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Abstract 

Accurate sepsis diagnosis is paramount for treatment decisions, especially at the emergency department (ED). To 
improve diagnosis, clinical decision support (CDS) tools are being developed with machine learning (ML) algorithms, 
using a wide range of variable groups. ML models can find patterns in Electronic Health Record (EHR) data that are 
unseen by the human eye. A prerequisite for a good model is the use of high-quality labels. Sepsis gold-standard 
labels are hard to define due to a lack of reliable diagnostic tools for sepsis at the ED. Therefore, standard clinical tools, 
such as clinical prediction scores (e.g. modified early warning score and quick sequential organ failure assessment), 
and claims-based methods (e.g. ICD-10) are used to generate suboptimal labels. As a consequence, models trained 
with these “silver” labels result in ill-trained models. In this study, we trained ML models for sepsis diagnosis at the ED 
with labels of 375 ED visits assigned by an endpoint adjudication committee (EAC) that consisted of 18 independ-
ent experts. Our objective was to evaluate which routinely measured variables show diagnostic value for sepsis. We 
performed univariate testing and trained multiple ML models with 95 routinely measured variables of three variable 
groups; demographic and vital, laboratory and advanced haematological variables. Apart from known diagnostic vari-
ables, we identified added diagnostic value for less conventional variables such as eosinophil count and platelet distri-
bution width. In this explorative study, we show that the use of an EAC together with ML can identify new targets for 
future sepsis diagnosis research.
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Introduction
Sepsis is a severe clinical illness, defined as a life-threat-
ening organ dysfunction caused by a dysregulated host 
response to infection [1]. The diagnosis of sepsis still 
remains challenging due to the heterogeneity of clinical 
symptoms, and the lack of robust diagnostic tests [2–4]. 
Early recognition of sepsis in the emergency department 
(ED) can be particularly difficult as only limited time and 
measurements are available for accurate diagnosis. There-
fore, numerous tools have been proposed in literature, 
such as the quick sequential organ failure assessment 
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(qSOFA) score, early warnings scores (e.g. modified early 
warning score (MEWS)), and biomarkers (e.g. CD64, red 
blood cell distribution width and pancreatic stone pro-
tein) [1, 5–8]. However, as most of these tools were devel-
oped for prognostic purposes, using them for diagnostic 
endpoints often results in disappointing results [9].

Machine learning (ML) approaches may help doctors 
to integrate routine care data from EHR databases in 
diagnostic models. As some ICU databases are publicly 
available, many studies already used ML to develop diag-
nostic models for sepsis in the ICU [10, 11]. Though some 
of these models show high discriminative power, none of 
them have been broadly implemented in the clinic yet, 
because of important limitations, including lack of vali-
dation and differences in the used definition for sepsis, 
thereby limiting generalizability [12, 13].

The lack of reliable labels is a major challenge in sepsis 
research at the ED. By lack of a gold standard, diagnos-
tic tools (e.g. MEWS, qSOFA) and claims-based meth-
ods (e.g. ICD-10) are currently used to generate labels 
for sepsis modelling. Nonetheless, these labelling meth-
ods are known to be suboptimal [14]. As the quality of 
the input defines the eventual quality of the model, i.e. 
the diagnostic performance, using high quality outcome 
labels is an essential factor for developing accurate mod-
els with ML algorithms. A good alternative is an end-
point adjudication committee (EAC) which is a proven 
method to gain consensus on outcome, and define labels 
for machine learning practices [12, 14].

For this study, we used ML and EAC generated labels 
to explore 95 variables from multiple types of variable 
groups; demographic and vital functions (1), laboratory 
tests (2) and advanced haematological variables from the 
Abbott CELL-DYN sapphire analyser (3), to find addi-
tional value in routinely stored EHR data in the ED. We 
estimated the importance of each variable to identify 
what variables are most discriminative for sepsis, gener-
ating hypotheses for future research.

Methods
Study design and setting
We included patients from the SPACE-cohort (SePsis in 
the ACutely ill patients in the Emergency department) 
in the University Medical Centre Utrecht (UMCU) [7]. 
In brief, ED patients with a suspicion of infection pre-
senting who presented at either internal medicine or its 
subspecialties (endocrinology, geriatrics, haematology, 
immunology, infectious disease, nephrology, oncology, 
rheumatology and vascular medicine) were included in 
SPACE, no specific exclusion criteria were used. Suspi-
cion of infection was automatically documented by the 
treating physician, via the electronic health system. An 
independent physician validated whether the suspicion 

of infection of each patient by evaluating anti-microbial 
treatment, microbiological culturing or other signs of 
infection. Demographic data and physiological vari-
able measurements collected during ED visit were doc-
umented and validated by a team of physicians. In this 
study we used a subset of the SPACE cohort, namely all 
375 ED visits that had been labelled for sepsis by the EAC 
with a blood sample within the first hours of ED visit.

Endpoint adjudication committee
An EAC with 18 independent experts was formed. The 
EAC consisted of ED specialists, internists (subspecialty 
infectiology or acute medicine) and ICU specialists. All 
EHR data including the ED, follow-up in the hospital and 
after discharge, was made available to the EAC. Members 
of the EAC were instructed to identify sepsis based on 
international guidelines (Sepsis-3). All available medical 
data was assessed by two independent experts. In case 
of disagreement, an additional expert was consulted fol-
lowed by a majority vote to generate the final label.

Data collection and pre‑processing
ED patients suspected of infection are routinely evalu-
ated by a specific panel of laboratory variables related to 
infection measured in blood  ("internal medicine labo-
ratory panel” or “sepsis panel”). Standard haematology 
variables included in the panel are routinely collected by 
the Abbott CELL-DYN Sapphire haematology analyser 
(Abbott Diagnostics, Santa Clara, CA, USA) [13, 15]. 
In addition, the Abbott CELL-DYN measures advanced 
haematology variables that are automatically measured 
and stored in the laboratory information system, yet 
not shown in the electronic health record and available 
for research purposes. The Sapphire is a 5-diff haemato-
logical automated cell counter system equipped with an 
integrated 488-nm blue diode laser and uses multiple 
techniques, such as electrical impedance, spectropho-
tometry and laser light scattering, to measure morpho-
logical characteristics of leukocytes, RBCs, and platelets 
for classification and enumeration [16].

Laboratory and advanced haematology data were 
extracted for SPACE patients from the Utrecht Patient 
Oriented Database (UPOD) [17]. In brief, UPOD is an 
infrastructure of relational databases comprising data 
on patient characteristics, hospital discharge diagnoses, 
medical procedures, medication orders and laboratory 
tests for all patients treated at the UMCU since 2004. 
Only ED visits with measurements for both the labora-
tory panel and the advanced haematology variables were 
selected. We removed variables that showed high cor-
relation (Pearson correlation > 0.8) to reduce multicol-
linearity. We did this for two reasons: (1) removal of 
highly correlated variables would remove noise from our 
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results (2), advanced ML algorithms can arbitrarily select 
one of two highly correlated variables, thereby affecting 
the analysis what variables are important in the models. 
Moreover, variables with a low number of unique val-
ues (N < 5) were removed. Missing measurements were 
imputed with the variable’s median.

Model development
We were interested in what variables, and in particular 
what variable groups, had high discriminative accuracy. 
We used two approaches to identify predictors from the 
following three variable groups: demographic and vital, 
laboratory, and advanced haematology variables (Supple-
mental Table  1). First, we performed univariate analysis 
by fitting a logistic regression for each individual variable. 
To evaluate the discriminative power of each variable’s 
model, we computed the receiver operator characteristic 
curve (ROC) and precision recall curve (PRC), and sub-
sequently the area under the ROC curve (AUROC). The 
ROC shows the trade-off between sensitivity and speci-
ficity, whereas the PRC shows the trade-off between the 
sensitivity and precision. In our study, the latter is more 
of interest, as we are more interested in identifying sepsis 
cases (sensitivity) and how certain we are of our predic-
tion (precision). Secondly, we trained multiple ML mod-
els with the three variable groups. As there is no machine 
learning algorithm that ‘rules over all’ (no free lunch the-
orem) [18], we evaluated the diagnostic performance by 
training three machine learning models; logistic regres-
sion (LR), L1 regularization (L1) and Random Forest (RF) 
[19–21]. Both LR and L1 are able to find linear associa-
tions between the predictors and outcome, though L1 is 
able to reduce the coefficients of unimportant predictors 
to zero, thereby reducing the number of predictors. The 
RF algorithm trains a number of decision trees that, in 
comparison to LR and L1, are able to identify non-linear 
associations between predictors and outcome.

Double loop cross validation to estimate model 
performance
Training classifiers with too many variables on a small 
cohort may result in the identification of cohort-spe-
cific patterns that may reduce the generalizability of the 
results, also known as overfitting [23, 24]. Model perfor-
mance was therefore assessed with k-fold cross validation 
(CV). With CV, all data is split into k partitions (folds) of 
which in sequence k-1 folds are used for training and 1 
for testing the performance, resulting in k out-of-sample 
test estimates. To increase the model’s performance, we 
optimized several hyperparameters, such as the number 
of trees of the RF algorithm. Optimizing hyperparam-
eters and creating a model with the same training data 
does not allow for a valid independent estimate of the 

model’s accuracy. Therefore, we applied a double loop 
cross validation (DLCV) scheme, also known as nested 
CV, to optimize several hyperparameters for each model 
(Supplemental Fig. 1, Supplemental Table 2). In brief, the 
k-1 folds used for training the algorithm are first used in 
the inner CV scheme to optimize the hyperparameters, 
after which the best hyperparameter configuration is 
used in the outer CV to train the model on the same k-1 
training folds. Finally, the model is tested on the k fold 
(hold-out test set) to obtain an independent estimate of 
the model’s accuracy. The DLCV scheme was run once.

Model performance and variable importance
Discriminative performance between classifiers was 
assessed by comparing both the ROC and PRC curves. 
Also, performance of the 10 models trained in the DLCV 
for each algorithm was estimated by computing the 
AUROC and computing the 95% confidence interval 
(95% CI) with the package cvAUC​ [25]. Variable impor-
tance of LR was assessed with the estimated coefficient. 
For the L1, the number of times a variable was selected 
in the ten iterations of the DLCV and the associated coef-
ficients were reported. Shapley values were calculated 
for the RF to investigate variable importance among the 
several models and datasets. The Shapley value method 
takes the sepsis labelled patients along with the non-
sepsis patients, and assesses to what extent differences 
in variables between the two groups contribute to the 
model’s output. Mean and standard deviation are shown 
for normally distributed variables whereas median and 
inter-quartile range (IQR) are shown for non-normally 
distributed variables. All analyses were done in RStudio 
(2021.09.0) using R version 4.1.2 [26].

Results
Sepsis patients were older and more often male
Between 2018–01-17 and 2018–04-07 we included 375 
ED visits from 335 patients with available demographic, 
vital and laboratory data (Table 1, Supplemental Table 1). 
Of all visits, 75 (20.0%) visits were labelled as having sep-
sis by the EAC. There were slightly more males in both 
sepsis (53.0%) and non-sepsis (50.7%) groups. Patients 
with sepsis were slightly older (median of 65.0 versus 
60.0  years old) and had worse outcome; longer median 
length of stay (7.0 versus 0.0 days), higher ICU admission 
(15.2% versus 2.7%) and mortality (14.7% versus 1.4%). 
4% of sepsis patients did not have an infection accord-
ing to the treating physician, but the EAC did label these 
patients as having sepsis.

Advanced haematology variables are predictive for sepsis
Supplemental Table  2 shows the discriminative power 
(AUROC) of all 95 variables used in this study. Of the 
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vital variables, both respiratory rate (rr) and heart rate 
(hr) showed the highest discriminative performance, 
AUROC of 0.75. CRP showed the highest performance 
of the lab variables with an AUROC of 0.75 as well. Five 
advanced haematology variables; percentage of banded 
granulocytes (pbnd), banded granulocytes count (bnd), 
percentage neutrophilic granulocytes (pneu), percent-
age of immature granulocytes (pig) and immature gran-
ulocytes (ig), all had similar performances of AUROC 
values between 0.68 – 0.70.

Combining variable groups improves sepsis diagnostic 
performance
After removing the collinear variables (N = 25) and 
two variables with low number of unique values (nrbc, 
pnrbc), 70 variables from the three variable groups were 
used to train models in the DLCV pipeline (Supplemen-
tal Fig. 2). Regardless of algorithm, models trained with 
demographic and vital variables showed a higher average 
test AUC as compared to models trained with solely the 
laboratory or advanced haematology variables (Table 2). 
LR scored the highest test AUC when trained on the 
demographic and vital variables alone (0.84, 0.79–0.89 
95% CI). In comparison, the L1 and RF algorithms had 
similar test AUC scores when trained on all 70 variables, 

Table 1  Characteristics of all 375 emergency department (ED) visits labelled by the endpoint adjudication committee

qSOFA was computed using the sepsis-3 criteria [22]. Both immunocompromised and broad-spectrum antibiotics definitions are in line with UMCU protocols and 
explained in Supplemental Table 3

ICU Intensive care unit
*  Only patients that were applicable for ICU admission are shown

No sepsis (N = 300) Sepsis (N = 75)

Unique patients, count 271 71

Age [IQR] 60.0 [45.0, 69.0] 65.0 [56.0, 72.0]

Sex, male count (%) 159 (53.0%) 38 (50.7%)

Days symptoms prior ED visit, days [IQR] 3.0 [2.0, 5.0] 2.0 [1.0, 3.0]

Charlson Comorbidity Index 4.0 [2.0, 6.0] 5.0 [4.0, 7.0]

qSOFA

  0 235 (78.3%) 20 (26.7%)

  1 60 (20.0%) 32 (42.7%)

  2 5 (1.7%) 18 (24.0%)

  3 0 (0.0%) 5 (6.7%)

MEWS (IQR) 1.0 [0.0, 3.0] 5.0 [3.0, 6.5]

Immuno-compromised, count (%) 114 (38.1%) 21 (28.0%)

ED specialty,

  Haematology 52 (17.3%) 8 (10.7%)

  Internal Medicine 93 (31.0%) 33 (44.0%)

  Nephrology 58 (19.3%) 10 (13.3%)

  Oncology 54 (18.0%) 15 (20.0%)

  Other 43 (14.3%) 9 (12.0%)

Length of stay, days (IQR) 0.0 [0.0, 4.0] 7.0 [3.5, 12.5]

Primary infection noted in discharge letter, count (%)

  Cardiovascular 3 (0.7%) 4 (5.3%)

  Intra-abdominal 40 (13.3%) 6 (8.0%)

  No infection 26 (8.7%) 3 (4.0%)

  Other 21 (7.0%) 3 (4.0%)

  Respiratory tract infection 154 (51.3%) 37 (49.3%)

  Skin Infection 16 (5.3%) 4 (5.3%)

  Unknown 3 (1.0%) 0 (0.0%)

  Urinary tract infection 37 (12.3%) 18 (24.0%)

Broad spectrum antibiotics, count (%) 52 (17.3%) 51 (68.0%)

ICU admission*, count (%) 8 (2.7%) 10 (15.2%)

In-hospital mortality admission, count (%) 4 (1.3%) 11 (14.7%)
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0.85 (0.80–0.90 95% CI) and 0.84 (0.78–0.89 95% CI), 
respectively.

For each algorithm, the model with the highest test 
performance was used to investigate variable importance. 
Figure 1 shows ROC and PRC curves based on the aggre-
gated 10 test folds predictions of the three selected mod-
els: base (logistic regression with demographic and vital 
data), extended L1 (lasso with all data) and extended RF 
(random forest trained with all data).

Variable importance
Figure 2 shows the variable importance of both the base 
and the extended L1 models and Fig. 3 shows the SHAP 
values computed by the ten RF models. Of the nine 
demographic and vital variables, seven were also deemed 
as important by the extended L1 model, and 6 were also 
included in the 20 top variables of the extended RF 
model. Temperature, sex and GCS had on average the 
highest coefficient estimates for the base and extended 
L1 models, whereas the respiratory rate (rr), heart rate 
(hr) and systolic blood pressure (sbp) showed highest 
importance by the RF model. Of the laboratory variables, 
the L1 model selected glucose, ASAT, CRP, Gamma-GT 
and sodium in the DLCV, though with low coefficients. 
The extended RF identified Gamma-GT, ASAT and CRP. 
Concerning the advanced haematological variables, the 
L1 model identified percentage of immature granulo-
cytes (pig), segmented granulocyte absolute count (seg), 
percentage of banded granulocytes (pbnd), mean lym-
phocyte size (lamn), platelet distribution width (pdw) 
and eosinophil granulocyte count (eos), as predictors 
for sepsis diagnosis, of which the last two had a nega-
tive coefficient and of which the latter showed the high-
est absolute coefficient of all variables. With SHAP, we 
found that the RF model also identified the same three 
variables as the L1 extended model; pig, pbnd and seg, 
with the same direction of importance: higher value is 
associated with sepsis.

Discussion
As far as we know, this is the first study to investigate 
the use of an EAC as sepsis labels for the identification 
of new predictors with ML analyses using routine care 
data at the ED. For sepsis at the ED, there is no diagnostic 
gold standard and without such gold standard, develop-
ing a clinically valuable ML model is extremely challeng-
ing. In studies on ML and sepsis, the definition of sepsis 
is often based on suboptimal labels such as claims-based 
methods (e.g. ICD-10 coding) [14]. Alternatively, some 
ML models are based on clinical prediction scores such 
as qSOFA or SIRS, that were not designed for diagnostic 
purposes [27, 28]. Furthermore, these ill-suited methods 
may imply major limitations for the development of ML 
models at the ED, and consequently the identification of 
new predictors by ML. An EAC is likely the best option 
to define sepsis at the ED, since every member of the 
EAC is fully aware of the Sepsis-3 definition and will be 
able to apply this definition in clinical practice. Especially 
for relatively small datasets, such as our own, an EAC is 
executable and reliable.

Accurate sepsis diagnosis relies on accurate diagnos-
tic tools to improve treatment strategies and outcome 
of septic patients. With machine learning, clinical 
diagnostic models can be developed by integrating big 
sets of routine care. Instead of ‘silver’ sepsis labels, we 
showed that in a relatively small dataset with high qual-
ity sepsis labels, ML can be used as method to identify 
new sepsis predictors on a wide variety of routine care 
data in the ED. Apart from the standard variables that 
are measured during an ED visit, we found multiple 
advanced haematology variables that show univariate 
diagnostic importance for sepsis diagnosis that is simi-
lar as compared to vital, demographic and standard lab-
oratory variables. Moreover, known variables, such as 
granulocytes, and in particular the immature, banded 
granulocytes, were identified as important variables by 
both L1- and RF-extended models, serving as a positive 
control. Even though not many advanced haematology 

Table 2  Average train and test AUC performance of models trained in the double loop cross validation pipeline

P denotes the number of variables in each model set. 95% confidence intervals are shown in parentheses for each model and data configuration

Demographic and vital
(P = 9)

Laboratory
(P = 10)

Advanced haematology
(P = 51)

All
(P = 70)

Train Test Train Test Train Test Train Test

Logistic
regression

0.87
(0.86–0.89)

0.84
(0.79–0.89)

0.78
(0.76–0.80)

0.71
(0.64–0.77)

0.90
(0.89–0.91)

0.66
(0.59–0.73)

0.99
(0.99–0.99)

0.73
(0.66–0.81)

Lasso 0.87
(0.85–0.88)

0.84
(0.79–0.89)

0.77
(0.75–0.79)

0.71
(0.64–0.80)

0.82
(0.82–0.85)

0.77
(0.71–0.83)

0.94
(0.93–0.95)

0.85
(0.80–0.95)

Random
Forest

0.90
(0.88–0.91)

0.83
(0.76–0.90)

0.88
(0.86–0.89)

0.69
(0.62–0.77)

0.91
(0.90–0.92)

0.76
(0.69–0.83)

0.96
(0.95–0.97)

0.84
(0.78–0.89)
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variables were selected by the machine learning algo-
rithms, combining them with the routinely available 
variables resulted in a better performance, hinting at 
their diagnostic value.

The vital variables had a better diagnostic performance 
as compared to the laboratory and advanced haemato-
logical variables. In particular, hr and rr showed high uni-
variate performance and were found to have high variable 
importance in both extended models. These results are 
in line with previous research and they are also used in 
multiple clinical prediction scores (e.g. (q)SOFA, MEWS) 

[5, 22, 29]. One reason that vital variables had an over-
all high performance may have been because the EAC 
was instructed to use the sepsis-3 criteria which includes 
sbp and rr. Therefore, the EAC may have quickly labelled 
patients as sepsis as these standard variables are available 
at the start of the clinical assessment.

Of the laboratory variables, only CRP showed high 
diagnostic performance in the univariate analysis. In the 
extended models, CRP was the second most important in 
the RF model, though CRP had a very low coefficient in 
the L1 model. CRP is a known maker for inflammation in 

Fig. 1  Receiver operator characteristic (ROC) and precision recall (PRC) curves of the three models with the best performance of each model 
configuration in the double loop cross validation (DLCV) scheme. Three model configurations are shown; base (logistic regression on demographic 
and vital data), extended L1 (lasso on demographic, vital, laboratory and sapphire data) and extended RF (random forest on demographic, vital, 
laboratory and sapphire data). For each of the three model configurations, ten models were trained on different data splits in the tenfold DLCV 
scheme. During each iteration, predictions were computed with on both training and test folds. Both ROC and PRC curves were drawn with the 
aggregated train and test data over 10 folds for each model configuration
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blood and known to be associated with infection [30–32]. 
As the model evaluated many haematological variables 
associated with infection, the effect of CRP may have 
been reduced in the L1 model. Of the remaining labora-
tory variables, only ASAT or Gamma-GT showed mar-
ginally importance in the extended models, which are 
biomarkers for liver dysfunction. Although regarding 
the sepsis criteria, only bilirubin is used in the context of 
liver dysfunction [33].

The majority of the found advanced haematological 
variables by the extended models were related to granu-
locytes. Immature granulocytes are prematurely released 
from the bone marrow when the body’s immune response 
is active [34]. Research has shown that elevated values for 
ig and band neutrophils are associated with infection and 
can be an early sign of sepsis [35]. As result, these mark-
ers have been used for sepsis diagnosis as either a rule-
in or rule-out test for early sepsis diagnosis [36]. Most 
interesting, the eosinophiles were negatively associated 

with sepsis in the L1 extended model. Wilar (2019) found 
the same association in neonatal sepsis as well as Abidi 
(2008) [37, 38]. As we removed correlated variables, the 
following variables were likely as predictive: immature 
granulocytes count (ig), banded granulocytes count (bnd) 
and percentage eosinophil granulocyte (peos).

As blood is drawn for every ED visit who visits our 
internal medicine department, complete laboratory data, 
including the advanced haematology variables, were 
available for almost all ED visits. Only a few visits missed 
1 or 2 laboratory variables (data not shown). Although 
we imputed missing vital data points, all used vital vari-
ables had missing data < 1%, except for rr (28.6%), fio2 
(15.6%), and spo2 (15.6%). Measuring variables related to 
the respiratory tract is most often neglected as it is time-
consuming, especially in the ED where time is limited. A 
median rr value of 17 was used, which is representative 
for our internal medicine population. As rr was positively 

Fig. 2  Variable importance of both the base (logistic regression with demographic and vital variables) and the extended L1 (L1 lasso with all data) 
models. Dots represent the learned coefficient in the trained models in the outer loop of the DLCV. The numbers indicate the number of times a 
variable was selected in the trained model in the outer loop of the DLCV. Only variables selected more than 7 times are shown
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related to sepsis outcome, it is important that rr should 
accurately be measured during ED visit.

During model development, all data was used for train-
ing and testing in the DLCV scheme instead of a single 
train-test split. Also, no data was reused for hyperpa-
rameter optimization or testing in the DLCV scheme 
due to the inner fold and outer fold. Moreover, the vari-
able importance was evaluated of each of the 10 trained 
DLCV models, instead of retraining a final model thereby 
reusing all data, hence introducing bias. Lastly, for each 
of the three selected models, we found a high AUC per-
formance that strengthen the validity of the identified 
predictors. Even though a big proportion of the variables 
was found by both the L1 and RF models, both models 
also identified different variables. For example, the RF 
model could have identified non-linear relationships 
between variables, though interestingly these relation-
ships were not supported by the SHAP values. However, 
evaluating variable importance does not imply causation, 
and is not a 1-to-1 comparison. Even though the same set 

of variables were identified as important by both L1 and 
RF algorithms, these predictors should first be evaluated 
as univariate predictors before being used in prediction 
models.

This study has several limitations. First, as this is 
a single centre study the results are not validated and 
may not be generalizable to other centres. Moreover, 
ED population are very diverse in terms of illness, age 
and secondary problems which may hamper validation 
of our results. Secondly, although we are convinced that 
an EAC is the optimal choice for labelling possible sep-
sis patients, an EAC is not perfect: patients will still be 
labelled based on the concept of sepsis of the expert. As 
a consequence, predictors known to be associated with 
sepsis, were also found by the algorithms. However, the 
advanced haematological variables were not available 
for the experts during the labelling process. Another 
limitation of an EAC is that it is labour intensive and 
may limit the reproducibility of our results. Nonethe-
less, there are semi-supervised ML models that would 

Fig. 3  Aggregated SHAP values of the ten extended Random Forest models in the DLCV. The ten Random Forest models trained in the outer loop 
were used to predict probabilities of the outer fold samples. The first 20 variables sorted on absolute SHAP values are shown
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be able to label large datasets based on a couple of 
hundred EAC labelled patients [39]. We found that the 
final diagnosis sometimes  remains uncertain for treat-
ing physicians at the ED. Therefore, it is possible that 
the final diagnosis as determined by the treating phy-
sician may differ from the EAC’s opinion. Future stud-
ies should be performed to explore these possibilities. 
Finally, we used ML to identify associations between 
variables and sepsis, but did not look into any causal 
relationships. Future studies should explore causal 
inference to evaluate the causal relationship to deter-
mine the dependence of the found variables with sepsis 
[40].

Conclusions
Using ML and EAC generated labels we identified 
potential groups of predictors for sepsis diagnosis in 
routine EHR data, including new advanced haemato-
logical variables. Routinely collected variables from 
multiple sources already show predictive power for 
sepsis diagnosis, indicating that there is already value 
in data currently collected at the ED. Altogether, this 
method is an illustrative example of how machine 
learning can be utilized in data research. In our opin-
ion, ML should not only be used to develop diagnostic 
tools, but also for other aspects of data research, such 
as the identification of diagnostic predictors and the 
related importance. This approach is not only appli-
cable in the context of sepsis, but also for other syn-
dromes that lack a reliable gold standard.
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