbeats in the left out subject Y¼ β1pc1þ…þβnpcnþϵð Þ. We then

calculated the relative root mean squared error (Rrmse), for each voxel.

The Rrmse describes how well the model (fitted on the training sub-

jects) explained the cardiac averaged even heartbeat responses in the

test subject compared to the test–retest reliability and is defined as

Rrmse ¼Mrmse
Drmse

, where Mrmse is the model prediction error and Drmse is the

data prediction error between even and odd responses. If Rrmse < 1,

the model fitted on the other subjects predicts the data better com-

pared to the within subject test–retest reliability. If a model perfectly

predicts a signal with zero-mean Gaussian noise and standard devia-

tion σ, the expected value of the Rrmse is 1ffiffi
2

p . This model-based

approach reduces noise in the waveform. For voxels with reliable

waveforms (with R2 in individual subjects larger than 50%), a well-

fitted model thus allows a reliable characterization of the times of the

local minima and maxima of the cardiac aligned responses.
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3 | RESULTS

In order to map brain-wide cardiac pulsations, we used a rapid fMRI

acquisition and, retrospectively, calculated cardiac aligned responses.

3.1 | Regions with reliable cardiac aligned
responses

Several brain regions have reliable responses at the frequency of the

cardiac cycle in an individual subject (Figure 2a) and across the group

(Figure 2j) not all voxels have reliable cardiac aligned responses. First,

voxels close to the sagittal and straight sinus show reliable responses.

In the individual subject, these responses show a local minimum

around the same time as the peak of the PPG curve (time zero for car-

diac aligned responses) (Figure 2b,c). Second, voxels close to the PCA,

basilar artery, and ACA similarly show reliable responses with a local

minimum 0.1–0.2 s earlier compared to the PPG peak (Figure 2f–h).

Third, voxels near CSF regions such as subarachnoid spaces and the

lateral ventricle show reliable responses with a local maximum around

the same time as the PPG peak (Figure 2d,e). Importantly, not all brain

regions show large cardiac pulsations, such as an area in the posterior

gray matter that is distant from arteries, veins, and CSF spaces

(Figure 2i).
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3.2 | Regional characterization of the cardiac
aligned response shape

To understand whether the waveform of the cardiac aligned

responses seen in Figure 2 is reliable across subjects, we segmented

the T1 anatomical scan into several anatomical regions (Figure 3a).

Figure 3b shows that reliable cardiac signals are observed in the raw

fMRI signal from voxels located at the anterior cingulate (a brain

region close to the ACA), the lateral ventricles and the superior sagit-

tal sinus. The anterior cingulate waveform has a local minimum before

the time of the PPG peak. This is in line with the fact that the PPG

peak is measured on the thumb, and blood typically arrives in the

brain before it arrives in the hand. The sagittal sinus waveform has a

local minimum at a similar time as the PPG peak. We note that these

waveforms are opposite from blood flow measurements in the carotid

artery reported in the literature (Enzmann et al., 1994; Wagshul

et al., 2011) show a sharp rise in the speed of flow related to systole

that aligns with the sharp drop in our data (Figure 3d, top panel,

dashed blue trace). In contrast with the blood vessels, the lateral ven-

tricles show local maxima at the time of the PPG peak. These

response shapes are highly robust across the subjects (Figure 3d).

3.3 | Cerebral arteries influence the pulsatility in
the gray matter

While Figure 3 illustrates reliable cardiac pulsations in the gray matter

of the anterior cingulate, Figure 2 shows that many other gray matter

regions do not have reliable cardiac pulsations. We therefore consider

that the brain's blood supply comes from three branches of the

cerebral arteries; the posterior, anterior, and middle cerebral arteries

(PCA, ACA, and MCA). We hypothesize that the cardiac aligned

responses in the gray matter will be large near the inputs to these

three arteries. To measure this, we combined gray matter areas, seg-

mented with Freesurfer, into three groups (Figure 4a,b) that are sup-

plied by the three main cerebral arteries. Within each group, we

assign an area to a subgroup depending on its distance from the main

inputs. The rostral anterior cingulate and medial orbitofrontal cortex

were closest to the main input from the ACA, the parahippocampal

gyrus was closest to the PCA and the insular cortex and transverse

temporal gyrus were closest to the MCA. Figure 4c shows that there

is a decrease in pulsatility along the three main arteries: areas closest

to the main arterial inputs have the largest cardiac averaged pulsations

and more distant areas have smaller cardiac pulsations. This decrease

in the amplitude of the cardiac aligned response with distance from

the main input of each cerebral artery is reliably observed across sub-

jects (Figure 4d). Moreover, the gray matter areas close to the main

inputs of the three arteries also show similar response waveforms,

with local minima before the PPG peak (time zero).

3.4 | Timing of blood and CSF pulsations

The analysis of the fMRI time series shows that cranial spaces with

blood and CSF have reliable cardiac aligned responses. Areas close to

the inputs to the cerebral arteries show local minima close to the time

of the PPG peak, and the ventricles show local maxima. The timing of

the cardiac aligned responses provides information about the speed

of the pulse pressure wave and can quantify delays between the

arteries and veins. Pulse delays between arteries and veins could
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indicate the time that it takes for the cardiac pulse pressure waves to

travel through the vascular system. Pulse wave velocity is related to

arterial stiffening and pulse wave velocity measured between carotid

and femoral arteries has been associated with an increased risk to

develop dementia (Rouch et al., 2018). We therefore test whether the

cardiac aligned responses allow us to map the timing of the pulse

pressure wave.

To extract an image with the timing of the cardiac aligned

responses, we perform a SVD to clean the waveforms (Figure 5a). We

do this based on half the data, such that the validity of the model can

be tested using the other half of the data. Two principal components

explain >68% of variance in the data (Figure 5b). The shape of these

two components is highly consistent across subjects and allows

extracting two group level canonical principal components (Figure 5c).

The model with two canonical principal components fitted with cross

validation (leave-one-subject-out) explains the data from the left out

subject well (Figure 5d). Moreover, this model-based approach does

not rely on a reliable signal from a particular region of interest or

artery to calculate pulse timing, but provides a set of canonical curves

that can be regressed against all data to extract the waveform shape

and timing. The relative root mean squared error (Rrmse) was smaller

than 1 in 46.5–83% of voxels (range across subjects), indicating that

the model with two components explains the data from the left out

subject better than within subject test–retest reliability. The leave-

one-out cross validation suggests that the model will perform well in

other subjects. A model based on these two canonical principal com-

ponents describe various possible responses (Figure 5e and Supple-

mental Figure 4).

This model-based approach reduces noise and reliably character-

izes the times of the local minima and maxima of the cardiac aligned

responses. Figure 6a shows the average times of the local minima

across subjects in terms of the cardiac cycle. Areas close to the main

cerebral arteries such as the anterior cingulate cortex and the insula

show pulses with a local minimum before the PPG peak (red/yellow).

The superior sagittal sinus shows a later time on the local minimum

right after the PPG peak (blue). Interestingly, these peaks are relatively

close in time, separated only by about 20% of the cardiac cycle, which

corresponds to �200 ms at a heart rate of 60 beats per minute.

Figure 6b shows the average times of the local maxima across

subjects. Across subjects, the ventricles show the earliest times with a

local maximum before the PPG peak (purple). Other areas with CSF,

such as the subarachnoid cisterns and subarachnoid spaces under the

superior sagittal sinus, show later pulses with a local maximum after

the PPG peak (cyan). Similar as in the blood vessels, the difference in

timing of the local maxima across the different CSF spaces is small,

separated only by about 20% of the cardiac cycle.

This general pattern of response timing is also observed in indi-

vidual subjects. Similar to the group average, individual subjects show
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early local minima in regions near the main three cerebral arteries and

later local minima around the superior sagittal sinus (Figure 7a,b).

Note that there are also significant local minima underneath the ren-

dered cortex that likely correspond to the basilar and carotid arteries.

Figure 7c shows the full waveforms as a function of time in seconds,

where colors correspond to rendered voxels. By showing the wave-

forms as a function of time, the relative peaks of the compartments

can be more easily interpreted. While subject 2 had a much faster

heart rate compared to subject 1, both subjects show responses in the

arteries that peak about 200 ms earlier (red) compared to responses

in the veins (blue). The evolution of the pulsations can also be seen in

the Supplemental Movies (Movies S1 and S2).

Similar to the average across the subjects, individual subjects also

show early local maxima in areas near the ventricles and later local

maxima in areas near the subarachnoid cisterns (Figure 8). Note that

there are also significant local maxima underneath the rendered cor-

tex that likely correspond to the CSF spaces near the fourth ventricle.

However, there are interindividual differences in the locations that

show a local maximum in the reliable cardiac pulsation at later times.

Note that the age range for the subjects was 24–63 years old.

Figure 8b shows the full waveforms as a function of time in seconds,

where colors correspond to rendered voxels. By showing the wave-

forms as a function of time, the relative peaks of the compartments

can be more easily interpreted. The evolution of the pulsations can

also be seen in the Supplemental Movies (Movies S1 and S2).

3.5 | Cardiac-gated resting state

In order to understand whether the characteristic blood and CSF pul-

sations could also be observed with a typical resting-state fMRI scan,

we analyze data from five subjects who were scanned in a different

project (Hack et al., 2021). In these resting-state scans, the echo time

is slower and the repetition time is slower (SMS: TE = 11.6 ms,

FA = 48, TR = 250 ms, resting-state fMRI: TE = 27.5 ms, FA = 77,

TR = 2000 ms), but each slice is still acquired within a short time of

44.4 ms. Each slice can be aligned to the PPG peak, and cardiac pulsa-

tions can be extracted. Similar to the fast SMS sequence, areas near

main cerebral arteries, such as the left insula (Figure 9a) show large

cardiac pulsations with a local minimum. Voxels in the lateral ventri-

cles also show large cardiac pulsations, with a local maximum as in the

SMS data (Figure 9b compared to Figure 3c,d). Similarly, the amplitude

of the cardiac pulsations in the gray matter decreases with distance

from the main three cerebral arteries (Figure 9c,d).

The fact that cardiac alignment of the resting-state fMRI results

in similar response curves indicates that these responses are robust
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F IGURE 7 Distribution and timing of the local minima in the cranium of individual subjects. For all subjects (S1–S5), we calculated the timing
of the local minima of the modeled response in terms of the cardiac cycle for each voxel, with the peak in the photoplethysmography (PPG)
located at zero. (a) Left lateral view of times of local minima in voxels with reliable cardiac aligned responses (R2 > 50) were rendered on the gray/
white matter surface. Red colors indicate an earlier minimum such as seen in areas close to the middle cerebral artery (MCA), and blue colors
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reflecting R2 = 100. (b) Medial view of the times of the same local minima, red colors show earlier minima in areas close to the anterior cerebral
artery (ACA), and posterior cerebral artery (PCA) and blue colors show later peaks such as those in the superior sagittal sinus (SSS). (c) Predicted
cardiac aligned response shapes for all displayed voxels as a function of time (s). Colors match the color of the voxels. The following supplemental
movies show the dynamic evolution of these cardiac responses Movies S1 and S2
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despite differences in scan sequences. Using the gradient echo signal

equations (Hornak, 1996), we calculate that the SMS sequence has a

higher sensitivity to changes in T1 than the resting-state sequence,

but slightly lower sensitivity to changes in T2*. Given the larger modu-

lation measured using SMS, we believe the signal modulation is

T1-weighted, likely carried by increases and decreases of the blood

volume.

We note that the time in which one slice is acquired is compara-

ble between the two methods: 50 ms for the SMS sequence and

44.4 ms for the resting-state sequence. Much longer slice acquisition
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F IGURE 8 Distribution and timing of the local maxima in the cranium of individual subjects. For all subjects (S1–S5), we calculated the timing
of the local maximum of the modeled response in terms of the cardiac cycle for each voxel, with the peak in the photoplethysmography (PPG)
located at time zero. (a) Medial view of times of local maxima in voxels with reliable cardiac aligned responses (R2 > 50) were rendered on the
gray/white matter surface. Purple colors indicate peak times before the PPG peak and cyan colors indicate times after the PPG peak. (b) Predicted
cardiac aligned response shapes for all displayed voxels as a function of time (s). Colors match the color of the voxels. The following supplemental
movies show the dynamic evolution of these cardiac responses Movies S1 and S2
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times would likely blur the cardiac pulsations. While cardiac aligned

responses overall have similar characteristics, it has to be noted that

there is more noise in the regular resting-state acquisition compared

to fast SMS acquisition. The resting-state fMRI scan is about 2� lon-

ger and each slice is only acquired once every 2 s, while a slice is mea-

sured four times per second for the SMS data. Acquisition of fewer

measurement time points per slice using an SMS sequence would also

result in less reliable characterization of the cardiac pulsations

(Supplemental Figure 5).

4 | DISCUSSION

The SMS technique allows a rapid assessment of cardiac pulsations in

arteries, veins, and CSF. These pulsations produce a local minimum

after systole in the fMRI signal in arteries and veins, and a local maxi-

mum in CSF spaces (Figures 2, 3, 4, and 6–8). The timing of these

extrema matches known physiological dynamics in blood and CSF

(Figure 3d). Early local minima are observed in gray matter regions

near the three cerebral arteries (Figure 4) and later local minima are

observed in the veins (Figures 6 and 7). Early local maxima are

observed in the ventricles and later local maxima are observed in the

subarachnoid spaces (Figures 6 and 8), with the latter having more

spatial variability across subjects. An analysis of resting-state fMRI

data acquired with a conventional sequential slice acquisition shows

that these physiological signatures are not unique to the SMS

sequence (Figure 9), but are a general property of fMRI signals in

blood and CSF.

4.1 | Physiological basis of the cardiac-gated MR
signal

The fMRI signal measures spin-coherence; a number of physiological

properties jointly determine the signal level. By retrospective cardiac

alignment, we obtain a temporal response that informs us about phys-

iological signals that are principally driven by the beating heart. The

signal analysis suggests that we are measuring two independent

parameters: a signal amplitude and phase. Consequently, we have lim-

ited ability to make inferences about the many different factors that

can give rise to the cardiac-gated fMRI signal (proton density, blood

velocity, vessel stiffness) and how the signal depends on imaging

parameters (TE, TR, FA, voxel size).

There has been some initial theory exploring the relationship

between these factors for high field (7 T) measurements that acquire

a single fMRI slice (Bianciardi et al., 2016; Viessmann et al., 2017,

2019). An important difference between these single slice 7 T mea-

surements and the whole brain measurements in our current study is

that inflow and velocity influence the signals in a very different man-

ner. When measuring a single slice, inflowing spins have not experi-

enced prior excitation and signals follow a set of relatively well

worked out equations (Bianciardi et al., 2016). The same equations

may not apply to a whole brain acquisition. An example of the size of

these effects can be found in a study measuring fMRI fluctuations on

the timescale of seconds during sleep. The CSF in the fourth ventricle

measured in the bottom slice of the acquisition showed large signal

increases due to inflow at the same time as the fMRI signal in gray

matter decreased (Fultz et al., 2019). These CSF signal increases were

suppressed in slices that were not at the edge of the acquisition.

While we characterize the temporal response shapes, it will be impor-

tant to develop a better understanding of how whole brain fMRI sig-

nals are affected by different physiological parameters that fluctuate

during the cardiac cycle such as blood or CSF volume, flow speed and

partial voluming.

The effect of physiological parameters, such as blood flow speed,

volume, and pressure vary across the different compartments (arter-

ies, veins, sinuses, CSF). As an example of the complex interaction of

these factors, notice that arteries, but not veins, pulsate (expand) dur-

ing the heartbeat. Even so the venous compartments, such as the

superior sagittal sinus, have a large transient wave in the fMRI signal.

This is because the fMRI signal does not depend uniquely on any of

these physiological factors, but rather captures a change in the local

magnetic field, largely T1-weighted. As a further complexity, the aver-

age speed of flow in the superior sagittal sinus is about 13 cm/s (range

�4–20 cm/s) (Jordan et al., 1994), much lower than the speed of flow

of 40 cm/s (range �20–55 cm/s) in the carotid (Enzmann et al., 1994;

Enzmann & Pelc, 1991). However, variations in blood flow volume

across the cardiac cycle vary from 140 to 463 ml/min in the superior

sagittal sinus (Jordan et al., 1994), which is much higher compared to

cardiac cycle variations of 200–350 ml/min in a unilateral carotid

artery (Enzmann et al., 1994). The causes of the measured waveforms

thus likely differ between the arteries and the veins. The measured

waveform in the arteries likely have a strong contribution by changes

in the speed of flow, while the measured waveforms in the veins likely

have a stronger contribution from changes in blood flow volume. Flow

velocities are much lower again in the CSF and CSF velocities in the

cervical subarachnoid space vary from �2 to 2 cm/s across the cardiac

cycle (Enzmann & Pelc, 1991). These parameters all influence the

fMRI signal. Thus, while some sequences aim to isolate a single physi-

ological factor, such as flow speed, the fMRI signal provides a rela-

tively comprehensive view.

We find local minima in blood vessels around the time of the PPG

peak. The local minimum is defined by a rapid decline when the car-

diac pulse arrives, followed by a slow increase. The opposite pattern,

with a local maximum, was observed in CSF spaces. These time

courses were consistent between the fast SMS measurements and

the resting-state fMRI measurements. Another group, who defined a

new whole brain magnetic resonance encephalography (MREG)

sequence showed similar dips in the MREG signal (filtered for cardiac

frequencies) in the ACA following systole (Rajna et al., 2021), consis-

tent with prior reports using multi-slab echo-volumar imaging (Posse

et al., 2013). Rather than relying on local minima and maxima, we use

an approach based on the complete waveform. We create a model

with two principal components, and the relative weights on these

components differentiate the local minima in the vascular spaces from

local maxima in the CSF (Figures 6–8, Supplemental Figure 4b). This
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segregation is in line with cranial fluid dynamics that show that the

cardiac pulse has opposite effects on blood and CSF (Wagshul

et al., 2006). During the heartbeat, blood moves in and occupies a

larger volume, and CSF moves out and occupies a smaller volume

(Beggs, 2014). This explains why the time course in blood and CSF

would be inverted.

4.2 | Complementary nature of various MRI-based
measurements of cardiac pulsations

The pulsatile flow during the cardiac cycle is accompanied by several

mechanical and physiological factors that can be assessed in various

complementary ways. Cine MRI measurements encoded for displace-

ments have shown that some brain areas move about 0.1 mm during

the cardiac cycle (Soellinger et al., 2009). Amplified MRI analyses rep-

resent these cardiac-gated signals as movements of the ventricles,

blood vessels and at gray or white matter boundaries (Abderezaei

et al., 2020; Kolipaka et al., 2021; Terem et al., 2018).

Further understanding the relation between the pulsatile motion

and fluid dynamics is important. Pial blood vessels are surrounded by

CSF (Iliff et al., 2013). One study measured cardiac cycle induced arte-

rial wall motions (Mestre et al., 2018) using particle tracking velocime-

try and two photon imaging through a sealed cranial window in mice.

Arterial diameters were about 10 μm and increased with about 0.1 μm

during the cardiac cycle. Average arterial diameters did not change

during hypertension, but the typical vessel wall speeds were increased

in hypertension, in particular in more distal arteries. These hyperten-

sion related increases in wall motion were further accompanied by a

reduced forward CSF flow in surrounding CSF spaces. The use of

complementary techniques may further elucidate different physiologi-

cal factors noninvasively in humans in neurological and neuropsychiat-

ric diseases.

4.3 | Retrospective cardiac alignment reveals
temporal waveforms of the cardiac response

While our data have a relatively low spatial resolution with 4 mm iso-

tropic voxels, our measurements have the advantage that with a brief

fMRI scan, they reveal detailed temporal profiles of the pulsations in

blood and CSF spaces. We, retrospectively, aligned the measured sig-

nals to the PPG peak, which allowed us to observe that the cardiac

pulsations are not sinusoidal, with a steep slope when the pulse

arrives followed by a shallow slope on return. A spectral approach

would not have been sensitive to these characteristics of the pulsatile

waveform, which have been related to fluid dynamics. For example,

the slope and amplitude of the pulse pressure wave may be related to

intracranial compliance, with a less compliant tissue resulting in a

steeper slope (Wagshul et al., 2011). A study in an older population

used a high resolution 4D flow MRI measurement with velocity

encoding sensitive to arterial blood flow speed to study the relation

between the slope of the cardiac pulse in the cerebral arteries and

episodic memory (Vikner et al., 2021). They found that steeper sys-

tolic onsets correlated with poorer episodic memory performance.

The ability of our technique to extract the shape of the cardiac pulse,

including slope and width, in both blood vessels and CSF spaces may

help further elucidate these types of effects.

The cardiac aligned responses are not well described by a sinusoi-

dal oscillation, but show a particular temporal asymmetry that

matches known aspects of cerebral fluid circulation. The responses in

the anterior cingulate and sagittal sinus that we observed drop sharply

around the onset of the PPG peak, followed by a slow rise. Blood flow

measurements in other studies from slices that include the carotid

artery (Enzmann et al., 1994; Wagshul et al., 2011) show a sharp rise

in the speed of flow related to systole that aligns with the sharp drop

in our data (Figure 3d, top panel).

The lateral ventricles show a signal change in the opposite direc-

tion, with a local maximum at the time of the PPG peak. The fact that

an area close to a cerebral artery and the superior sagittal sinus

behave in an opposite manner compared to CSF can be explained by

the fact that the cranium is an enclosed space. Within this enclosed

space, systole generates a rapid increase in blood pulsing into the

cerebral arteries, which displaces CSF (Wagshul et al., 2006; Wagshul

et al., 2011). Whereas other methods have characterized these inter-

actions across several seconds during sleep (Fultz et al., 2019), this

method reveals these interactions at the timescale of a few hundreds

of milliseconds within a heartbeat cycle.

4.4 | Implications for resting-state fMRI analyses

Previous studies have emphasized the importance of understanding

the effects of cardiac pulsations on resting-state fMRI networks

(Bayrak et al., 2021; Chen et al., 2020; Shmueli et al., 2007). One

study examined the effects of changes in heart rate on the fMRI

response (Chang et al., 2009) and identified a heart rate response

function that evolves over a few seconds with changes in heart rate.

Although we are interested in these heartbeat related signals, these

resting-state studies emphasize the removal of cardiac effects (Glover

et al., 2000; Hu et al., 1995). These effects can be significant and hard

to remove because cardiac pulsations influence fMRI signals in brain

regions within a second, but fMRI data are typically sampled every 1–

2 s. This undersampling results in aliasing of heartbeat related signals.

Two studies have shown that faster measurements can reduce the

size of these unwanted signals (Huotari et al., 2019; Jahanian

et al., 2019).

There are many large resting-state fMRI datasets with TRs of 1–

2 s. Our slow fMRI analyses demonstrate that such measurements

can be, retrospectively, aligned when a pulse oximetry measurement

is available. The cardiac aligned responses could be used in a forward

manner to correct for unwanted heartbeat driven fluctuations in the

resting-state signal.

We used a relatively common sequence to estimate the cardiac

pulse waveforms. Other rapid MRI sequences have been designed to

sample BOLD signals at fast rates, including multi-slab echo-volumar
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imaging, (Posse et al., 2012, 2013), ultrafast generalized inverse imag-

ing (Boyacioglu et al., 2013), magnetic resonance inverse imaging (Lin

et al., 2012), and MREG (Lee et al., 2013). These rapid sequences facil-

itate filtering out physiological noise and estimating the BOLD signal

in resting-state networks. Rather than filtering out the physiological

signals, we show that common sequences can also characterize the

cardiac pulse pressure waves, which opens up applications across cog-

nitive neuroscience studies that use resting-state fMRI

measurements.

4.5 | Study limitations

This article develops methodology to characterize the cardiac wave-

form in cranial blood and CSF spaces in five subjects. While this is a

small sample size, it demonstrates the reliability of the method across

a highly variable age range from 24 to 63 years. Future studies will

now be able to use the quantitative outputs from this method (peak

time, sign, and width) to study intersubject variations.

There are several additional measurements that can be done to

better understand how pressure, flow speed, flow volume and motion

affect the observed pulsations. Blood flow in the brain is affected by

arterial blood pressure (influencing blood flow into the brain) and

venous sinus pressure (influencing blood return to the heart, venous

sinus pressure is approximately equal to the intracranial pressure)

(Lassen & Christensen, 1976; Ruesch et al., 2021). Blood pressure

measurements could help understand differences across subjects in

the percent signal change related to the arterial vasodilation and con-

striction. Moreover, blood pressure is known to alter pulse transit

times, and could explain differences in arterial–venous phase delays

between the subjects.

Finally, this method quantifies cardiac pulsatile waveforms by

using the fact that every slice is acquired within 50 ms. The next sam-

ple of the voxel is measured one repetition time (250 ms) later. The

method relies on the idea that the measured waveforms are consis-

tent from beat to beat. This consistency is confirmed by the test–

retest reliability. Extracting between-beat changes in the waveform,

perhaps related to breathing or vasomotion, will need either different

analyses or different scan protocols that measure at even higher tem-

poral sampling (Dreha-Kulaczewski et al., 2015; Posse et al., 2013).

4.6 | Conclusion

Cardiovascular mechanisms are essential for healthy cognitive and

affective function. Neurological diseases and aging affect the way in

which the cardiac pulse affects the brain's fluid dynamics. To under-

stand whether fMRI data can help assess the spatial distribution and

temporal delays of the cardiac pulsations, and conversely, how cardiac

pulsations affect the fMRI signal, we collected data with a fast SMS

sequence and, retrospectively, aligned the measurements to heart-

beats. Cardiac aligned responses reveal the combined impact of the

cardiac pulse pressure wave and blood flow on the fMRI signal during

the cardiac cycle. Identifying the typical range of responses in the

healthy may help us identify atypical responses in neurological and

psychiatric diseases.
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