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Abstract: Reverse osmosis (RO) is the most popular technology for brackish, seawater and wastew-
ater desalination. An important drawback of RO is membrane fouling, which reduces filtration
effectiveness and increase the cost of produced water. This study addresses two important topics of
membrane fouling: (i) the impact of different divalent ions on the formation of organic fouling and
(ii) online monitoring and prediction of fouling formation. In the absence of divalent ions, dissolved
organic matter had little effect on fouling formation, even at 3.5 mgC/L, in the upper range of ground-
water concentration. Calcium, strontium and iron enhanced (organic) fouling formation, whereas
barium had negligible effect. However, while iron affected fouling throughout the entire tested
range (0–0.5 mg/L), calcium and strontium enhanced organic fouling only at high concentrations:
more than 140 mg/L and 10 mg/L for calcium and strontium, respectively. An online system was
developed for monitoring the formation of organic fouling, consisting of (i) an ex-situ RO cell with
a transparent cover, (ii) a video camera continually monitoring the surface of the membrane and
(iii) an algorithm which automatically identified changes in the color of the membrane caused by
fouling, using a specially designed membrane spacer with colored reference dots. Changes in the
color of the membrane surface were normalized to the reference colors, to eliminate all non-fouling
related interference. The system was used to record and analyze changes in membrane color dur-
ing numerous filtration tests. The data was successfully correlated to changes in specific flux (and
subsequently to fouling formation rate) and can be applied to monitor and predict the formation of
membrane fouling during desalination.

Keywords: reverse osmosis; fouling; divalent cations; online monitoring; image analysis

1. Introduction

Reverse osmosis (RO) desalination is a leading technology for the augmentation of
potable water supply [1]. An important application of RO is brackish water desalination,
which has experienced an exponential growth over the last 20 years, notably in arid regions
of the world [2]. Brackish water typically refers to (ground)water with total dissolved solids
(TDS) in the 1000–10,000 mg/L range (https://water.usgs.gov (accessed on 2 April 2022)).
In the US, for example, over 77 percent of desalination plants in 2013 were fed by brackish
groundwater, mostly in dry states like Florida, Texas, California and New Mexico [3]. In
Israel is currently operating several brackish water desalination plants, producing up to
87 million m3/year, approximately 12% of total desalinated water (Israel Water Authority).

One of the main challenges in RO desalination is membrane fouling, caused by the
deposition of suspended or dissolved material on membrane surface. Fouling reduces
permeate flux, increases energy demand, forces frequent membrane cleaning, reduces
membrane lifetime and in general increases RO operational cost [4–6]. Membrane foulants
in brackish groundwater mainly comprise of inorganic ions, suspended and colloidal
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solids and low levels of natural organic matter—NOM [7]. The relative contribution
of each component may vary significantly, depending on the groundwater source and
RO pretreatment.

Important ions, which may form insoluble salt precipitates (scaling), include calcium
(Ca2+), magnesium (Mg2+), barium (Ba2+), strontium (Sr2+), sulphate and carbonate [3].
Karime et al. [8] showed that insoluble salts such as CaSiO3, Fe3O4, AlPO4 and CaSO4
were key membrane foulant agents in a brackish water desalination plant, working since
1999 in Tunisia. On the other hand, Yang et al. [7] showed that organic substances are
dominant foulants, at least in the first stage of brackish water desalination. Ruiz-García
et al. [9] autopsied membrane elements of a full-scale brackish groundwater desalination
plant, after 11 years of operation, and found that fouling consisted of a biofilm (mainly
in the first elements of the RO system) and inorganic foulants of calcium carbonate and
aluminosilicates. Reducing scaling can be done through the application of anti-scalants,
which improve membrane recovery but increase treatment cost [10–14].

A different fouling formation mechanism which involves inorganic ions (in addition
to scaling) is the synergistic effect of cations and organic matter. Interaction of NOM
with (divalent) cations may result in metal-NOM complexation and/or the formation of
“bridges” between carboxylic groups of organic molecules, which promotes the formation
of membrane fouling [15]. Lee et al. [16] found that calcium ions significantly enhanced
membrane fouling during RO treatment of alginate, a model polysaccharide in secondary
wastewater effluent. The increase in fouling was attributed to the formation of calcium
alginate complexation and crosslinking (bridging). Magnesium ions on the other hand
had little effect on fouling formation under similar conditions. Zaho et al. [17] showed
that RO membrane fouling, caused by humic acid, was largely aggravated in the presence
of calcium, causing a significant flux decline. Their analysis revealed that addition of
calcium increased particles size of humic acid. A similar phenomenon was demonstrated
by other researchers for calcium and magnesium [18–20], yet no study has ever examined
the impact of other relevant cations such as strontium and barium, despite their proven
bridging potential and frequent presence in brackish groundwater [21]. Strontium was
detected in the vast majority of US groundwater aquifers at concentrations typically below
1 mg/L, but levels higher than 4 mg/L (and even peaks of >30 mg/L) were also observed,
principally in aquifers with Sr-bearing rocks [22]. Barium also naturally occurs in many
groundwaters, at levels typically lower than 1 mg/L, but may reach as high as 20 mg/L in
specific locations [23].

Another aspect of membrane fouling, which has attracted growing attention over
the last years, is online monitoring, and the prediction of fouling formation rate [24–26].
Standard full-scale methods involve the indirect measurement of trans-membrane pressure
or flux decline, and the setting of a threshold for membrane cleaning [4]. However, these
parameters are relatively insensitive, and do not provide any future prediction. Other
methods tested at small scale include the use of magnetic resonance measurements [27],
electrical impedance spectroscopy [28] and ATP growth potential [29]. Recently, Cohen
and his group [30] proposed a different approach, using an on- line ex situ plate-and-frame
membrane cell, connected on a side stream of the RO feed and operating under similar
conditions. The cover of the cell is transparent, and the exposed membrane surface is
continuously monitored using a video camera and a surface image analyzer. This system
was successfully applied for detecting mineral scaling formation and for the auto-initiation
of a feed flow reversal system. However, since the system is based on the identification of
distinctive geometrical shapes (particles), its application is limited for detecting mineral
scaling. Organic or microbial fouling will mostly lead to changes in membrane color,
rather than formation of particles. To widen the use of this approach, a method should be
developed to identify changes in membrane color caused by (organic) fouling and correlate
these to changes in hydraulic parameters such as flux and pressure.

The goals of this study were to (i) determine the effect of different divalent cations on
the formation of organic fouling during brackish water desalination and (ii) develop an
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online method for monitoring the formation of organic membrane fouling. This method
makes use of an on-line plate-and-frame RO cell with a specially designed spacer, and
an algorithm, which automatically identify changes in the color of the membrane surface
caused by fouling.

2. Materials and Methods
2.1. Reagents and Chemicals

Suwannee River fulvic acid (SRFA) was obtained from the International Humic Sub-
stances Society (www.ihss.gatech.edu (accessed on 23 April 2022)). NaCl, SrCl2, BrCl2,
CaCl2 and FeCl3 were obtained from Sigma-Aldrich and were at least analytical grade
(>98%). All chemicals were used as received.

2.2. Setup of the Lab-Scale RO System

Experiments were carried out using a lab-scale crossflow RO system, consisting
of three membrane cell units connected in parallel (CF-16, Sterlitech). The cells are
12.7 × 10 × 8.3 cm in size, with an active membrane area of 20.6 cm2 (each). They are
fed by a high-pressure pump connected to a 50 L temperature-controlled feed container
(Figure 1). To maintain a constant feedwater flowrate, special nozzles were installed on
the brine-side of the cells and feed pressure was continuously monitored using pressure
gauges. Flowrate and conductivity of permeates and brines were measured and recorded
four times a day. Membranes used for this study were brackish water thin film composite
polyamides (SUEZ, AG, PA-TFC, Table S1 in Supplementary Materials).
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Figure 1. Schematic of the lab-scale crossflow RO system.

For real-time monitoring of the membrane surface (feed-side), the upper part of one
of the cells was replaced by a transparent acrylic block. A video camera attached to
a monoscope was placed above the cell (HAYEAR Full HD 34MP Industrial Electronic
Digital Video Microscope Camera) and focused on a small portion of the membrane surface.
The camera was connected to a designated software (Hayer version ×64), allowing the
consecutive recording of 72 h videos. Constant lightning was supplied from a ring of LED
lamps connected to the camera.

2.3. Fouling Experiments

Experiments were carried out using synthetic (lab-made) brackish water, based on
the analysis of feed water from Maagan Michael plant, Israel’s largest brackish water
desalination facility (detailed analysis in Supporting Information). In a typical experiment,
the feedwater tank was first filled with tap water from the Environmental Technologies

www.ihss.gatech.edu
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laboratory (Azrieli College Jerusalem). NaCl was then added from a stock solution to
a final concentration of 3000 mg/L (conductivity of approximately 6400 µS/cm). Other
constituents were then added from filtered stock solutions (fulvic acid, CaCl2, BaCl2, SrCl2,
FeCl3), depending on the experiment, and relevant quality parameters were measured:
alkalinity, hardness, pH, DOC, conductivity. Membrane coupons were soaked in saline
water for 12 h prior to installation. Water was circulated through the membrane cells at
a constant flowrate of approximately 1 L/min (for each cell) and feed pressure of 18 bar.
Sampling and image recording began after two hours of equilibration, for a total duration
of 72 h.

2.4. Image Processing and Analysis

The real-time monitoring system consisted of a video camera mounted above a trans-
parent cell, recording membrane surface and the accumulation of fouling (Figure 2 left).
To differentiate between color changes of membrane due to fouling and changes resulting
from lightning or other artifacts, a specially designed spacer was installed in the transparent
cell, that featured dots of different colors according to a standard color chart: red, blue,
green and black (Figure 2 right). An image analysis algorithm was developed to identify
the colored dots automatically during filtration and normalize the membrane color to
the pre-defined colors (the algorithm is further detailed in Section 3.2). Changes in the
normalized color of the membrane during filtration were further correlated to changes in
hydraulic parameters of the system.
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Figure 2. The video camera mounted above a transparent cell (left) and a screenshot of the recorded
video, with the specially designed membrane spacer (right).

2.5. Analytical Methods

Conductivity was measured with a portable conductivity meter from Hach (HQ30D).
Ions in the water were quantified by an ECO Ion Chromatograph (Metrohm, Switzer-
land), using EPA method 300.00. Dissolved organic matter (DOM) was measured using a
TOC analyzer (Torch, TeledyneTekmar, OH, USA) after filtering the samples at 0.45 mm
(APHA, method 5310B). Metals were quantified by Inductively Coupled Plasma Optical
143 Emission Spectrometry (ICP-OES, Spectro Genesis, Kleve, Germany).

3. Results and Discussion

Results are presented in two parts. The first focuses on the impact of DOM and
divalent ions on the formation rate of organic fouling; whereas the second demonstrates
the online method for monitoring the formation of organic membrane fouling.
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3.1. Formation of Membrane Fouling
3.1.1. The Effect of DOM Concentration on Fouling Formation

Experiments in this section were carried out with tap water, spiked with NaCl and differ-
ent concentrations of fulvic acid (0.5–3.5 mgC/L, in the upper range of groundwater) [31,32].
Background quality parameters of the water were: Alkalinity 155 ± 10 mg/L as CaCO3,
Ca 42 ± 2, pH 8.3 and conductivity of 6210 ± 120 µS/cm. Formation rate of fouling was moni-
tored over a period of 72 h, using specific flux as an indicator, flux divided by transmembrane
pressure (Flux/TMP, LMH/bar) [33]. Increasing the concentration of organic matter had little
effect on the rate of decrease of the specific flux: the slope of the exponential regression lines
in Figure 3. This implies that, at the tested concentration range (≤3.5 mgC/L) and specific
water chemistry, DOM makes little contribution to membrane fouling.
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Figure 3. Decrease in specific flux for different concentrations of organic matter.

Literature data regarding the effect on DOM concentration on the formation of organic
fouling is typically site-specific, and depends on the chemistry of the feedwater, hydraulic
parameters and pretreatment. Miyoshi et al. [34], for example, did not find any correlation
between TOC or DOC concentration in seawater and RO fouling formation rate (at TOC
range ≤ 4 mgC/L). On the other hand, Koyuncu et al. [35] showed that reducing the
concentration of DOC in surface water from 2.94 to 1.19 mg/L improved the rate of flux
decrease during desalination by almost 30%. A possible explanation for these different
effects could be the presence of calcium in the water. In the case of Koyuncu [35], calcium
concentration was in the range of 79–106 mg/L (no calcium concentration was given by
Miyoshi et al. [34]. The level of calcium in the water decreased during desalination, in
parallel to the decrease in TOC. Koyuncu hence concluded that the impact of organic matter
on membrane fouling at low concentration relates to its interaction with calcium. In our
experiments the concentration of calcium was relatively low: 40 mg/L, which may explain
the marginal effect of organic matter on fouling formation. This hypothesis is validated in
the following section.

3.1.2. The Combined Effect of DOM and Calcium on Fouling Formation

In this section, DOM concentration was kept constant at 3.5 mgC/L and calcium
concentration was increased up to 240 mg/L. Figure 4a illustrates the changes in specific
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flux over time for the different calcium concentrations and Figure 4b summarizes the
decrease rates. Increasing calcium concentration up to 140 mg/L had little effect on the
decrease rate of specific flux, hence on the formation rate of fouling. On the other hand, at
higher concentration of 240 mg/L, calcium sharply increased fouling formation rate. This
indicates Ca–DOM interaction as the dominant mechanism for fouling formation under
these conditions. Previous work also observed a critical concentration of Ca, where DOM
becomes insoluble and sharply affects membrane flux [36]. This phenomenon, typically
noticed around 100 mg/L (depend on DOM concentration), was attributed to charge
neutralization and subsequent precipitation of organic macromolecules [37]. Scaling of
CaCO3 is less plausible, as the water’s CaCO3 precipitation potential was calculated at
−14.3 (using STASOFT 5).
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Similar results were found in previous studies [18,20,36,38], which largely validate
the assumption in Section 3.1.1: the impact of organic matter at low levels on membrane
fouling depends on the concentration of calcium, and possibly other divalent cations, in
the water.

3.1.3. The Effect of Strontium, Barium and Iron on Formation of Organic Fouling

Unlike the well-documented impact of calcium, the effect of strontium and barium
on organic fouling is unknown. The effect of iron was mostly documented in the context
of flocculation, where it is added to increases in small organic colloids and produced
removable flocs. This phenomenon, however, does not always take place in natural water,
especially under conditions of dissolved organic matter and low levels of iron.

Figure 5 presents the rate constants for the decrease in specific flux as function of
strontium and barium concentrations, at levels up to 30 mg/L and 5 mg/L, respectively,
(in the upper range of groundwater concentration) [23,39]. Interestingly, the two divalent
ions exhibit different effects on fouling formation. Strontium up to 10 mg/L did not affect
fouling, while at higher concentrations it promoted fouling formation. This effect is similar
to the one observed for calcium (though to a smaller extent), and is likely the result of
strontium–DOM interaction and the increase in the size of organic flocs. Barium, on the
other hand, had marginal effect on fouling formation throughout the tested range. To
verify that the negligible effect of barium was not concentration-dependent, we extended
its tested range up to 30 mg/L (similar to Sr2+). Even at this high range, barium did not
promote fouling formation (results not shown), which suggest that its tendency to interact
with DOM is lower than that of strontium (and calcium). It should be emphasized that
sulphate was not detected in the water at any point, hence fouling could not be attributed
to the insoluble SrSO4 or BaSO4.

An explanation for the observed trends may be drawn from the work of
Rios-Carvajal [21], which investigated (at nanometer scale) the interactions of different car-
boxylate functionalities in organic molecules with dissolved divalent cations. They found
that carboxylates and dicarboxylates interact differently with different ions. For example,
adhesion force of carboxylate with divalent ions increased in the order of
Ba2+ > Ca2+ > Sr2+. On the other hand, in systems of dicarboxylate, interaction was
weakest for barium (and stronger for strontium and calcium). The researchers concluded
that the strong interaction of strontium with dicarboxylate functional groups resulted from
a chelation bidentate interaction, rather than an intermolecular bridging. Our results there-
fore suggest that the applied DOM (fulvic acid) contained more dicarboxylate functional
moieties than carboxylate, thus encouraging DOM interaction with calcium and strontium
and discouraging the effect of barium.
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mote fouling formation (results not shown), which suggest that its tendency to interact 
with DOM is lower than that of strontium (and calcium). It should be emphasized that 
sulphate was not detected in the water at any point, hence fouling could not be attributed 
to the insoluble SrSO4 or BaSO4.  
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Figure 5. Decrease in specific flux for different concentrations of (a) strontium and (b) barium.
DOC = 3.5 mgC/L.

Iron (added as FeCl3) enhances fouling formation even at the lowest concentration
tested (Figure 6). These results are highly important, since iron is omnipresent in many
brackish water sources in Israel and elsewhere [40] and its effect on organic fouling should
be taken into consideration. Control tests of with iron (0.1 and 0.5 mg/L) but without DOM
showed that iron alone have little effect on fouling formation rate.
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3.2. Online Visual Monitoring of Fouling Formation

The goal in this section was to develop an online monitoring system for predicting
and alerting rapid fouling formation. The system combines online video recording of
a membrane section and a video analyzing algorithm. Analysis consisted of two steps:
(1) auto-identification algorithm of the reference-colored dots on the spacer and (2) scalar
value normalization based on the given reference-colored dots.

Auto-identification of the colored dots and their fixation for the entire duration of the
experiment was not straightforward, since the coordinates and the color of the dots varies
continually, due to fouling accumulation and minor movements of the flow-cell. For that
purpose, the SLIC (Simple Linear Iterative Clustering) algorithm was used on each image
of the video to create compacts, nearly uniforms super-pixels by clustering image pixels in a
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color space of five dimensions (three color dimension and two space dimensions), resulting
in a map of the super-pixels, as can be seen in Figure 7. Subsequently, the image processing
method identified a central area of the membrane (marked with white dot in Figure 7), for
analysis of membrane color change during filtration. Note that the first image of the video
was utilized for locating the reference-colored dots, since the contrast between the dotes
and the membrane was relatively high (no fouling accumulation yet). The dots’ location
was further used during the rest of the experiment, with continuous adjustments between
successive frames, to track the exact position of the colored and central super-pixels. Details
of the SLIC algorithm is provided in the Supporting Information.
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Figure 7. The super-pixels map, including the automatic placement of the colored dots: a black dot
in the center of a black super-pixel, a blue dot in the center of a blue super-pixel etc. A super-pixel
marked in white at the center indicates the area used for fouling analysis.

The next step was the analysis of changes in membrane color attributed to fouling. For
that, colors of all super-pixels were fragmented into their red-green-blue components, and
the specific component in the central super-pixel was divided by its counterparts in the
reference colored super-pixels. This was done continually during the entire duration of
the experiment to eliminate color changes due to lightning and other artifacts. The three
components underwent gray transformation to obtain a single representative value. The
green super-pixel was eventually selected for comparison with the hydraulic data, based
on its superior stability and visibility throughout the experiment.

Changes in normalized color of the membrane vs. time were plotted in parallel
to changes in specific flux for each experiment, as exemplified in Figure 8. Correlation
between the hydraulic and visual parameter was tested using Equation (1). All experiments
exhibited correlation higher than 0.8, with an average of 0.89, indicating high correlation
between the two parameters.

Correl(X, Y) = ∑(x − x)(y − =
y)√

∑(x − x)2 ∑(y − y)2
(1)

Here, x and y are the sample means
In the final stage, specific flux was plotted against the relative color intensity (Figure 9

as an example), and the linear regression was calculated for all experiments. Interestingly,
all experiments involving DOM at ≥ 2 mgC/L exhibited correlation factors (the slop of the
linear regression) in the narrow range of 0.09–0.11, whereas experiments with lower DOM
concentrations showed high variability. These results suggest that (i) the main foulant in
our system is organic matter and that (ii) the normalized color intensity can be applied



Membranes 2022, 12, 1177 10 of 13

for monitoring and predicting the formation of fouling in a variety of water quality. In
other words, by monitoring the changes in normalized membrane color and applying
a pre-measured correlation factor, we can predict the decrease in specific flux and the
formation rate of membrane fouling, which can be used, for example, for coordinating a
membrane backwash cycle.
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Figure 8. Decrease in specific flux and membrane color normalized to the green reference dot, during
an entire filtration experiment from Section 3.1.2 (Ca = 90 mg/L).
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4. Conclusions

Membrane fouling is a major drawback of RO desalination, affecting the operation of
seawater and brackish water desalination facilities. This study addresses two important
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points in membrane fouling: (i) the impact of different divalent ions on organic fouling and
(ii) the use of online visual monitoring and predicting of fouling formation. The following
conclusions could be drawn from the experimental work:

• When divalent ions are at low concentrations, organic fouling is insignificant, even
when DOM is at the upper range of groundwater concentrations (3.5 mgC/L).

• Of the divalent ions tested, calcium, iron and strontium were shown to enhance the
formation of organic fouling, whereas barium did not affect fouling formation, likely
due to its low affinity to dicarboxylate moieties in the DOM.

• Visual online monitoring of fouling formation was successful, using reference color-
dots positioned on the spacer. In this system, membrane color change was continu-
ously recorded and normalized to the reference color dots, thus eliminating interfer-
ences from lightning and other environmental factors.

• The normalized color showed high correlation to the decrease in specific flux and
can be used in the future to monitor and predict fouling formation during membrane
desalination at full-scale.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/membranes12121177/s1, Table S1. Specifications of the RO membranes used
in the study; Table S2. Quality parameters of the brackish water from Maagan Michael desalination
facility; Text S1: The pseudocode of the SLIC algorithm, with more details below.
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