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Abstract 

Background:  Immune checkpoint blockades (ICBs) have emerged as a promising treatment for cancer. Recently, 
tumour mutational burden (TMB) and neoantigen load (NAL) have been proposed to be potential biomarkers to 
predict the efficacy of ICB; however, they were limited by difficulties in defining the cut-off values and inconsistent 
detection platforms. Therefore, it is critical to identify more effective predictive biomarkers for screening patients who 
will potentially benefit from immunotherapy. In this study, we aimed to identify comutated signaling pathways to 
predict the clinical outcomes of immunotherapy.

Methods:  Here, we comprehensively analysed the signaling pathway mutation status of 9763 samples across 33 
different cancer types from The Cancer Genome Atlas (TCGA) by mapping the somatic mutations to the pathways. We 
then explored the comutated pathways that were associated with increased TMB and NAL by using receiver operat-
ing characteristic (ROC) curve analysis and multiple linear regressions.

Results:  Our results revealed that comutation of the Spliceosome (Sp) pathway and Hedgehog (He) signaling 
pathway (defined as SpHe-comut+) could be used as a predictor of increased TMB and NAL and was associated with 
increased levels of immune-related signatures. In seven independent immunotherapy cohorts, we validated that 
SpHe-comut+ patients exhibited a longer overall survival (OS) or progression-free survival (PFS) and a higher objective 
response rate (ORR) than SpHe-comut− patients. Moreover, a combination of SpHe-comut status with PD-L1 expres-
sion further improved the predictive value for ICB therapy.

Conclusion:  Overall, SpHe-comut+ was demonstrated to be an effective predictor of immunotherapeutic benefit in 
seven independent immunotherapy cohorts and may serve as a potential and convenient biomarker for the clinical 
application of ICB therapy.
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Introduction
In recent years, immunotherapy with immune check-
point blockades (ICBs) has emerged as a promising 
treatment for advanced-stage cancer. There are three 
main types of ICB therapies, including inhibition of pro-
grammed cell death 1 (PD-1) or ligand 1 (PD-L1) and 
cytotoxic T-lymphocyte antigen-4 (CTLA-4), which have 
been approved by the FDA for a range of solid tumours 
[1, 2]. However, only a small subset of patients can ben-
efit from ICBs, and the clinical application of ICBs is still 
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limited. Thus, it is necessary to identify new biomarkers 
to screen patients who may respond to ICB therapy.

Tumour mutational burden (TMB), defined as the 
total number of somatic mutations per coding area of 
the genome in a tumour [3], has gained increasing rec-
ognition as a clinically predictive biomarker for immu-
notherapy response in several cancer types, including 
melanoma, non-small cell lung cancer (NSCLC), and 
urothelial carcinoma [4, 5]. However, TMB varies across 
different cancer types because of the heterogeneity of 
cancer. Moreover, increasing evidence indicates that 
TMB assessment and bioinformatics interpretation are 
also different across various targeted sequencing panels 
[6]. Therefore, an optimal threshold for classifying a can-
cer patient into TMB-high or TMB-low in ICB treatment 
remains unclear [7], which limits TMB as a biomarker for 
clinical application. Moreover, neoantigen load (NAL) 
is another potential ICB biomarker: Anagnostou et  al. 
reported that ICB had significant therapeutic effects 
against tumours with increased mutation-associated neo-
antigen load [8]. Recent studies have shown that somatic 
mutations can give rise to neoepitopes, which may serve 
as neoantigens allowing for enhanced immunogenicity 
[9, 10]. However, NAL has the same limitation as TMB, 
which also restricts it as an effective biomarker for ICB 
[11].

Previous studies have demonstrated that mutations in 
specific genes may be associated with ICB efficacy [12, 
13]. For example, Boichard et  al. found that APOBEC-
related mutagenesis increases immunogenicity, which 
was correlated with responses to immunotherapy [14]. 
Alterations in DNA damage response (DDR) genes are 
associated with increased TMB and tumour infiltration 
by T cells [15]. Pan et al. revealed that a 52-gene muta-
tion signature could predict immunotherapy benefits in 
NSCLC [13]. These studies are mainly based on the gene 
level; nevertheless, exploring the impacts of mutations 
on immunotherapy at the pathway level will provide us 
with more robust results than at the gene level because 
of tumour heterogeneity. This may be because even if 
patients have different genetic mutations, these mutated 
genes tend to be ultimately involved in certain pathways 
[16, 17].

Thus, several pathway-based biomarker identifica-
tion methods have been developed. Li et  al. revealed 
that substantial alterations of genes in the Notch path-
way may predict the prognosis of NSCLC patients [18]. 
Another study found that mutations in the PI3K-AKT-
mTOR pathway can serve as predictors of the efficacy of 
immunotherapy in gastric adenocarcinoma [19]. Wang 
et  al. suggested that the co-occurrence of alterations in 
the related pathways may help elucidate functionally rel-
evant mechanisms that might inform treatment options, 

and they thus identified that comutation in some DDR 
pathways can serve as a potential biomarker for ICB [20]. 
However, they only focused on DDR-related pathways 
and did not consider other essential pathways, such as 
signaling pathways. Signaling pathways control essential 
biological progression, including molecular mechanisms, 
disease states, and drug responses [21–26]. Mutations 
in specific signaling pathways, for example, the NOTCH 
signaling pathway, have been proposed to be associated 
with the response to ICB in many cancer patients. Never-
theless, comutations in the signaling pathways of immu-
notherapy remain to be elucidated.

In this study, we comprehensively analysed the signal-
ing pathway mutation status of 9763 samples across 33 
different cancer types from The Cancer Genome Atlas 
(TCGA) to explore the association between the comu-
tated pathway and immunotherapy response. ROC 
curve and multiple linear regression analyses were per-
formed to determine the optimal combinations of comu-
tated signaling pathways associated with increased TMB 
and NAL. Moreover, we further explored the associa-
tions between comutation in signaling pathways and 
the efficacy of immunotherapy. Collectively, we aimed 
to identify comutated signaling pathways to predict the 
clinical outcomes of immunotherapy, which may provide 
a potential and convenient biomarker for the future clini-
cal application of immunotherapy.

Materials and methods
Data collection
We first collected 9763 cancer patients across 33 cancer 
types from the GDC TCGA data portal (https://​portal.​
gdc.​cancer.​gov/), and their somatic mutations (whole-
exome sequencing), gene expression (RNA-seq), and 
clinical data (sex, age, survival information, etc.) were 
downloaded accordingly. Then, the corresponding neo-
antigen data of 5446 TCGA cancer patients across 20 
cancer types were downloaded from the TCIA (https://​
tcia.​at/​neoan​tigens) [27], and the microsatellite instabil-
ity (MSI) data from 5930 TCGA cancer patients across 18 
cancer types were obtained from the research of Hause 
et  al. [28]. To further validate the association between 
comutated signaling pathways and the clinical benefit 
of ICBs, we retrieved seven clinical cohorts treated with 
ICBs from the published studies: (1) the Inova cohort 
includes 50 advanced melanoma patients treated with 
anti-PD-(L)1 or plus anti-CTLA-4 therapy [29]; (2) the 
Rizvi cohort includes 34 patients with NSCLC treated 
with anti-PD-1 therapy, with the tumour tissues profiled 
with the MSKCC panel [30]; (3) the Allen and Snyder 
cohorts respectively include 110 and 64 patients with 
melanoma who received anti-CTLA-4 therapy [31, 32]; 
(4) the Hellmann cohort consists of 75 patients with 
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NSCLC treated with anti-PD-1 plus anti-CTLA-4 ther-
apy [33]; (5) the Miao cohort contains 284 patients with 
mixed solid tumours (including non-small cell lung can-
cer, melanoma, head and neck cancer, bladder cancer, 
and clear cell renal cell carcinoma) treated with anti-
CTLA-4 or PD-1/PD-L1 inhibitors [34]; (6) the MSKCC 
cohort, which was part of a pan-cancer study for tar-
geted sequencing, including 1,661 characterized patients 
treated with anti-CTLA-4 or PD-1/PD-L1 inhibitors 
[35]. Patients’ responses to immunotherapy were based 
on definitions consistent with how they were evalu-
ated in the above cohorts. For the Inova, Allen, Snyder, 
and Miao cohorts, the tumour immunotherapy response 
was defined by the Response Evaluation Criteria in Solid 
Tumours 1.1 (RECIST 1.1), and patients who experienced 
a complete response (CR) or partial response (PR) were 
classified as responders; patients who experienced stable 
disease (SD) or progressive disease (PD) were classified 
as non-responders. For the Rizvi and Hellmann cohorts, 
patients were classified as having a durable clinical ben-
efit (DCB) (complete response [CR]/partial response [PR] 
or stable disease [SD] that lasted > 6 months) or no dura-
ble benefit (NDB) (progression of the disease [PD] or SD 
that lasted ≤ 6 months). Detailed information regarding 
the above cohorts is shown in Additional file 1: Table S1. 
We also summarized the details for the time period and 
dose selection of the above cohorts in Additional file  2: 
Table S2.

We then downloaded the Kyoto Encyclopedia of Genes 
and Genomes (KEGG) pathways from the MsigDB data-
base [36] and manually extracted 68 canonical signaling 
pathways.

Identifying the comutated pathways associated with high 
TMB and high NAL
Using TCGA somatic mutation data, we constructed a 
non-silent gene binary mutation matrix, in which each 
column represents a sample and each row represents a 
mutated gene. If a gene mutation occurred in one sam-
ple, the element was 1; otherwise, it was 0. In our study, 
we extracted only non-silent somatic mutations in the 
genomic coding regions, including missense mutations, 
nonsense mutations, insertions, deletions, and splice 
mutations. Genes with mutation frequencies greater than 
1% were considered. Then, we mapped the mutated genes 
into signaling pathways, and if a pathway involved at least 
one mutated gene, the pathway was defined as mutated. 
Pathways with a mutation frequency of at least 1% were 
retained. For each pathway, we used the multivariate Cox 
proportional hazard model to estimate the association 
between the pathway mutation status and overall survival 
(OS) by accounting for known covariates such as patient 
age, sex, and cancer type. The statistical significance 

levels (p values) of pathways were then corrected with 
the false discovery rate (FDR) method proposed by 
Benjamini and Hochberg [37]. Then, the pathways with 
FDR < 0.05 were retained for further analysis.

High TMB and NAL were proposed to be associated 
with an improved response to ICB treatment [38]. In this 
study, TMB was calculated as the total number of non-
silent somatic mutations per coding area of the genome 
in a tumour, and the NAL data were downloaded from 
the TCIA (https://​tcia.​at/​neoan​tigens). We intended to 
identify the comutated pathways associated with high 
TMB and NAL. To do this, we first divided the TCGA 
cancer patients into high TMB/NAL and low TMB/NAL 
groups according to the top quartile of TMB/NAL levels. 
Receiver operating characteristic (ROC) curve analysis 
was then used to determine the cut-off points for path-
way mutation counts based on the highest Youden index. 
According to the cut-off of pathway mutation counts, we 
further screened which pathways were comutated. Mul-
tiple linear regression analysis was used to test the cor-
relation between the survival-associated pathways and 
TMB/NAL. Considering the consistency of TMB and 
NAL data, the pathways with a suitable β coefficient were 
retained as comutated (comut+) pathways.

Survival analysis (OS or PFS) for the pathway comuta-
tion status was performed by Kaplan–Meier curves, and 
their significance was assessed by the log-rank method. 
Fisher’s exact test was used to identify the association 
between the pathway comutation status and ORR.

Differential analysis of immune‑related features 
between pathway comut+ and comut− patients
We first collected immune response-related genes, 
including immune checkpoints, T-cell receptor genes, 
tumour microenvironment (TME)-related genes, inter-
feron-gamma (IFNγ)-associated genes, etc., from the 
published articles [39–41], which include 47 genes and 
were listed in Additional file 1: Table S3. For gene expres-
sion data of TCGA cancer patients, FPKM-normalized 
profiles were used, and all expression values were then 
log2(value + 1) transformed. We used the Wilcoxon rank-
sum test to compare the differential expression levels of 
these immune response-related genes between comut+ 
and comut− patients. The resulting p values were cor-
rected using the FDR method.

Then, we compared the differences in immune-related 
signature features, including immune score, cytolytic 
activity (CYT) score, major histocompatibility com-
plex (MHC)-I score, and T-cell-inflamed immune gene 
expression profile (GEP) score, between comut+ and 
comut− patients. The immune score was estimated by 
the “ESTIMATE” R package [42]. The CYT score [43] and 
MHC-I score [44] were calculated by taking the mean 
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expression of their signature genes. The GEP score [45] 
was estimated by performing ssGSEA using the GEP 
gene list.

Furthermore, the GSEA method was applied to identify 
the pathways associated with pathway comutation status. 
Specifically, a ranked gene list was produced based on the 
t-score of expression values between comut+ and comut− 
patients, and then the functional gene sets or pathways 
were mapped to the ranked list. We performed these 
analyses using the “clusterProfiler” package [46].

Meta‑analysis of ORR and OS or PFS based on pathway 
comutation status across multiple immunotherapy cohorts
To pool outcomes across multiple immunotherapy 
cohorts, the random-effect inverse-variance weighted 
approach was employed, which is computed by hazard 
ratio (HR) and its 95% confidence interval (CI) to assess 
the magnitude of influence on therapeutic benefits such 
as ORR, PFS, and OS based on pathway comut+ status. 
We used I2 statistics to assess the heterogeneity across 
different immunotherapy cohorts. Pheterogeneity > 0.1 and 
I2 < 50% indicated that there was no significant inter-
cohort heterogeneity, and the results were consistent in 
these cohorts.

Results
Identification of comutated signaling pathways to estimate 
TMB and NAL
A detailed flow chart of our study is shown in Fig. 1. In 
the TCGA cohort of 9763 patients across 33 cancer types, 
genes with a non-silent mutation in at least 1% of cancer 

patients were retained. Then, the genes were mapped to 
the 68 signaling pathways, and if any one of the genes 
involved in the pathway was mutated, the pathway was 
defined as mutated. To explore whether the mutations in 
signaling pathways could predict higher TMB and NAL, 
we grouped patients into two subgroups: “Pathway+”, 
those with mutations in one or more signaling pathways; 
“Pathway−”, those without mutations in any of the sign-
aling pathways. Comparing the TMB and NAL levels 
between the two subgroups, we found that both TMB 
and NAL levels were significantly higher in the Pathway+ 
patient subgroup than in the Pathway− patient subgroup 
by analysing the sequencing data from TCGA (Addi-
tional file  1: Fig. S1A, B), suggesting that tumours with 
more pathway mutations may generate and express more 
tumour-specific peptides, which are defined as neoan-
tigens. Neoantigens are subsequently expressed on the 
surface of tumour cells via the major histocompatibility 
complex (MHC), which can activate a T-cell-mediated 
cytotoxic anti-tumour immune response and drive T-cell 
population expansion, thereby potentially affecting the 
immunotherapy response. These results indicate that 
comutations of multiple signaling pathways can be used 
to predict higher TMB and NAL levels.

As not all signaling pathways are associated with can-
cer, we screened the survival-associated pathways. Spe-
cifically, for each pathway, we used the multivariate Cox 
proportional hazard model to estimate the association 
between the pathway mutation status and overall sur-
vival (OS) by accounting for known covariates, includ-
ing patient age, sex, and cancer type. With FDR < 0.05, 

Fig. 1  Flowchart to identify comutations in signaling pathways
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six significant pathways, such as the ECM receptor inter-
action (ECMRI) pathway, Spliceosome (Sp) pathway, 
Hedgehog (He) signaling pathway, and RNA degrada-
tion pathway, etc., were used for the following analysis 
(Additional file 1: Table S4). To further analyse how many 
pathways could be jointly used to predict higher TMB 
and NAL levels, receiver operating characteristic (ROC) 
curves were used to determine the optimal number of 
pathways in the pathway combination. To do this, we 
first classified the TCGA cancer patients into high TMB/
NAL (TMB-H/NAL-H) and low TMB/NAL (TMB-L/
NAL-L) groups according to the top quartile of TMB/
NAL levels. When compared with other combinations 
of pathways in TMB-H estimation, mutations covering 
two pathways demonstrated the best Youden index, with 
61.9% sensitivity and 88.5% specificity (Fig. 2A). Further-
more, the TCGA NAL data showed a similar result, with 
a sensitivity of 64.7% and specificity of 87.5% (Fig.  2B). 
These results indicated that the comutation of two signal-
ing pathways may better predict higher TMB and NAL 
levels.

Considering latent interactions between different sign-
aling pathways, we then used a multiple linear regression 
approach to determine the most efficient mode of path-
way combination to research the relationships of signal-
ing pathway mutations with TMB or NAL. As a result, 
the Spliceosome (Sp) pathway, Hedgehog (He) signaling 
pathway, and the ECMRI pathway, which have suitable β 
coefficients and contribute more to both TMB and NAL, 
were identified (Fig.  2C, D). To obtain the optimal two 
pathways, we compared the TMB and NAL for each pair 
of comutation pathway combinations. Despite not being 
able to completely exclude the effects of other comu-
tation combinations, patients who had comutation of 
Sp-He illustrated significantly higher TMB and NAL than 
those with comutation of Sp-ECMRI and He-ECMRI or 
other comutations (Fig. 2E, F). Therefore, we defined the 
comutation in Sp-He pathways as “SpHe-comut+”; oth-
erwise, we defined it as “SpHe-comut−“. By comparing 
the TMB and NAL levels between the “SpHe-comut+” 
and “SpHe-comut−” groups, we discovered that SpHe-
comut+ patients showed significantly higher TMB and 

NAL than SpHe-comut− patients (Additional file  1: Fig. 
S1C, D).

To explore the distribution of SpHe-comut status, we 
found that 702 patients were defined as SpHe-comut+ 
(7.19%) among the 9763 cases in the TCGA database. 
The number of SpHe-comut+ patients varied among 
different cancer types, ranging from 0% in KICH to 
25.89% in SKCM (Additional file 1: Fig. S1E). We found 
that the distribution of TMB and NAL levels also varied 
among cancer types (Additional file 1: Fig. S1F, G), sim-
ilar to the distribution of SpHe-comut+ among cancer 
types. We then analysed whether the presence of SpHe-
comut+ was associated with an increased level of TMB 
or NAL. The results showed that there were signifi-
cantly higher TMB (Fig. 2G) and NAL (Fig. 2H) levels in 
SpHe-comut+ patients than in SpHe-comut− patients 
across cancer types with an approved indication of 
immune checkpoint inhibitors (such as SKCM, LUAD, 
HNSC, and BLCA, among others), except for the NAL 
levels of KIRC and LIHC. This may be due to the rel-
atively low NAL levels in KIRC and LIHC (Fig.  2H), 
resulting in the difference not reaching statistical sig-
nificance. Additionally, similar results were obtained 
for other cancer types (Additional file 1: Tables S5 and 
S6). Moreover, researchers found that MSI was strongly 
associated with TMB, and we then analysed whether 
the SpHe-comut+ status could be used to predict MSI-
high (MSI-H) status. The results showed that SpHe-
comut+ contributed significantly to MSI-H (Fisher’s 
exact test, P < 0.001) and predicted MSI-H with a sen-
sitivity of 63.22% and a specificity of 94.15% (Fig.  2I). 
We then found that patients in the MSI-H/SpHe-
comut+ group had significantly higher TMB than those 
in the MSI-H/SpHe-comut− group, and in comparing 
microsatellite stability (MSS)/SpHe-comut+ to MSS/
SpHe-comut−, a significant difference in TMB was 
also observed (Fig. 2J). Furthermore, the waterfall plot 
showed that the patients in the SpHe-comut+ group 
had higher TMB and NAL levels, which covered more 
cancer patients than the MSI-H group (Fig. 2K). These 
findings suggested that SpHe-comut+ could be used to 
substitute for TMB estimation and could predict more 
TMB-H patients than MSI-H patients.

(See figure on next page.)
Fig. 2  Correlations between SpHe-comut status and TMB, NAL, and MSI-H. A, B ROC curves of the number of comutated signaling pathways to 
predict higher TMB (A) and higher NAL levels (B) from TCGA. C, D Multiple linear regression β coefficients between six signaling pathways and TMB 
(C) and NAL (D). E, F Comparison of TMB (E) and NAL (F) between patients with Sp-ECMRI comutation, He-ECMRI comutation, Sp-He comutation, 
and other comutations. G, H Comparison of TMB (G) and NAL (H) between SpHe-comut+ and SpHe-comut− groups in tumors with the approved 
indication of immune therapy. I Overlapping of patients with SpHe-comut+ and MSI-H. J Comparison of TMB in different combinations of 
SpHe-comut status (SpHe-comut+ and SpHe-comut−) and MSI status (MSI-H and MSS) groups. K Waterfall plot of two signature mutation pathways 
and the mutation genes involved in these pathways. *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001; *****p < 0.00001. BLCA bladder urothelial 
carcinoma, HNSC head and neck squamous cell carcinoma, KIRC kidney renal clear cell carcinoma, LIHC liver hepatocellular carcinoma, SKCM skin 
cutaneous melanoma, STAD stomach adenocarcinoma, LUAD lung adenocarcinoma, LUSC lung squamous cell carcinoma
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Fig. 2  (See legend on previous page.)
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Correlations between SpHe‑comut+ and immune‑related 
features
Previous studies have reported a connection between 
TMB and immune-related features, including immune 
score, CYT score, major histocompatibility complex 
(MHC)-I score, and T-cell-inflamed immune GEP score 
[43–45]. To explore whether the SpHe-comut statuses 
are also associated with those immune-related features, 
we analysed 9272 samples of 33 cancers from TCGA 
with both gene expression and somatic mutation data. 
The Immune Score was first calculated using the “ESTI-
MATE” algorithm, and our results showed that the 
patients with SpHe-comut+ had a significantly higher 
immune score than patients with SpHe-comut− over 
a pan-cancer analysis (Fig.  3A). The CYT score was 
then calculated based on the mean transcript levels of 
granzyme A (GZMA) and perforin 1 (PRF1), which are 
significantly upregulated with cytotoxic T-cell activa-
tion [43]. The MHC-I score was calculated using the 
mean expression of MHC-I core genes, and the T-cell-
inflamed immune GEP score was estimated by per-
forming ssGSEA using the GEP gene list (Additional 
file  1: Table  S4). We observed obviously higher CYT 
scores, MHC-I scores, and GEP scores in the SpHe-
comut+ patient group than in the SpHe-comut− patient 
group (Fig. 3B–D). It was reported that the production 

of MHC is a crucial component of the immune sys-
tem, which presents invading pathogen peptides to 
the surface membrane of T cells and triggers the 
immune response [47]. The GEP score was reported as 
a biomarker to classify patients who can benefit from 
anti-PD-1 therapy [45]. These findings indicated that 
SpHe-comut+ was associated with immune-related fea-
tures, suggesting that SpHe-comut+ may affect the effi-
cacy of immunotherapy.

To further explore the biological functions affected 
by SpHe-comut+, GSEA was performed. A ranked 
gene list was constructed based on the gene differen-
tial expression levels (T-score) between the SpHe-
comut+ and SpHe-comut− groups across all cancer 
patients, and the gene sets of hallmark pathways from 
the MsigDB database were mapped to the ranked list. 
The results revealed that several immune-related hall-
mark pathways were significantly enriched in the 
SpHe-comut+ patient group, such as the interferon-
gamma (IFNγ) response, DNA repair, and inflamma-
tory response pathways (Fig.  3E). IFNγ was proposed 
to be an important marker of response to ICB in lung 
cancer and melanoma patients [48]. Deficiency in the 
DNA damage response has recently emerged as a major 
driver of tumour immunogenicity [49]. The inflamma-
tory response (inflammation) has been demonstrated to 

Fig. 3  Correlation between SpHe-comut status and immune-related features. A–D Comparison of the immune score (A), CYT score (B), MHC-I 
score (C), and GEP score (D) between the SpHe-comut+ and SpHe-comut− groups. E GSEA plot of significant hallmark pathways in comparison 
between the SpHe-comut+ and SpHe-comut− groups. ****p < 0.0001
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be closely associated with all stages of development as 
well as with the efficacy of anti-cancer immunotherapy 
[50].

Additionally, we investigated the differential expression 
levels of immune response-related genes between the 
SpHe-comut+ and SpHe-comut− groups over a pan-can-
cer analysis, and 39 of 47 genes showed significant dif-
ferences (Wilcoxon rank-sum test, FDR < 0.05). We then 
compared the mean expression levels of these 39 genes 
between the SpHe-comut+ and SpHe-comut− groups in 
each cancer type. Interestingly, the heatmap of mean dif-
ference expression levels of these genes showed that the 
cancer types with an approved indication of immune 
therapy (such as SKCM, LUAD, HNSC, and BLCA, 
among others) clustered together, and these genes pre-
sented higher mean expression levels in SpHe-comut+ 
patients in these cancer types (Fig.  4A). Moreover, in 
the pan-cancer analysis, these 39 genes, including five 
tumour microenvironment genes (Fig. 4B), five immune 
checkpoints (Fig. 4C), 11 T-cell receptors (Fig. 4D), and 
18 T-effector and IFNγ pathway-relevant genes (Fig. 4E), 
were significantly up-regulated in the SpHe-comut+ 
group compared with the SpHe-comut− group. These 
genes, such as IL18, IL1β, IL6, IL2RB, and IL15RA, are 
involved in the interleukin 1 (IL-1) family, which has 
been reported to promote the innate immune response 
to shape and improve the patient’s adaptive immune 
response [51]. These findings indicated that SpHe-
comut+ patients may tend to respond to immunotherapy.

SpHe‑comut+ is a predictive and prognostic biomarker 
of ICBs
To explore whether the SpHe-comut+ status can be used 
to predict the efficacy of immunotherapy, three immuno-
therapy cohorts were obtained from published studies for 
this analysis, including the Inova cohort (melanoma), the 
Rizvi cohort (NSCLC), and the Miao cohort (pan-cancer) 
(see “Materials and methods”). The SpHe comutation sta-
tus was examined in these three independent immuno-
therapy cohorts, and then the patients were divided into 
SpHe-comut+ and SpHe-comut− groups. Our results 
showed that patients with SpHe-comut+ status had sig-
nificantly higher TMB and NAL levels in these three 
cohorts, which was consistent with the results previ-
ously observed in TCGA pan-cancer analyses (Additional 
file  1: Fig. S2A–C). Moreover, we also found that the 

SpHe-comut+ status can be used as a biomarker to pre-
dict the efficacy of immunotherapy in three cohorts. Spe-
cifically, in the Inova cohort with 50 melanoma patients 
treated with anti-PD-(L)1 plus anti-CTLA4, 25 patients 
were defined as SpHe-comut+, and those patients had a 
significantly longer PFS (median PFS, SpHe-comut+ not 
reached (NR) vs. SpHe-comut− 7.5 months; HR, 0.27; 
95% CI, 0.11–0.64; log-rank test p = 0.002; Fig.  5A). An 
obviously higher ORR was found in the SpHe-comut+ 
patient group (SpHe-comut+ 88.0% vs. SpHe-comut− 
59.1%; Fisher’s exact test, p = 0.042; Fig.  5B). In the 
NSCLC Rizvi cohort, a significant association between 
SpHe-comut+ and longer PFS was observed (median 
PFS, SpHe-comut+ not reached (NR) vs. SpHe-comut− 
5.2 months; HR, 0.31; 95% CI 0.091–1.1; log-rank 
p = 0.047; Fig. 5C), as well as higher ORR (SpHe-comut+ 
75% vs. SpHe-comut− 30.7%; Fisher’s exact test, 
p = 0.042; Fig. 5D). The same results were observed in the 
Miao cohort, in which a longer OS (median OS, SpHe-
comut+ 26.68 vs. SpHe-comut− 20.39 months; HR, 0.69; 
95% CI 0.47–1; log-rank p = 0.050; Fig. 5E) and a higher 
ORR (SpHe-comut+ 39.4% vs. SpHe-comut− 21.5%; 
Fisher’s exact test, p = 0.002; Fig.  5F) was found in the 
SpHe-comut+ patient group. These results suggested that 
SpHe-comut+ had a good prognostic predictive ability in 
three immunotherapy cohorts and can be used as a pre-
dictor for the efficacy of immunotherapy.

To further verify the prognostic power of SpHe-
comut+, the other four public immunotherapy cohorts 
with sufficient information on genomic alterations and 
survival were analysed. The four public immunotherapy 
cohorts included (1) the Hellmann cohort of 75 NSCLC 
patients treated with anti-PD-1 plus anti-CTLA4; (2) the 
Allen and Snyder cohort, a pooled analysis of two cohorts 
of 174 metastatic melanoma patients treated with anti-
CTLA4; and (3) the MSKCC cohort of 1661 pan-can-
cer patients treated with anti-PD-(L)1 or anti-CTLA4. 
Our analysis revealed a significant positive association 
between SpHe-comut+ and TMB and NAL levels (Addi-
tional file 1: Fig. S2D–F).

Next, a survival analysis was performed in the Hell-
mann, Allen and Snyder, and MSKCC immunotherapy 
cohorts to explore the impacts of SpHe-comut status on 
PFS and OS. The survival analysis showed that SpHe-
comut+ was significantly associated with a better prog-
nosis in these immunotherapy cohorts (Fig. 6A–C). The 

(See figure on next page.)
Fig. 4  Correlations between SpHe-comut status and immune response-related gene mRNA expression. A Heatmap of mean expression differences 
in immune response-related genes between SpHe-comut+ and SpHe-comut− patients across different cancer types. B–E Comparison of the 
expression levels of genes related to the tumour microenvironment (B), immune checkpoints (C), T-cell receptor (D), and INFγ pathway and 
T-effector (E) signature between SpHe-comut+ and SpHe-comut− groups in the pan-cancer analysis. *FDR < 0.05; **FDR < 0.01; ***FDR < 0.001; 
****FDR < 0.0001; *****FDR < 0.00001.
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Fig. 4  (See legend on previous page.)
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SpHe-comut+ patients showed a higher ORR than the 
SpHe-comut− patients in the Hellmann and Allen and 
Snyder cohorts (Additional file  1: Fig. S3A, B). Accord-
ing to a pooled analysis for the above cohorts, compared 
to the SpHe-comut− group, the SpHe-comut+ patient 
group showed a higher ORR [pooled risk ratio (RR), 
1.74; 95% CI 1.41–2.15; p < 0.001, Fig. 6D], a longer PFS 
(pooled HR, 0.56; 95% CI 0.39–0.79; p = 0.001, Fig.  6E), 
and a longer OS (pooled HR, 0.76; 95% CI 0.64–0.91; 
p = 0.002, Fig.  6F). The results of the statistical analysis 
for heterogeneity in all pooled estimates were insignifi-
cant (Pheterogeneity > 0.10 and I2 < 50%), indicating the con-
sistency of the association between SpHe-comut+ status 
and favourable benefits to ICBs across these cohorts.

Furthermore, we performed multivariate Cox regres-
sion analyses of SpHe-comut status and survival by 
adjusting for clinical features (such as patient age, sex, 
etc.) in the Inova cohort, Rizvi cohort, and Miao cohort. 
In each cohort, we found that SpHe-comut was an inde-
pendent prognostic factor (Additional file 1: Fig. S4A–C).

Comparison of SpHe‑comut with other immunotherapy 
biomarkers
Previous studies highlighted the relevance of TMB to the 
response to ICB therapy across a wide variety of cancer 
types [35]. Recently, Wang et al. found that comutations 
in DDR pathways can also serve as potential biomarkers 
for ICB [20]. We used the concordance index (C-index) 
and ROC curve analysis to evaluate the predictive value 
of SpHe-comut status for response to ICB therapy and 
compared it with TMB and DDR-comut status. In the 
Inova cohort (melanoma), the C-index and ROC curve 
analyses demonstrated that SpHe-comut status was a 
predictive biomarker of immunotherapy clinical ben-
efit (C-index = 0.69, AUROC = 0.69), and its predictive 
power was superior to that of TMB and DDR-comut sta-
tus (Additional file  1: Fig. S5A, B). Similar results were 
observed in the Rizvi cohort (NSCLC) and Miao cohort 
(pan-cancer) (Additional file 1: Fig. S5A, B).

Considering that SpHe-comut and DDR-comut are 
both immunotherapy predictive biomarkers based on 
TMB-screened pathway mutations, we then explored the 
joint utility of these two biomarkers for patient strati-
fication. Survival analysis in the Rizvi cohort showed 

that dual-positive SpHe-comut and DDR-comut (both 
comut+) patients had longer PFS than either single-
positive (single comut+) or dual-negative (both comut−) 
patients (median PFS, not reached (NR) vs. not reached 
(NR) vs. 3.8 months, log-rank test, p = 0.012, Fig.  7A). 
Additionally, there was an increased proportion of DCB 
in both comut+ groups compared to the other two groups 
(80% vs. 55.6% vs. 25%, p = 0.046, Fig. 7B). We obtained 
similar results for the Inova cohort (Additional file 1: Fig. 
S6A, B) and Miao cohort (Additional file 1: Fig. S6C, D), 
which heralded the possibility of integrating SpHe-comut 
and DDR-comut as a novel marker for predicting the 
immune response.

A number of recent studies have illustrated the impor-
tance of PD-L1 expression in response to PD-(L)1 
blockade immunotherapy [52]. In the Rizvi cohort, we 
collected data across the board from patients with valid 
PD-L1 expression information. According to the cut-off 
point of 50%, the patients were classified into PD-L1high 
and PD-L1low groups. Based on multivariable Cox anal-
ysis, SpHe-comut status (HR, 0.16; 95% CI 0.04–0.67; 
p = 0.012) and PD-L1 expression (HR, 0.091; 95% CI 
0.021–0.39; p = 0.001) were two independent predictor 
variables for anti-PD-(L)1 treatment (Additional file  1: 
Fig. S4B). We thus examined the relationship between 
these two biomarkers. A Kaplan–Meier analysis of the 
Rizvi cohort revealed that patients with dual positive 
status for SpHe-comut and PD-L1 (SpHe-comut+ and 
PD-L1high) obtained more favourable PFS than either sin-
gle positive (SpHe-comut+ or PD-L1high) or dual nega-
tive patients (SpHe-comut− and PD-L1low, median PFS, 
not reached (NR) vs. 14.5 vs. 2.1 months, log-rank test, 
p < 0.001, Fig.  7C). In addition, the objective response 
analysis showed an increased proportion of DCB in the 
SpHe-comut+ and PD-L1high groups compared to the 
two other groups (100% vs. 64.3% vs. 13.3%, p = 0.005, 
Fig.  7D). Based on these results, we speculated that the 
addition of SpHe-comut to PD-L1 might further improve 
the predictive value for anti-PD-(L)1 therapy.

In addition, we collected some mutated markers that 
have been regarded as stable immunotherapy markers 
in NSCLC, including those of the Li et  al. method [18] 
and Bai et al. method [53]. Li et al. suggested that highly 
mutated NOTCH signaling may serve as a biomarker 

Fig. 5  Comparisons of PFS (or OS) and ORR between SpHe-comut+ and SpHe-comut− groups across different cohorts. A Kaplan–Meier survival 
curves of PFS comparing SpHe-comut+ and SpHe-comut− groups among patients with melanoma treated with anti-PD-(L)1 or anti-CTLA-4 
therapy from the Inova cohort. B Comparison of ORR between the SpHe-comut+ and SpHe-comut− groups from the Inova cohort. C Kaplan–Meier 
survival curves of PFS comparing the SpHe-comut+ and SpHe-comut− groups in patients with NSCLC treated with anti-PD-1 therapy from the Rizvi 
cohort. D Comparison of ORR between the SpHe-comut+ and SpHe-comut− groups from the Rizvi cohort. E Kaplan–Meier survival curves of OS 
comparing SpHe-comut+ and SpHe-comut− groups in patients with pan-cancer treated with anti-CTLA4 or anti-PD-(L)1 therapy from the Miao 
cohorts. F Comparison of ORR between the SpHe-comut+ and SpHe-comut− groups from the Miao cohort

(See figure on next page.)
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Fig. 5  (See legend on previous page.)



Page 12 of 17Qiu et al. Journal of Translational Medicine          (2022) 20:613 

Fig. 6  Pooled analysis of PFS, OS, and ORR comparing the SpHe-comut+ and SpHe-comut− patients across different cohorts. A Kaplan–Meier 
survival curves of PFS comparing the SpHe-comut+ and SpHe-comut− groups in the Hellmann cohort. B, C Kaplan–Meier survival curves of OS 
comparing the SpHe-comut+ and SpHe-comut− groups in the Allen and Snyder cohort (B) and the MSKCC cohort (C). D–F Pooled estimates of 
ORR (D), PFS (E), and OS (F) comparing SpHe-comut+ and SpHe-comut− patients across different cohorts
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for the prediction of the prognosis of NSCLC patients 
treated with ICIs, and Bai et al. developed an eight-gene 
GMS risk model to predict the immunotherapeutic ben-
efit in non-squamous NSCLC. We applied the Li et  al. 
method and Bai et al. method in the Rizvi cohort, and the 

patients were then divided into GMS-high and GMS-low, 
NOTCH-high and NOTCH-low groups. We found that 
there was no significant difference in patients’ progres-
sion-free survival and immunotherapy response between 
each of the two patient groups (GMS-high vs. GMS-low 

Fig. 7  Combining SpHe-comut status with DDR-comut status and PD-L1 expression for the prediction of ICB therapy. A Kaplan–Meier survival 
curves of PFS comparing the patients within each of the three indicated subgroups classified by SpHe-comut status and DDR-comut status in the 
Rizvi cohort. B Comparison of proportion of patients with DCB calculated within each of the three indicated subgroups classified by SpHe-comut 
status and DDR-comut status in the Rizvi cohort. C Kaplan–Meier survival curves of PFS comparing the patients within each of the three indicated 
subgroups classified by SpHe-comut status and PD-L1 expression in the Rizvi cohort. D Comparison of proportion of patients with DCB calculated 
within each of the three indicated subgroups classified by SpHe-comut status and PD-L1 expression in the Rizvi cohort
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or NOTCH-high vs. NOTCH-low, Additional file 1: Fig. 
S7A–D), while our method could classify patients into 
two groups with significant distinctive progression-
free survival and immunotherapy response (Fig. 5C, D). 
These observations indicate that SpHe-comut had a bet-
ter prognostic predictive ability than the Li et al. and Bai 
et al. methods.

Discussion
Recently, immunotherapy with immune checkpoint 
blockades (ICBs) has emerged as a promising treatment 
for cancer. TMB is a biomarker that can be used to pre-
dict patient response to cancer immunotherapy, indicat-
ing that patients with high TMB have better responses to 
ICB therapy. An increased neoantigen load is associated 
with a better response to ICB treatment as well. How-
ever, these indicators have limited use due to the lack of a 
validated cut-off value. Cancer is a disease in which cells 
acquire the ability to divide and proliferate uncontrol-
lably, usually through genetic changes in specific genes. 
Mutation profiles differ dramatically between individuals 
with cancer. They may be used as indicators for treatment 
response and disease progression. Applying a molecu-
lar pathway-based approach to cancer mutations can 
dramatically boost their biomarker potential. Therefore, 
investigation of genomic mutation pathways may lead to 
the discovery of effective biomarkers for immunotherapy.

Alterations in human signaling pathways have been 
shown to be related to the development of cancer and 
its immunotherapy by many studies [21]. As we used the 
clinical immunotherapy data of cancer patients to iden-
tify the comutations in signaling pathways, the results 
may be easier to translate into clinical applications. In 
the study, we demonstrated that the presence of comu-
tations in the Spliceosome (Sp) pathway and Hedgehog 
(He) signaling pathway could be used as a novel bio-
marker for ICB therapy. The prognostic and predictive 
values of SpHe-comut+ were validated in seven inde-
pendent immunotherapy cohorts. In the melanoma 
cohort, the SpHe-comut+ group exhibited longer median 
PFS (Fig.  5A) and better ORR (Fig.  5B). In the NSCLC 
cohort, both the median PFS (Fig. 5C) and ORR (Fig. 5D) 
were improved in the SpHe-comut+ group. Moreover, 
in the pan-cancer cohort, the median OS and ORR were 
improved in the SpHe-comut+ group (Fig. 5E, F). Mean-
while, the predictive power of the response to immu-
notherapy of SpHe-comut+ was demonstrated to be 
superior to those of DDR-comut+ and TMB (Additional 
file 1: Fig. S5A, B). To further verify the prognostic power 
of SpHe-comut+, four other public immunotherapy 
cohorts were adopted. According to a pooled analysis for 
the above cohorts, the results showed that the statisti-
cal analysis for heterogeneity in the ORR, OS, and PFS 

pooled estimates were insignificant (Pheterogeneity > 0.10 
and I2 < 50%), indicating the consistency of the associa-
tion between SpHe-comut+ status and clinical results of 
ICBs across these cohorts (Fig. 6D–F).

As there are still multiple cellular and molecular mecha-
nisms involved in immunotherapy, we thus combined SpHe-
comut+ with other biomarkers, such as DDR-comut+ and 
PD-L1 expression. The results showed that patients with 
both comut+ statuses (SpHe-comut+ and DDR-comut+) had 
longer survival and higher response proportions to immu-
notherapy than either single-positive (single comut+) or 
dual-negative (both comut−) patients in the Rizvi, Inova, and 
Miao cohorts, respectively (Fig. 7A, B, Additional file 1: Fig. 
S6A–D). Moreover, in the Rizvi cohort with PD-L1 expres-
sion information, we combined SpHe-comut and PD-L1 
expression and demonstrated that patients with dual-posi-
tive status (SpHe-comut+ and PD-L1high) or single-positive 
status (SpHe-comut+ or PD-L1high) obtained more favour-
able PFS and DCB than patients with dual-negative status 
(SpHe-comut− and PD-L1low status) (Fig. 7C, D). Based on 
these results, we speculated that the combination of SpHe-
comut and DDR-comut or PD-L1 may operate as a synergis-
tic component in immunotherapy prediction.

The advantage of our method is that it provides an 
optional and cost-effective approach by offering a small 
panel of genes in the signature pathways that can easily 
be translated into an easy-to-use clinical assay to identify 
potential immunotherapy responders. However, there are 
still limitations in our research. For example, we did not 
differentiate with respect to whether the gene mutations in 
the pathway were functional. Otto Warburg suggested that 
defects in mitochondrial respiration may be the underlying 
cause of cancer [54], and it would be better to add the role 
of comutation of mitochondrial genes to the prediction of 
the clinical outcomes of immunotherapy in our study. Our 
attempt to recruit functional mutations into our comut+ 
pattern was handicapped by the limited information avail-
able regarding the functions of different mutations. This 
suggests that the development of immunotherapeutic bio-
markers requires more advanced sequencing techniques 
and nanomaterials, such as carbon nanotubes [55, 56]. If 
there is more information available regarding the functions 
of different mutations, the comut+ pattern may provide 
higher accuracy for efficacy prediction for ICB delivery.

Conclusion
In summary, the pan-cancer analysis revealed that comuta-
tion of Spliceosome (Sp) pathways and the Hedgehog (He) 
signaling pathway (defined as SpHe-comut+) was associated 
with increased TMB and NAL levels, as well as increased 
levels of immune-related signatures. Furthermore, the 
patients with SpHe-comut+ exhibited a higher ORR and 
a longer OS or PFS than SpHe-comut− patients in seven 
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independent immunotherapy cohorts. Our results suggest 
that SpHe-comut+ might provide an optional and cost-
effective approach for identifying potential immunotherapy 
responders, which might complement recent immunother-
apy biomarkers.
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