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Abstract: Several alkaline earth or rare earth binary monosilicides and -germanides possess complex
bonding properties, such as polycation formation exceeding the scope of classical electron counting
rules. In this study, we present characterization by powder and single-crystal diffraction and thermal
analysis of CeGe, one of the few monogermanides crystallizing in the FeB-type structure. Comparative
computational investigations for structure types experimentally observed for monogermanides and
alternative structures with different structural motifs were performed to gain energetical insights
into this family of compounds, underlining the preference for infinite germanium chains over other
structural motifs. Formation enthalpy calculations and structural chemical analysis highlight the
special position of FeB-type compounds among the monogermanides.

Keywords: intermetallic compounds; crystal chemistry; X-ray diffraction; chemical bonding

1. Introduction

Electron counting rules are simple but powerful schemes allowing for the explanation
of electronic properties and chemical bonding or even the prediction of structural arrange-
ments for a surprisingly large number of compounds. Whereas this approach works well
for certain families among the inorganics, such as Zintl [1] or cluster compounds [2], the
neighboring class of intermetallics lacks general systematics explaining their structure,
properties, and bonding interrelation [3,4]. In order to disclose such relationships, com-
bined experimental and theoretical studies, including energy and bonding calculations,
have to be systematically performed.

Interestingly, such analyses have often revealed unanticipated bonding features for
groups of compounds that formally follow electron counting schemes, e.g., the Zintl–
Klemm concept. The latter, in its stricter interpretation, assumes the formation of homopolar
two-center, two-electron bonds among p-block elements with the aim to fulfil the octet
rule after a formal electron transfer from electropositive metal species. Up to now, several
polyanionic fragments with intriguing structural and chemical peculiarities, often exceeding
chemists’ expectations and predictions, have been reported. Among them, zig-zag chains
are common for binary alkaline earth (AE) or rare earth metal (RE) silicides and germanides.
Complex bonding interactions were discovered both for compounds formally fulfilling
the octet rule, such as CrB-type CaSi [5], and FeB-type LuGe, wherein the formation of
two-bonded germanium chains, (2b)Ge, formally bearing a −2 charge, leads to an ionic
formulation comprising excess electrons: Lu3+[(2b)Ge2−] × 1 e− [6].

Recently, such electrons were found to be responsible for the formation of four-atomic
Lu4 bonds besides Lu-Ge polar interactions [6]. There are different possibilities of how
these interactions can influence the resulting structure, especially the infinite germanium
chains as the main structural element. Three supposable scenarios were selected and
investigated using electronic structure and energetical calculations and structure chemical
analysis to gain a deeper understanding of the origin of bonding interactions and their
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influence on structural features in FeB-type monogermanides. The chains can show (1) a
Peierls distortion resulting in a superstructure formation comprising dumbbells instead of
chains at low temperatures [7], (2) a deformation by changing the chain distances dGe-Ge, or
(3) a deformation combined with an inclination perpendicular to the running direction of
the chains. However, only four rare-earth monogermanides with the same structure type
were reported (Table 1). The compound CeGe has been known since the work of Parthé [8],
but the structure of the compound (FeB-type) has only been inferred from the indexing of
the powder X-ray diffraction pattern. This motivated a reinvestigation of CeGe based on
single-crystal diffraction data.

Table 1. Overview of structure types of known binary monosilicides and –germanides with alkaline
and rare earth elements comprising infinite chains (C1—(oP8)FeB, C2—(oS8)CrB, C3—(oS16)LT-LaSi)
or isolated polyanions (P—(oI40)SrSi). Availability of full structure refinement data indicated by blue
letters [6,8–30].

Mg Ca Sr Ba Sc Y La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu

Si
C2 C2 C2 C2 C2 C1 C1 C1 C1 C1 C2 C1 C1 C1 C1 C1 C2 C2 C2

P C3 C2 C2 C2

Ge
C2 C2 C2 C2 C2 C1 C1 C1 C2 C2 C2 C2 C2 C2 C2 C2 C2 C1

P C3 C2

2. Materials and Methods

Synthesis. Sample handling was performed in an argon-filled glovebox. The synthesis
was conducted in an arc furnace under argon atmosphere. To ensure homogenization,
each sample was melted two times. Cerium was added in excess (1.8%) to compensate for
evaporation loss.

X-ray diffraction. For the analysis, the samples were prepared for powder X-ray diffrac-
tion (Stoe Stadi MP (STOE & Cie GmbH, Darmstadt, Germany), Mythen 1k detector, Cu-Kα

radiation, λ = 1.54178 Å) in transmission mode. Single crystals were chosen and analyzed
with single-crystal X-ray diffraction (Xcalibur (Rigaku Oxford Diffraction, Sevenoaks, Kent,
UK), EosS2, CCD plate detector, graphite monochromator, Mo-Kα radiation, λ = 0.71073 Å)
at room temperature and at −173 ◦C. Data integration, structure solution, and refinements
were conducted with the programs CrysAlisPro [31], Superflip [32], and JANA2006 [33].

Thermal analysis. Differential scanning calorimetry (DSC) was performed between
−90 and 100 ◦C in a DSC Q2000 device (T.A. Instruments, New Castle, DE, USA) with
heating and cooling rates of 10 K min−1 (sample mass 25.568 mg) in an Al pan and lid.

Computational Details. Total energy calculations were performed at a DFT/PBE
level of theory using the Quantum Espresso software package (v5.4) [34] for the following
compounds: CeGe simulated with the oP8–FeB, oS8–CrB, oS16–LaSi, hP12–Na2O2, and
hP8–Li2O2-β structures, YGe simulated as oS8–CrB and hP12–Na2O2, LaGe as oS16–LaSi
and hP12–Na2O2, CaAs and KSe as oP8–FeB, oS8–CrB, oS16–LaSi, and hP12–Na2O2. For
the sake of conciseness, such structures will just be indicated by their prototypes in the
following ways. The recommended projector-augmented wave (PAW) [35] sets, available
at the PSlibrary [36], were employed. The semicore states 5s, 5p, and 5d for Ce and La; 4s
and 4p for Y; 3s and 3p for K and Ca; and 3d for Ge and Se were included in the valence
configuration. Thus, the 4f states of Ce were not included in such configuration, and all
calculations were non-spin polarized. The orbital occupancies at the Fermi level were
treated with Gaussian smearing of 0.01 Ry. The plane-wave and density cut-off were set
to 45 Ry and 450 Ry, respectively. The Brillouin zone was sampled within uniform grids
(Monkhorst–Pack [37]) generated with the k-point meshes listed in Table 2.

The convergence threshold for self-consistency was set to 1.0·10−9 Ry. The electronic
density of states (DOS) for CeGe with the FeB, Na2O2, and Li2O2 type of structures were
computed with the aid of the LOBSTER software (v4.1.0) [38–41], which reconstructs
electronic structures through the projection of PAW-based wave functions onto atomic-like
basis sets.
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Table 2. k-point meshes employed to perform total energy calculations for the selected crystal
structures.

Crystal Structure k-Mesh

oP8–FeB (6, 14, 10)
oS8–CrB (12, 4, 14)

oS16–LaSi (12, 4, 8)
hP12–Na2O2 (8, 8, 10)
hP8–Li2O2-β (10, 10, 6)

For this purpose, the PAW wave functions were generated by running an additional
single-point calculation slightly reducing the k-mesh: (4, 8, 6) for FeB, (6, 6, 8) for Na2O2,
and (8, 8, 4) for Li2O2. The projection was performed with the local pbeVaspFit2015 [39]
basis set; Ce 5s, 5p, 5d, 6s, and Ge 3d, 4s, 4p orbitals were selected, leading to excellent
absolute charge spilling (<0.9%). DOS curves were plotted utilizing the wxDragon software
(v2.1.8) [42].

3. Results and Discussion
3.1. Crystal Structure and Thermal Analysis

CeGe, obtained by the arc-melting of the elements with a 1.8% excess of Ce, is crystalliz-
ing in space group Pnma with a = 8.3524(4) Å, b = 4.0852(2) Å, and c = 6.0322(3) Å (Table 3) in
accordance with previous powder diffraction studies (Table S1, Figures S1 and S2) [8,43,44].
The structure refinement was performed on single-crystal X-ray diffraction data (Figure S3,
acquired at room temperature), resulting in residuals R = 0.0352, wR = 0.0321 (Tables 3–5).

Table 3. X-ray diffraction data for CeGe. Further details on the crystal structure investigations can be
obtained from the FachinformationszentrumKarlsruhe, 76344 Eggenstein-Leopoldshafen, Germany
(email: crysdata@fiz-karlsruhe.de, http:///www.fiz-karlsruhe.de/request_for_deposited_data.html)
on quoting the depository numbers CSD-2213844.

Composition CeGe
Space group, Pearson symbol Pnma (No. 62), oP8
Unit cell parameters

a [Å] 8.3524(4)
b [Å] 4.0852(2)
c [Å] 6.0322(3)

V [Å3] 205.86(2)
Formula units Z 4

Diffractometer Rigaku Xcalibur 3, CCD detector, graphite monochromator, Mo
Kα radiation, λ = 0.71073 Å

Reflections collected/independent within F > 4σ(F) 3250/303
Measurement range −10 ≤ h ≤ 11, −5 ≤ k ≤ 5, −8 ≤ l ≤ 8
Fourier difference ρmin/ρmax (electrons/Å3) −6.56/5.58
Residuals and GOF R = 0.0352, wR = 0.0321, GOF = 1.37

Table 4. Position and displacement parameters for CeGe.

Atom Site a/x b/y c/z Uani

Ce 4c 0.1806(1) 0.25 0.6164(2) 0.0077(3)
Ge 4c 0.0372(2) 0.25 0.1334(3) 0.0104(6)

Table 5. Components of the anisotropic displacement tensor U for CeGe.

Atom U11 U22 U33 U12 U13 U23

Ce 0.0073(5) 0.0084(5) 0.0073(5) 0 0.0013(4) 0
Ge 0.010(1) 0.009(1) 0.012(1) 0 0.0003(8) 0

http:///www.fiz-karlsruhe.de/request_for_deposited_data.html
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The compound is isotypic to FeB [45]. In CeGe, each cerium atom possesses seven
germanium and ten cerium neighbors (Figure S2). Germanium is coordinated by two
germanium and seven cerium atoms. The crystal structure of CeGe constitutes columns
of triangular prisms along [010], connected by two rectangular faces. Each prism has one
shared basal edge and one common atom at the apexes opposite this basal edge with four
other prisms. Within these prisms, chains of interconnected germanium atoms run along
the [010] direction. The Ge-Ge chains are arranged in sheets along the (011) plane. These
sheets are alternately stacked parallel to the [100] direction, in which solely Ce or Ge atoms
can be observed.

The distances dCe-Ge range between 3.1186(4) and 3.3403(4) Å (Table 6) and dGe-Ge
amount to 2.6739(4) Å. In comparison to dGe-Ge in the element (2.450 Å [46]), the distances
dGe-Ge are noticeably long (Figure 1), corresponding to a significantly reduced bond order of

sij = exp(
d1−dij

c ) = 0.68 (d1: dGe-Ge in cF8 Ge [46]; dij: dGe-Ge in CeGe; c = 0.6) [47], calculated
as a first estimate using the Pauling formula which approximates bond orders varying
exponentially with bond distances.

Table 6. Selected interatomic distances in CeGe.

Atom Distance/Å Atom Distance/Å

Ce-2 Ge 3.1186(4) Ge-2 Ge 2.6739(4)
Ce-2 Ge 3.1232(4) Ge-2 Ce 3.1186(4)
Ce-1 Ge 3.1495(3) Ge-2 Ce 3.1232(4)
Ce-1 Ge 3.3358(4) Ge-1 Ce 3.1495(3)
Ce-1 Ge 3.3403(4) Ge-1 Ce 3.3358(4)
Ce-4 Ce 3.8222(5) Ge-1 Ce 3.3403(4)
Ce-2 Ce 3.9028(5)
Ce-2 Ce 4.0852(7)Materials 2022, 15, 9089 5 of 14 

 

 

 
Figure 1. Distances dGe-Ge of selected compounds comprising Ge-chains [6,8–30,48–67] versus ionic 
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and (1b)Ge (Li7Ge2 [70]) serve as references. 
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lar to (1b)Ge dumbbells in Li7Ge2 [70]. 

Although an electron-precise electron balance could be realized for rare earth mono-
silicides and -germanides with structures comprising solely (1b)Ge dumbbells in the ani-
onic partial structure, this connectivity scenario is only found for alkaline, AE, and RE 
metal silicides or germanides for non-electron-precise compositions. In the first possible 
scenario, a Peierls distortion of the Ge-chains resulting in the formation of a superstruc-
ture at low temperatures and, therefore, dimerization in line with an electron-precise elec-
tron balance did not occur, as evidenced by the absence of features pointing towards a 
phase transition during DSC experiments in the range of -90 to 100 °C (Figure S4). Addi-
tional single-crystal diffraction experiments at -173 °C confirm a structure comprising Ge-
chains with equal Ge–Ge distances.  

3.2. Stability and Electronic Structure 
Theoretical calculations were performed to explain why monogermanides are an ex-

ception among A- (alkali metal), AE-, and RE-tetrel (group 14 elements) compounds 
[71,72] realizing a structural arrangement in line with the Zintl–Klemm concept and the 8 
– N rule. Total energy calculations, including the simulation of CeGe with the structure 
types FeB, CrB, and LaSi reported for the REGe compounds (for optimized structural data, 
see Table 7) indicate that there are no relevant energy differences (see Table 7) among 
them. In contrast, the simulation of CeGe in the structure types Na2O2 and β-Li2O2 

Figure 1. Distances dGe-Ge of selected compounds comprising Ge-chains [6,8–30,48–67] versus ionic
radii (for trivalent rare earth and divalent alkaline earth metals, as well as Eu [68]), ordered by their
structure types. Filled symbols denote electron-precise compounds, empty symbols compounds with
non-electron precise electron balances. Distances for (4b)Ge (cF8-Ge [46]), (3b)Ge (NaGe [69]), and
(1b)Ge (Li7Ge2 [70]) serve as references.
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Similar one-dimensional chains of germanium occur in compounds crystallizing
with different structure types [6,8–30,48–67] (see Table S2), whereas chains in connection
with other structural motifs are found both for electron-precise and non-electron-precise
phases. When appearing in combination with other structural elements, the distances in
Ge–Ge chains are mostly longer than in elemental Ge but relatively similar to distances
among (3b)Ge within the Ge4−

4 electron-precise tetrahedral clusters in NaGe [69] (Figure 1).
Compounds with infinite chains as the only structural element are electron-precise for
divalent elements such as AE metals and possess, in that case, interatomic distances similar
to (1b)Ge dumbbells in Li7Ge2 [70].

Although an electron-precise electron balance could be realized for rare earth monosili-
cides and -germanides with structures comprising solely (1b)Ge dumbbells in the anionic
partial structure, this connectivity scenario is only found for alkaline, AE, and RE metal
silicides or germanides for non-electron-precise compositions. In the first possible scenario,
a Peierls distortion of the Ge-chains resulting in the formation of a superstructure at low
temperatures and, therefore, dimerization in line with an electron-precise electron balance
did not occur, as evidenced by the absence of features pointing towards a phase transition
during DSC experiments in the range of−90 to 100 ◦C (Figure S4). Additional single-crystal
diffraction experiments at −173 ◦C confirm a structure comprising Ge-chains with equal
Ge–Ge distances.

3.2. Stability and Electronic Structure

Theoretical calculations were performed to explain why monogermanides are an ex-
ception among A- (alkali metal), AE-, and RE-tetrel (group 14 elements) compounds [71,72]
realizing a structural arrangement in line with the Zintl–Klemm concept and the 8 − N
rule. Total energy calculations, including the simulation of CeGe with the structure types
FeB, CrB, and LaSi reported for the REGe compounds (for optimized structural data, see
Table 7) indicate that there are no relevant energy differences (see Table 7) among them. In
contrast, the simulation of CeGe in the structure types Na2O2 and β-Li2O2 experimentally
observed, e.g., for CaAs and KSe comprising (1b)As2− and (1b)Se− dumbbells, revealed
lower stability compared to the structure types comprising chains (Table 7). These results
confirm that the formation of (1b)Ge3− dumbbells is energetically not favored.

Table 7. Experimental and calculated unit cell parameters and total energy differences (∆E) for
different CeGe polymorphs, simulated to crystallize with the FeB, CrB, LaSi, β-Li2O2, and Na2O2

structure types. The ∆E values are calculated with respect to the oP8–FeB structure, experimentally
found to be the most stable one: E(FeB)–E(CrB); E(FeB)–E(LaSi); E(FeB)–E(β-Li2O2); E(FeB)–E(Na2O2).

Experimental Calculated
Ge Fragments (2b)Ge (2b)Ge (1b)Ge

Pearson Symbol
Prototype

oP8
FeB

oP8
FeB

oS8
CrB

oS16
LaSi

hP8
β-Li2O2

hP12
Na2O2

a (Å) 8.3529(5) 8.4324 4.5573 4.5402 4.7252 8.0172
b (Å) 4.0878(3) 4.1185 11.275 13.757 4.7252 8.0172
c (Å) 6.0346(3) 6.0816 4.1198 6.7556 12.2202 6.3456

∆E (eV/at) - 0.000 0.000 0.002 −0.101 −0.068

The comparison of the interatomic distances of the optimized CeGe with FeB and
Li2O2 structures shows that the distances in the dumbbells (dGe-Ge = 2.79 Å) are larger
than those within the zig-zag chains (dGe-Ge = 2.70 Å), suggesting a higher electrostatic
repulsion among the (1b)Ge3− species. For CeGe simulated in the Na2O2 structure type,
two kinds of Ge dumbbells with dGe1–Ge1 = 2.68 Å and dGe2–Ge2 = 2.53 Å were observed.
Such a difference was reported neither for CaAs [73] nor for the Na2O2 [74] prototype.
Hence, although the hexagonal symmetry is retained, this observation for CeGe (Na2O2) is
probably caused by more complex factors.
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One reason for the preference of (2b)Ge chains could be found in the electronegativity
difference among the constituents (∆χ), which is not high enough to allow for an almost
complete charge transfer of three valence electrons from Ce to Ge so that only two are
formally transferred. The remaining one is probably participating in Ce–Ce interactions.
Since the formation of dumbbells is disfavored along the series of the rare-earth monoger-
manides, YGe and LaGe have been included in this analysis as representative for the CrB
and LaSi types, respectively. To prove this assumption, CaAs and KSe total energies have
also been calculated in the FeB, CrB, LaSi, and Na2O2 structures and analyzed together
with ∆χ. For CaAs and KSe, the Na2O2 modification is reported to be the most stable one.
Thus, the selected REGe (RE = Y, La, Ce) have also been simulated with the Na2O2 structure,
i.e., comprising (1b)Ge dumbbells. Energy differences (∆E) have been calculated according
to the following formulae: E(FeB)–E(Na2O2); E(CrB)–E(Na2O2); E(LaSi)–E(Na2O2). Thus,
if ∆E < 0, the FeB/CrB/LaSi type of structure is favored. Otherwise, the Na2O2 one is
expected to be most stable. The results of such an analysis are reported in Figure 2. Fo-
cusing on the blue circles in Figure 2, which indicate the energy difference between the
FeB and Na2O2 structure types, one can see that, at low ∆χ value corresponding to the
CeGe compounds, a negative ∆E is obtained. The aforementioned equation indicates that
CeGe is most stable with the FeB structure; thus, (2b)Ge chains are preferred with respect to
(1b)Ge dumbbells. Following the blue line to the right, the ∆χ is gradually increased until
reaching first CaAs and then KSe. As clearly visible, in both cases ∆E > 0, indicating that
these compounds are more stable when simulated in the Na2O2 type than in the FeB one,
well in line with experimental results. The same trend is realized for all of the considered
REGe phases (red and orange circles in Figure 2), displaying that a gradual increase of ∆χ,
i.e., of charge transfer from metal species to the p-block elements, stabilizes the dumbbells-
containing Na2O2 structure with respect to the other types. The only exception in this trend
is represented by KSe, which displays the same E(CrB)–E(Na2O2) of CaAs (orange dots
and line in Figure 2). Such anomaly is caused by the crystal structure obtained for KSe after
the relaxation procedure that comprises Se dumbbells, even though the input structure was
CrB. Nevertheless, the energy difference is still in favor of the Na2O2 structure.
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and separates the stability region of (2b) polyanions, ∆E < 0, from that of the (1b) ones, ∆E > 0.
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Furthermore, the electronic density of states (DOS) for CeGe in the FeB, Li2O2, and
Na2O2 modifications have been calculated (see Figure 3) to give more insight into the
chemical reasons behind these experimental and energetical outcomes.
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Figure 3. Total and orbital-projected electronic density of states for CeGe with the oP8-FeB structure
(a) and simulated as hP8–Li2O2 (b) and as hP12–Na2O2 (c).

Calculated DOS curves indicate in all cases a metal-like behavior but with a noticeable
difference: Li2O2 (Figure 3b) and Na2O2 (Figure 3c) show a pseudogap at the Fermi level, as
typically expected for metallic germanides formally accomplishing the Zintl formalism [75–77].
Conversely, the pseudogap in the DOS of CeGe (FeB) occurs at approximately −0.6 eV
(Figure 3a), so that the Fermi level lies in a region with a high density of states. The DOSs
can be conveniently separated into two regions. The first one, located below −5 eV, is
essentially dominated by the 4s states of Ge. The second one, in the −4 and −0.6 eV
energy range for CeGe (FeB) and between −4 and 0 eV for CeGe (Li2O2 and Na2O2), is
mainly contributed by the Ge 4p states that energetically overlap with the 5d of Ce. This
finding indicates the incomplete ionization of Ce and the consequent formation of polar
covalent interaction between Ce and Ge, analogously to other binary and ternary rare-earth
germanides, such as LuGe [6], LuGe3 [65], RE2MGe6 [75,78], RE2Pd3Ge5 [77]. In fact, in the
ideal case of a complete ionization, Ce 5d states are expected to be empty, i.e., located above
the EF. The CeGe (FeB) DOS has a third region, between about −0.6 eV and EF, in which
the contribution of the 5d states of Ce exceeds that of Ge 4p. The integral of the DOS in this
region gives 1 e/f.u. (electron per formula unit) (Figure 3a). This situation is very similar to
the scenario observed in LuGe [6] wherein the “excess” electrons in the region between the
pseudogap and EF were responsible for the formation of Lu4 4-atomic bonds. Similarly, the
states in the third DOS region of CeGe could contribute to the formation of cerium–cerium
bonding. This kind of interaction does not occur in the Li2O2 and Na2O2 type of structures.

3.3. Crystal-Chemical Insights Based on Bonding Considerations

The crystal and the electronic structure analogies observed between CeGe and LuGe
allow assuming that the RE–RE interactions are realized within the distorted RE4 tetrahedra
evidenced for the Lu-analogue [6]. Considering this chemical feature, the structure can
be alternatively described as a network of corner-sharing RE4 tetrahedra with Ge chains
running in the channels within the tetrahedra network (Figure 4, left). The displacement
ellipsoid of the Ce atoms shows a flattening towards the channels. The displacement of Ge
is slightly larger in the [001] direction, and the ellipsoid shows an elongation within the
2-D planes perpendicular to the running direction of the chains (Figure 4) that is directed
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towards the center of the nearest RE4 tetrahedron. Each tetrahedron is capped by four Ge
atoms, resulting in a stella quadrangula (Figure 4, right).
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Figure 4. Crystal structure of CeGe depicted as (left) network of corner-sharing Ce4 tetrahedra and
(right) stella quadrangula formed around each Ce4 tetrahedron.

Thus, the RE4 bonding interaction seems to influence the Ge chains significantly. The
chains can react by deformation and, therefore, cause a change in the chain distances dGe-Ge
and bond angles ϕ (Figure 5). For a more comprehensive picture of monogermanides, such
analysis was extended also to germanides with the CrB type structures. Furthermore, the
FeB type structure also offers the possibility of combining a deformation with an inclination
perpendicular to the running direction of the chains (in [100] direction).
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The next-neighbor distances d1 with dependence on the ionic radii (for trivalent rare
earth and divalent alkaline earth metals, as well as Eu [68]) remain almost constant along
the series of alkaline earth and rare-earth monogermanides (Figure 1), whereas both the
distance d2 after the next neighbor and bond angle increase with ionic radius. Therefore,
the bond angles evolve in the same manner as the ratio d2/d1 (Figure 5), denoting that the
Ge–Ge chains adjust to the size of the cation via the bond angle (and the related distance
after the next d2) instead of the next-neighbor distance d1. Whereas a variety of compounds
with a large range of bond angles, ionic radii, and electronegativity differences realize
the CrB-type structure, FeB-type rare-earth monogermanides cover only a small range
of bond angles and electronegativity differences (Figure 5, striped ellipsoid). Only the
high-pressure compound LuGe does not fall into this small field. With the increasing size
of the ion, the bond angle increases, underlining the high flexibility of Ge–Ge chains as
a function of the cationic dimensions, probably allowing the retention of the RE–Ge or
AE–Ge polar interactions that have been already described for some representatives [6,75]
and also deduced from DOS calculations for CeGe.

To evaluate the influence of the inclination of the Ge–Ge chains as an additional degree
of freedom for FeB-type compounds, the inclination angle (ψ) of the chains (Figure 6) was
calculated from experimental data [6,13,20,21,23–30]. The inclination angle seems to mostly
depend on the ionic radius (for trivalent rare earth and divalent alkaline earth metals,
as well as Eu [68]), a deviation from the vertical (inclination in [100] direction, ψ 6= 0◦)
is indeed observed only for the light rare-earth elements. The formation enthalpies ∆fH,
calculated by the Miedema method [79], change according to the lanthanide contraction.
The plot of the formation enthalpies ∆fH versus the inclination angle revealed that FeB-
and CrB-type compounds are distributed in two fields, whereas low energy goes along
with higher inclination for FeB-type compounds. For less negative energies, the CrB-type
structure is realized; therefore, no inclination of the chains is observed. The dimorphic
compound PrGe crystallizing in both the FeB- and the CrB-type structure is energetically
located at the transition between both fields. Again, the high-pressure compound LuGe
does not fall into those ranges.
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4. Conclusions

Despite the power of simple electron counting rules, such as the Zintl–Klemm concept,
interesting bonding interactions can hide even within widely “countable” compounds.
Total energy and electronic structure calculations evidence the preference for complex
structural interactions in contrast to what is expected from this simple scheme. Cation–
cation interactions occurring in addition to classical two-center, two-electron (2c-2e) bonds
in the anionic partial structure influence the overall structure. The resulting structural
adaptions and the special position of FeB-type compounds among other monogermanides
were traced by formation enthalpy calculations and structural chemical analysis.

Calculated DFT total energies have been related to the electronegativity difference
among the constituents, used in first approximation as a measure of the effective charge
transfer from the metal species to the p-block elements, clearly showing the key role of such
a parameter in the formation of structures that fulfill, like KSe and CaAs, and do not fulfill,
as REGe compounds, the Zintl rules.

For a deeper understanding, similar analyses and further chemical bonding calcula-
tions are planned for various chain compounds.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ma15249089/s1, Table S1: Comparison of lattice parameters of
CeGe. Figure S1: Powder diffraction pattern of one obtained sample. Figure S2: Crystal structure of
CeGe. (left) Unit cell with Ge-chains running along [010] direction. (right) Coordination environment
of Ce and Ge, respectively. Figure S3: Diffraction pattern of CeGe with reciprocal lattice reconstruc-
tions of (a) (hk0), (b) (h0l), and (c) (0kl) layers. Figure S4: DSC, 1,3-first and second cooling, 2,4-first and
second heating. Note the absence of any indication of a phase transformation in the interval measured.
Table S2: Binary alkaline earth and rare earth metal germanides comprising Ge-polyanions. Average
distances are given for chain motifs. References [6,8,10,12,13,20,21,23,25–30,43,44,48–63,65–67] are
cited in the supplementary materials.
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