Phylogeny of Vibrio cholerae Based on recA Sequence

O. COLIN STINE,^{1,2} SHANMUGA SOZHAMANNAN,^{1,3} QING GOU,² SIQEN ZHENG,² J. GLENN MORRIS, JR.,^{1,3*} and JUDITH A. JOHNSON^{1,3,4}

Departments of Epidemiology and Preventive Medicine¹ and Pathology⁴ and Department of Pediatrics and Center for the Study of Asthma and Other Complex Diseases,² University of Maryland School of Medicine, and Veterans Affairs Maryland Health Care System,³ Baltimore, Maryland 21201

Received 10 July 2000/Returned for modification 17 July 2000/Accepted 7 September 2000

We sequenced a 705-bp fragment of the *recA* gene from 113 *Vibrio cholerae* strains and closely related species. One hundred eighty-seven nucleotides were phylogenetically informative, 55 were phylogenetically uninformative, and 463 were invariant. Not unexpectedly, *Vibrio parahaemolyticus* and *Vibrio vulnificus* strains formed out-groups; we also identified isolates which resembled *V. cholerae* biochemically but which did not cluster with *V. cholerae*. In many instances, *V. cholerae* serogroup designations did not correlate with phylogeny, as reflected by *recA* sequence divergence. This observation is consistent with the idea that there is horizontal transfer of O-antigen biosynthesis genes among *V. cholerae* strains.

Understanding the transfer of genes within and among bacteria requires knowledge of the genetic relatedness of the bacteria. Pandemic strains of Vibrio cholerae have acquired the major virulence factors cholera toxin and toxin-coregulated pilus (TCP) by lysogeny (14, 27). The recent appearance of the O139 epidemic strain of V. cholerae probably occurred via acquisition of a new surface polysaccharide through a horizontal gene transfer event (5, 8, 23). In order to better understand this event and in hopes of predicting future events, we have begun to generate multilocus sequencing (MLS) genotypes of various strains of V. cholerae. MLS has three advantages over multilocus enzyme electrophoresis: (i) MLS detects more variation for each locus (e.g., silent substitutions), (ii) convergence of alleles is less likely, and (iii) MLS data are easily compared across laboratories (16). Sequencing of aldA and the cholera toxin genes, ctxA and ctxB, has proven useful in studying the epidemiology of pandemic strains but is limited to toxigenic isolates (12, 26). Sequencing the asd gene has broader application but has been done for only 24 non-O1 isolates (13). Studies using the pattern of IS1004 insertions and pulsed-field gel electrophoresis (PFGE) have also looked at only limited numbers of non-O1 V. cholerae isolates (5, 6).

In this brief communication, we report our results from sequencing a 705-bp fragment of the *recA* gene from 107 strains that had initially been designated *V. cholerae* and 5 strains of other *Vibrio* species. The locus chosen for study was *recA* because it has been shown to be useful for estimating phylogeny, in contrast to some other genes (9). Strains are listed in Table 1; strains are from our collection at the University of Maryland and include strains representative of known outbreaks, as well as serogroup type strains from the Smith Vibrio Reference Laboratory collection (22) of non-O1 *V. cholerae*.

Minipreparations of chromosomal DNA were made from each strain using the Wizard genomic DNA purification kit (Promega). DNAs were diluted to 10 ng/ μ l, and 1 μ l was used for PCR amplification of the *recA* gene. The base sequence from 813 to 1598 (numbering based on the *V. cholerae* sequence, GenBank accession no. X71969) of the recA gene was determined in two directions from PCR products using cycle sequencing and an ABI Prism 377 automatic sequencer (Perkin-Elmer). PCR was initiated with the primers rec-1 (GAAA CCATTTCGACCGGTTC) and rec-2 (CCGTTATAGCTGT ACCAAGCGCCC). These two primers were selected from two regions conserved between V. cholerae and Vibrio anguillarum (accession no. M80525). The 30-µl PCR mixture contained 0.5 U of Taq polymerase, a 10 µM concentration of each primer, 20 mM KCl, 1.5 mM MgCl₂, and 10 mM Tris, pH 8.5. The reaction was carried out using one step of 94°C for 4 min, 28 cycles of 94°C for 30 s, 64°C for 45 s, and 72°C for 30 s, and a final step of 72°C for 6 min in a 9600 thermocycler (Perkin-Elmer). The 788-bp amplified product was purified using Wizard PCR purification columns (Promega). The eluted DNA was precipitated with ethanol. Cycle sequencing reactions were initiated with a 0.3 μ M concentration of one of the PCR primers using fluorescent-dye-labeled dideoxynucleotides (Big Dye kit; Perkin-Elmer). There were 28 cycles of 94°C for 10 s, 50°C for 5 s, and 60°C for 4 min. The products were separated on 6% denaturing gels under standard conditions in an ABI Prism 377 automatic sequencer.

Data were analyzed using Genescan (version 2.0) and Fractura (version 3.0) software (Perkin-Elmer). Sequencing reactions were performed in both directions to maximize the quality of the sequence. After trimming the low-quality sequence on the ends, the remaining 705 bp of high-quality sequence were aligned using CLUSTAL X (24). The aligned sequence is shown in Fig. 1. Most (134 of 243) of the variable bases are in the third, or wobble, position of the codons. The hyphen at bp 201 represents a 1-bp insertion in C0545; 11 bp later this strain has a 1-bp deletion. Phylogenetic trees were calculated using distance matrixes, unweighted pair group method with arithmetic mean (UPGMA), neighbor joining, and bootstrapping methods (PAUP, version 3.1; Sinauer Assoc., Sunderland, Mass.). Each of the methods produced similar results.

All strains were streaked on Luria agar and on thiosulfatecitrate-bile salts-sucrose agar to check for purity and were tested for oxidase and spot indole (Remel, Lenexa, Kans.). The 20 most divergent strains were subjected to additional biochemical tests for *Vibrio* species (17). These included API 20E (bioMerieux, Hazelwood, Mo.), indole (Remel), and the string test. Additional tube biochemicals were run after the addition of 1% NaCl, including *o*-nitrophenyl- β -D-galactopyranoside,

^{*} Corresponding author. Mailing address: Rm. 934, Medical School Teaching Facility, University of Maryland School of Medicine, 10 S. Pine St., Baltimore, MD 21201. Phone: (410) 706-4580. Fax: (410) 706-4581. E-mail: jmorris@medicine.umaryland.edu.

TABLE 1. Strains used^a

Strain	Serogroup		Place where	Yr	Classification	Specimen	Source and/or reference	
	Sakazaki	Smith	isolated	isolated	or description	origin	source and/or reference	
AS119	ND	ND	India	1996		Diarrhea	G.B. Nair (Sozhamannan, unpublished)	
6707	ND	015	Hong Kong	1958		Night soil	H. Smith collection	
AM25	039	ND	India	1995		Diarrhea	G.B. Nair (Sozhamannan, unpublished)	
6337	ND	O352	Donalo doah	1062		Diamhaa	H. Smith collection H. Smith collection	
6313 AM107	ND 0107	O309 ND	Bangladesh India	1962 1996		Diarrhea Diarrhea	G.B. Nair (Sozhamannan, unpublished)	
5411	ND	O42	Bangladesh	1961		Diarrhea	H. Smith collection	
ATCC 25873	037	ND	Czechoslovakia	1701		Diarrhea	ATCC 1	
CS365	O1	ND	Brazil		El tor	Diarrhea	C. Salles	
N16961	O1	01	India		El tor Inaba	Diarrhea	CVD 7	
AM2	O9	ND	India	1995		Diarrhea	G.B. Nair (Sozhamannan, unpublished)	
S21	O37	ND O1	Sudan		Elton	Diarrhea	CVD 2	
N16117 AI1837	O1 O139	O1 ND	Bangladesh		El tor Bengal	Diarrhea Diarrhea	CVD J. Albert 11	
981-75	O157 O65	ND	India	1975	Deligai	Diarrhea	T. Shimada 21	
CA385	01	01	india	1570	Rough	Diamira	CVD 21	
ATCC 25872	O37	ND	Czechoslovakia			Diarrhea	ATCC 1	
1322-69	O37	ND	India	1969			T. Shimada 21	
322	O1	ND			El tor	Diarrhea	CVD	
ATCC 25874	ND	ND	Czechoslovakia	1000		Diarrhea	ATCC 1	
MO10	O139	ND	India	1992		Diarrhea	P. Echeverria	
MO45 E7946	O139 O1	ND O1	India Bahrain	1992	El tor Ogonio	Diarrhea Diarrhea	T. Shimada CVD	
8585	ND	O1 O340	Iraq	1966	El tor Ogawa	Feces	H. Smith collection	
3083	01	01	maq	1500	El tor Ogawa	Diarrhea	CVD	
N15870	01	01	Bangladesh		Li tor Ogawa	Diarrhea	CVD	
RV79	O1	01	Sulawesi	1937	El tor Inaba	Diarrhea	CVD	
5066	ND	O24	Thailand	1960		Diarrhea	H. Smith collection	
6355	ND	O57	Bangladesh			Diarrhea	H. Smith collection	
5053	ND	O56	Thailand	1959		Water	H. Smith collection	
5078	ND	O37	Thailand	1959		Water	H. Smith collection	
6970 5069	ND ND	O312 O48	Bangladesh Thailand	1966 1959		Diarrhea Contact	H. Smith collection H. Smith collection	
498-7	O139	ND	Thailand	1939	CT^+ TCP^-	Diarrhea	P. Echeverria	
569B	01	01	India	1948	Classical Inaba	Diarrhea	CVD 7	
5011	ND	O333					H. Smith collection	
395	O1	O1	India		Classical	Diarrhea	CVD 7	
NIH35A3	01	ND		1941			T. Shimada 21	
7236	ND	O361					H. Smith collection	
7261 5152	ND ND	O362 O50	United States (Maryland)	1960		Water	H. Smith collection H. Smith collection	
C0545	O5	ND	India	1900		Diarrhea	G.B. Nair (Sozhamannan, unpublished)	
8-76	77	ND	India	1976		Diarrhea	T. Shimada 21	
571-88	O105	ND	India	1988		Diarrhea	T. Shimada 21	
234-93	O141	ND	India	1993		Diarrhea	T. Shimada 21	
1421-77	O80	ND	India	1977		Diarrhea	T. Shimada 21	
AS67	O190	ND	India	1996		Diarrhea	G.B. Nair (Sozhamannan, unpublished)	
AM124	011 ND	ND	India	1996		Diarrhea	G.B. Nair (Sozhamannan, unpublished)	
5043 5811	ND ND	O175 O102					H. Smith collection H. Smith collection	
7977	ND	O102 O18	Bangladesh	1965		Water	H. Smith collection	
8635	ND	O321	Dunghuteon	1900		i i utor	H. Smith collection	
5714	ND	O351					H. Smith collection	
7920	ND	O33	Japan	1968			H. Smith collection	
9183	ND	O347	Guam	1977		Unknown	H. Smith collection	
5051	ND	O94	Thailand	1959		Water	H. Smith collection	
5052	ND	O38	Thailand	1959	NAC OT	Water	H. Smith collection	
C677 9794	ND	014	Thailand		NAG-ST	Diarrhea	P. Echeverria	
AS12-1	ND O10	O357 ND	India	1995		Diarrhea	H. Smith collection G.B. Nair (Sozhamannan, unpublished)	
5180	ND	O176	India	1963		Diamica	H. Smith collection	
6701	ND	019	Hong Kong	1958		Water	H. Smith collection	
32-90	ND	ND	Thailand	1990	NAG-ST	Diarrhea	P. Echeverria 3	
5694	ND	077	Bangladesh	1962		Water	H. Smith collection	
C0845	083	ND	India	1995		Diarrhea	G.B. Nair (Sozhamannan, unpublished)	
5096	ND	016 ND	Thailand	1960		Devices	H. Smith collection	
169-68 8105	O22	ND 0358		1968		Environment	CVD (Sozhamannan, unpublished)	
7995	ND ND	O358 O320		1968		Sewer	H. Smith collection H. Smith collection	
AS414	O39	ND	India	1903		Diarrhea	CVD (Sozhamannan, unpublished)	
NG288-36	O139	ND	Thailand	1///	CT ⁻ TCP ⁻	Diarrhea	P. Echeverria	
	O27	ND	India	1994		Diarrhea	CVD (Sozhamannan, unpublished)	
C0560		O348	United States (Maryland)	1977		Water	H. Smith collection	

Continued on following page

Strain	Serogroup		Place where	Yr	Classification	Specimen	S 1/ f	
	Sakazaki	Smith	isolated	isolated	or description	origin	Source and/or reference	
9248	ND	O349	United States (Maryland)	1977		Water	H. Smith collection	
5029	ND	O61	Thailand	1959		Water	H. Smith collection	
8691	ND	O363					H. Smith collection	
M556	O74	ND	Argentina	1993			D. Karaolis 13	
PS15	ND	O106	United States (Maryland)			Sediment	C. Kaysner	
7449	ND	O64	Philippines	1962			H. Smith collection	
C0668	ND	ND	India	1994		Diarrhea	CVD (Sozhamannan, unpublished)	
C0639	O11	ND	India	1994		Diarrhea	CVD (Sozhamannan, unpublished)	
984-81	89	ND	India	1981		Diarrhea	T. Shimada 21	
5037	ND	O44	Thailand	1959			H. Smith collection	
C0603B	O108	ND	India	1994		Diarrhea	G.B. Nair (Sozhamannan, unpublished)	
1074-78	O1	01	Brazil	1978	Nonpathogenic El Tor	Sewer	CVD 15	
6291	ND	O46					H. Smith collection	
CS367	ND	ND	Brazil			Diarrhea	C. Salles	
8497	ND	O343	United States	1973		Septic	H. Smith collection	
5047	ND	O175	Thailand	1959		1	H. Smith collection	
7165	ND	O201	Bangladesh	1966		Water	H. Smith collection	
5697	ND	O83	Bangladesh	1962		Water	H. Smith collection	
5064	ND	O12	Nanking, People's Republic of China	1932?			H. Smith collection	
5103	ND	O22	Thailand	1959			H. Smith collection	
7902	ND	O115	Bangladesh	1962		Diarrhea	H. Smith collection	
NG653-36	O139	ND	Thailand		$CT^{-}TCP^{-}$	Diarrhea	P. Echeverria	
VO11627	O139	ND	Thailand		CT ⁻ TCP ⁻	Diarrhea	P. Echeverria	
8536	ND	O332	Yugoslavia			Sewer	H. Smith collection	
Arg3	O139	ND	6		NAG-ST	Environment	CVD	
9009	ND	O175	Hungary	1976		Environment	H. Smith collection	
M554	O83	ND	Germany	1994			D. Karaolis 13	
A-5	O31	ND	Japan			Shrimp	CVD 2	
NRT36S	O31	ND	Japan		NAG-ST	Diarrhea	CVD 18	
MO6-24	NA	NA	United States		V. vulnificus	Blood	CVD	
5310	NA	NA			V. vulnificus		H. Smith collection	
9115	NA	O345	Philippines	1976	V. parahaemolyticus	NonHD	H. Smith collection	
AS530	O45	NA	India	1997	1 2	Diarrhea	G.B. Nair	
AS555	NA	NA	India	1997		Diarrhea	G.B. Nair	
6358	NA	O160			V. mimicus		H. Smith collection	
6306	NA	O107	Bangladesh	1961	V. mimicus	Diarrhea	H. Smith collection	
61956	NA	NA	Bangladesh		V. mimicus	Diarrhea	CVD, Kaper	
523-80	O115	NA	India	1980	V. mimicus	Diarrhea	T. Shimada 21	
8643	NA	NA			V. mimicus		H. Smith collection	

TABLE 1—Continued

^a ND, not determined; CT, cholera toxin; ATCC, American Type Culture Collection; CVD, Center for Vaccine Development, University of Maryland, Baltimore; NA, not applicable.

Moeller's ornithine decarboxylase, lysine decarboxylase, and arginine dihydrolase, and purple broth with glucose, sucrose, or arabinose (Remel). Critical reactions for selected strains are shown in Table 2.

Figure 2 shows the phylogenic tree analysis on 705 bases of sequence from the *recA* gene of 113 bacterial strains. A total of 187 nucleotides were phylogenetically informative, 55 were phylogenetically uninformative, and 463 were invariant. As expected, the *Vibrio vulnificus* and *Vibrio parahaemolyticus* sequences formed out-groups. One strain from the Smith collection (strain 5310), previously designated non-O1 *V. cholerae*, clustered with *V. vulnificus*, an identification that was confirmed biochemically. Each of these clusters occurred 100% of the time in 1,000 bootstrap replicates. When the *V. vulnificus* and *V. parahaemolyticus* groups were removed, the number of phylogenetically informative sites was reduced to 156.

The cluster labeled *Vibrio mimicus* in Fig. 2 contains four strains that are sucrose negative (characteristic for *V. mimicus*) and a strain that is biochemically indistinguishable from *V. cholerae* (strain 8643). The cluster occurred 100% of the time in 1,000 bootstrap replicates. The cluster labeled *V. parahaemolyticus* in Fig. 2 contains one typical strain (9115) that is arabinose positive and sucrose, lactose, and citrate negative and contains two strains that are biochemically similar to *V. cholerae* (AS530 and AS555). AS530 and AS555 show consid-

erable distance (100% in 1,000 bootstrap replicates) from the more typical *V. parahaemolyticus* strain and may be atypical *V. parahaemolyticus* strains, *V. cholerae* strains with atypical *recA* sequences, or a previously uncharacterized species of *Vibrio*.

FIG. 1. Partial sequence for the *recA* gene of the El Tor strain N16961, as aligned with 111 other analyzed sequences. An asterisk below the base indicates that the base is conserved in all 112 strains; a period indicates that the base varies in at least one strain. The hyphen at bp 201 is to accommodate strain C0545, which has a 1-bp insertion at this point and a 1-bp deletion 11 bp later.

TABLE 2.	Selected biochemical	reactions of out-group	V. cholerae strains
----------	----------------------	------------------------	---------------------

Strain	Reaction with:							
	Arginine dihydrolyase	Lysine decarboxylase	Ornithine decarboxylase	Arabinose	Sucrose	ONPG ^a	VP (API 20E) ^b	
6358	_	+	+	_	+	+	_	
6306	_	+	+	_	_	+	_	
61956	_	+	+	+	_	+	_	
8691	-	+	+	_	+	+	+	
AS530	-	+	+	_	+	+	+	
AS555	—	+	+	—	+	+	-	
9115	—	+	+	—	—	-	—	
NRT-36S	—	+	+	—	+	+	+	
AM25	—	+	+	—	+	+	+	
AS119	—	+	+	—	+	+	—	
A-5	—	+	+	—	+	+	+	
6707	—	+	+	—	+	+	-	
AM1070	—	+	+	—	+	+	+	
5411	—	+	+	—	+	+	+	
6313	—	+	-	—	+	+	+	
6337	_	+	+	_	+	+	+	

^{*a*} ONPG, *o*-nitrophenyl-β-D-galactopyranoside.

^b VP, Voges-Proskauer.

The cluster labeled '5' in Fig. 2 contains five strains that are typical of *V. cholerae*, one Smith strain (6313) that is ornithine decarboxylase negative (*V. cholerae* is 99% positive [17]), and one strain differing from typical *V. cholerae* in three tests (AM25, which was indole negative and sorbitol and rhamnose positive). It was distinct 95% of the time in 1,000 bootstrap replicates from the rest of the cholera-causing strains. A final cluster containing only NAG-ST-producing Sakazaki sero-group O31 strains (A5 and NRT36S) also diverges from the main *V. cholerae* cluster (distinct in 97% of 1,000 bootstrap replicates). The presence of biochemically identified *V. cholerae* in these four clusters suggests that there is a substantial amount of genetic divergence within *V. cholerae* or that biochemical tests may be more variable within the species than previously recognized.

Our analysis indicates that several Smith-type strains are actually other species of *Vibrio*, reflecting the improvements in *Vibrio* taxonomy since the collection was first assembled. More than 90% of the *V. cholerae* strains diverge from each other by less than 10% of the sequence. Thus, the tree is shallow, and although some clusters are well supported by bootstrap analysis, potentially interesting subdivisions of this species cannot be unambiguously identified.

In keeping with previously reported studies utilizing other molecular typing techniques (4, 19, 25, 26), V. cholerae O1 El Tor isolates tended to cluster together. The cluster was distinct in 73% of 1,000 bootstrap replicates. While O139 Bengal strains generally fell within the El Tor cluster, there were several strains (an environmental strain from Argentina [Arg-3] and three nontoxigenic clinical isolates from Thailand [NG653/36, VO11627, and NG288/36], which were also atypical of El Tor by ribotyping [P. Echeverria, personal communication]) that were not within the El Tor clade. The observation that toxigenic O139 strains group with El Tor O1 strains is consistent with previous studies, suggesting that the Bengal O139 strain arose from a seventh-pandemic strain that had acquired new genes for O-antigen synthesis. The El Tor group did include four toxigenic Sakazaki serogroup O37 strains from Czechoslovakia and Sudan. In ribotyping studies the O37 strains showed slight divergence from both El Tor (seventhpandemic) and classical (sixth-pandemic) clades (D. K. R. Karaolis, S. Sozhamannan, J. A. Johnson, and J. B. Kaper,

Abstr. 98th Gen. Meet. Am. Soc. Microbiol., abstr. B-179, p. 85, 1998). Analysis of genes associated with CTX ϕ and the *Vibrio* pathogenicity island (VPI) demonstrated variations unique to the O37 strains, suggesting that acquisition of these phages by strains within this serogroup occurred at a different points in time (Karaolis et al., Abstr. 98th Gen. Meet. Am. Soc. Microbiol.).

Separation of El Tor and classical clades is well supported by ribotyping, multilocus enzyme electrophoresis, PFGE, and sequencing of the asd, ctxA, and ctxB genes (6, 13, 26). However, we found that classical strains 395 and 569B formed a cluster with a Sakazaki O139 strain (498-7) and a Smith serogroup O333 strain (5011). In keeping with our results with V. cholerae O1 El Tor strain 1074-78, prior studies have demonstrated that environmental O1 strains generally do not fall within the sixthor seventh-pandemic clades (13). Four clinical isolates from India (AM2, AM107, C0639, and C0545) within nonepidemic Sakazaki serogroups (i.e., not O1, O37, or O139), which have been shown in the laboratory to cause severe diarrhea in rabbits (S. Sozhamannan, unpublished data), had divergent recA sequences. One strain (AM2, Sakazaki serogroup O9) was identical to the El Tor strains, suggesting a common strain background. The other three (in Sakazaki serogroups O5, O11, and O144) had recA sequences that diverged widely from those of epidemic strains.

As suggested by the above observations, V. cholerae serogroup designations do not correlate with phylogeny, at least as manifested by recA sequence divergence. There is sufficient recA sequence divergence among strains within Sakazaki serogroups O1, O11, O39, O83, and O139 and Smith serogroup O175 for strains within a single serogroup to appear in different clades. The largest clade (El Tor) contains Sakazaki serogroups O1, O139, O37, and O9 and one strain for which we do not have Sakazaki typing data. The O139 pandemic strain is thought to have arisen by horizontal transfer when the biosynthesis genes for the O side chain of lipopolysaccharide O1 were replaced in an O1 El Tor strain. Most O139 strains are clonal, as indicated by molecular fingerprinting methods, such as ribotyping and PFGE. Several unusual nontoxigenic isolates included in this study fell in other clusters. One of these strains may have served as the source of the O139-specific DNA acquired by the Bengal strain. Our data, showing O139 strains

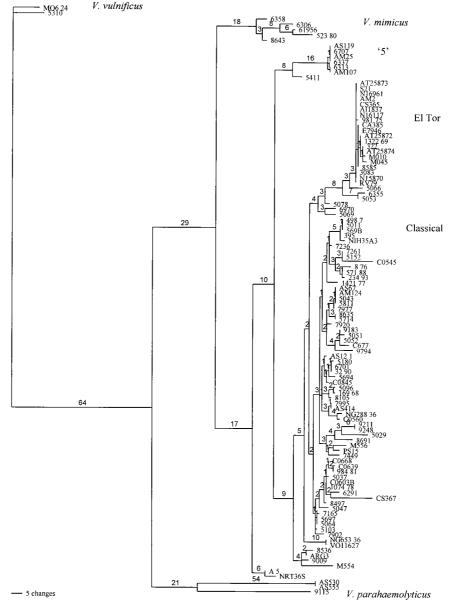


FIG. 2. Neighbor-joining tree of selected strains of Vibrio. The numbers on the branches indicate the number of the nucleotide changes; terminal branch lengths were suppressed.

in four distinct clades, raises the possibility that there were many such exchanges. Clustering of the O9 clinical isolate AM2 and the O37 toxigenic strains within the El Tor clade may reflect horizontal transfer of these other O side chain lipopolysaccharide biosynthesis genes into the O1 El Tor strain background. While there is clearly a need for further analysis of sequence data from other loci, our observation of divergent *recA* sequences in each of a number of different serogroups (O1, O11, O37, O83, and O139) and the presence of strains from multiple serotypes (O1, O37, O139, and O9) with identical *recA* sequences supports the hypothesis that there is frequent horizontal transfer of genes associated with O-antigen synthesis among *V. cholerae* strains.

Nucleotide sequence accession numbers. Individual sequences were entered into GenBank as accession no. AF301020 through AF301131.

REFERENCES

- Aldova, E., K. Laznickova, E. Stepankova, and J. Lietva. 1968. Isolation of nonagglutinable vibrios from an enteritis outbreak in Czechoslovakia. J. Infect. Dis. 118:25–31.
- Arita, M., T. Takeda, T. Honda, and T. Miwatani. 1986. Purification and characterization of *Vibrio cholerae* non-O1 heat-stable enterotoxin. Infect. Immun. 52:45–49.
- Bagchi, K., P. Echeverria, J. D. Arthur, O. Sethabutr, O. Serichantalergs, and C. W. Hoge. 1993. Epidemic of diarrhea caused by *Vibrio cholerae* non-O1 that produced heat-stable toxin among Khmers in a camp in Thailand. J. Clin. Microbiol. **31**:1315–1317.
- Beltrán, P., G. Delgado, A. Navarro, F. Trujillo, R. K. Selander, and A. Cravioto. 1999. Genetic diversity and population structure of *Vibrio cholerae*. J. Clin. Microbiol. 37:581–590.
- Bik, E. M., A. E. Bunschoten, R. D. Gouw, and F. R. Mooi. 1995. Genesis of the novel epidemic *Vibrio cholerae* O139 strain: evidence for horizontal transfer of genes involved in polysaccharide synthesis. EMBO J. 14:209–216.
- Cameron, D. N., F. M. Khambaty, I. K. Wachsmuth, R. V. Tauxe, and T. J. Barrett. 1994. Molecular characterization of *Vibrio cholerae* O1 strains by

pulsed-field gel electrophoresis. J. Clin. Microbiol. 32:1685-1690.

- Clements, M. L., M. M. Levine, C. R. Young, R. E. Black, Y. L. Lim, R. M. Robins-Browne, and J. P. Craig. 1982. Magnitude, kinetics, and duration of vibriocidal antibody responses in North Americans after ingestion of *Vibrio cholerae*. J. Infect. Dis. 145:465–473.
- Comstock, L. E., J. A. Johnson, J. M. Michalski, J. G. Morris, Jr., and J. B. Kaper. 1996. Cloning and sequence of a region encoding surface polysaccharide of *Vibrio cholerae* O139 and characterization of the insertion site in the chromosome of *Vibrio cholerae* O1. Mol. Microbiol. 19:815–826.
- Feil, E., J. Zhou, J. Maynard Smith, and B. G. Spratt. 1996. A comparison of the nucleotide sequences of the *adk* and *recA* genes of pathogenic and commensal *Neisseria* species: evidence for extensive interspecies recombination within *adk*. J. Mol. Evol. 43:631–640.
- Johnson, J. A., C. A. Salles, P. Panigrahi, M. J. Albert, A. C. Wright, R. J. Johnson, and J. G. Morris, Jr. 1994. *Vibrio cholerae* O139 synonym Bengal is closely related to *Vibrio cholerae* El Tor but has important differences. Infect. Immun. 62:2108–2110.
- Kaper, J. B., S. L. Moseley, and S. Falkow. 1981. Molecular characterization of environmental and nontoxigenic strains of *Vibrio cholerae*. Infect. Immun. 32:661–667.
- Karaolis, D. K. R., J. A. Johnson, C. C. Bailey, E. C. Boedeker, J. B. Kaper, and P. R. Reeves. 1998. A Vibrio cholerae pathogenicity island associated with epidemic and pandemic strains. Proc. Natl. Acad. Sci. USA 95:3134–3139.
- Karaolis, D. K. R., R. Lan, and P. R. Reeves. 1995. The sixth and seventh cholera pandemics are due to independent clones separately derived from environmental, nontoxigenic, non-O1 *Vibrio cholerae*. J. Bacteriol. 177:3191– 3198.
- Karaolis, D. K. R., S. Somara, D. R. Maneval, Jr., J. A. Johnson, and J. B. Kaper. 1999. A bacteriophage encoding a pathogenicity island, a type-IV pilus and a phage receptor in cholera bacteria. Nature 399:375–379.
- Levine, M. M., R. E. Black, M. L. Clements, L. Cisneros, A. Saah, D. R. Nalin, D. M. Gill, J. P. Craig, C. R. Young, and P. Ristaino. 1982. The pathogenicity of nonenterotoxigenic *Vibrio cholerae* serogroup O1 biotype El Tor isolated from sewage water in Brazil. J. Infect. Dis. 145:296–299.
- 16. Maiden, M. C. J., J. A. Bygraves, E. Feil, G. Morelli, J. E. Russell, R. Urwin, Q. Zhang, J. Zhou, K. Zurth, D. A. Caugant, I. M. Feavers, M. Achtman, and

Editor: V. J. DiRita

B. G. Spratt. 1998. Multilocus sequence typing: a portable approach to the identification of clones within populations of pathogenic microorganisms. Proc. Natl. Acad. Sci. USA **95**:3140–3145.

- McLaughlin, J. C. 1995. Vibrio, p. 465–476. In P. R. Murray, E. J. Baron, M. A. Pfaller, F. C. Tenover, and R. H. Yolken (ed.), Manual of clinical microbiology, 6th ed. ASM Press, Washington, D.C.
- Morris, J. G., Jr., T. Takeda, B. D. Tall, G. A. Losonsky, S. K. Bhattacharya, B. D. Forrest, B. A. Kay, and M. Nishibuchi. 1990. Experimental non-O group 1 Vibrio cholerae gastroenteritis in humans. J. Clin. Investig. 85:697– 705.
- Popovic, T., C. Bopp, Ø. Olsvik, and K. Wachsmuth. 1993. Epidemiologic application of a standardized ribotype scheme for *Vibrio cholerae* O1. J. Clin. Microbiol. 31:2474–2482.
- Salles, C. A., and H. Momen. 1991. Identification of Vibrio cholerae by enzyme electrophoresis. Trans. R. Soc. Trop. Med. 85:544–547.
- Shimada, T., E. Arakawa, K. Itoh, T. Okitsu, A. Matsushima, Y. Asai, S. Yamai, T. Nakazato, G. B. Nair, M. J. Albert, and T. Takeda. 1994. Extended serotyping scheme for *Vibrio cholerae*. Curr. Microbiol. 28:175–178.
- Smith, H. L., Jr. 1979. Serotyping of non-cholera vibrios. J. Clin. Microbiol. 10:85–90.
- Stroeher, U. H., G. Parasivam, B. K. Dredge, and P. A. Manning. 1997. Novel *Vibrio cholerae* O139 genes involved in lipopolysaccharide biosynthesis. J. Bacteriol. 179:2740–2747.
- Thompson, J. D., T. J. Gibson, F. Plewniak, F. Jeanmougin, and D. G. Higgins. 1997. The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 24:4876–4882.
- Wachsmuth, I. K., G. M. Evins, P. I. Fields, O. Olsvik, T. Popovic, C. A. Bopp, J. G. Wells, C. Carrillo, and P. A. Blake. 1993. The molecular epidemiology of cholera in Latin America. J. Infect. Dis. 167:621–626.
- Wachsmuth, K., Ø. Olsvik, G. M. Evins, and T. Popovic. 1994. Molecular epidemiology of cholera, p. 357–370. *In* I. K. Wachsmuth, P. A. Blake, and Ø. Olsvik (ed.), *Vibrio cholerae* and cholera: molecular to global perspectives. ASM Press, Washington, D.C.
- Waldor, M. K., and J. J. Mekalanos. 1996. Lysogenic conversion by a filamentous phage encoding cholera toxin. Science 272:1910–1914.