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Abstract 

Background:  Lung adenocarcinoma (LUAD) is a common cancer with a bad prognosis. Numerous investigations 
have indicated that the metabolism of fatty acids plays an important role in the occurrence, progression, and treat-
ment of cancer. Consequently, the objective of the current investigation was to elucidate the role and prognostic 
significance of genes associated with fatty acid metabolism in patients diagnosed with LUAD.

Materials and methods:  The data files were acquired from The Cancer Genome Atlas database and GSE31210 
dataset. Univariate Cox and least absolute shrinkage and selection operator regression analyses were conducted to 
establish a prognostic risk scoring model depending on fatty acid metabolism-associated genes to predict the prog-
nosis of patients with LUAD. pRRophetic algorithm was utilized to evaluate the potential therapeutic agents. Gene set 
variation analysis combined with cell-type identification based on the estimation of relative subsets of RNA transcript 
and single-sample gene set enrichment analysis was used to determine the association between immune cell infiltra-
tion and risk score. Tumor immune dysfunction and exclusion algorithm was employed to predict immunotherapeu-
tic sensitivity.

Results:  To forecast the prognosis of patients with LUAD, a risk scoring model based on five genes associated with 
fatty acid metabolism was developed, including LDHA, ALDOA, CYP4B1, DPEP2, and HPGDS. Using the risk score algo-
rithm, patients were divided into higher- and lower-risk categories. Patients classified as minimal risk showed superior 
prognosis than those with elevated risk. In addition, individuals in the higher-risk group had a proclivity toward chem-
oresistance and amenable to immunotherapy.

Conclusion:  The prognostic risk scoring model aids in estimating the prognosis of LUAD patients. It may also provide 
new insights into LUAD carcinogenesis and therapeutic strategies.

Keywords:  Lung adenocarcinoma, Fatty acid metabolism, Prognosis, Risk score model

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecom-
mons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Introduction
Lung cancer is the most frequent type of cancer and 
the greatest cause of mortality from cancer on a global 
scale [1]. In men and women, adenocarcinoma of the 
lung (LUAD) is the most prevalent lung cancer, contrib-
uting to 40% of all cases of lung cancer [2, 3]. Although 
clinical advances in early identification and focused 
therapy have been established, the 5-year survival rate 
for LUAD remains poor [4]. Therefore, the elucidation 
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of the molecular mechanism and identification of reli-
able prognostic biomarkers are very important for the 
treatment and prognosis of patients with LUAD.

Aberrant metabolic reprogramming of energy is a 
significant element in the onset and progress of can-
cer. For instance, an upregulation of glycolysis, glyco-
gen metabolism, and gluconeogenesis was observed 
in cancer cells, which is known as “Warburg effect” 
[5]. In addition, an abundant supply of amino acids 
is indispensable for cancer cell growth [6]. In recent 
years, abnormal fatty acid metabolism in cancer cells 
has received increased attention. For instance, Liang 
et  al. reported that ACOT11 regulates tumor prolif-
eration and invasion by binding with CSE1L in LUAD 
[7]. ACSL4 is a long-chain acyl-coenzyme synthetase 
and participates in fatty acid biosynthesis and catabo-
lism. Zhang et al. [8] demonstrated that ASCL4 inhibits 
tumor cell survival, invasion, and migration and pro-
motes ferroptosis in LUAD. However, there has been no 
extensive investigation of fatty acid metabolism-related 
genes in LUAD.

The genes associated with fatty acid metabolism 
contributing to the prognosis of patients with LUAD 
were analyzed. Using data from The Cancer Genome 
Atlas (TCGA), a prognostic risk scoring model was 
constructed to further evaluate the GSE31210 data-
set. Patients with LUAD can be classified into higher- 
and lower-risk groups based on the median risk score. 
Lastly, the characteristics, treatment, and immune cell 
infiltration in lower- and higher-risk groups were also 
studied. This study facilitates the investigation of the 
metabolic process and targeted therapy for LUAD.

Materials and methods
Data collection
The LUAD RNA-seq data profile was retrieved from 
the TCGA database (535 LUAD samples and 59 nor-
mal lung samples) (https://​portal.​gdc.​cancer.​gov/). 
Additionally, clinical data of individuals with LUAD 
were extracted from the TCGA database (522 patients). 
There were 513 matched LUAD patients between RNA-
seq data file and clinical findings (Additional file  1: 
Table  S1). Additionally, the Gene Expression Omni-
bus (GEO) database was queried for GSE31210, an 
RNA-seq data profile of LUAD (http://​www.​ncbi.​nlm.​
nih.​gov/​geo/) (20 normal lung samples and 226 LUAD 
samples). The clinical information of 226 patients with 
LUAD in GSE31210 is displayed in Additional file  1: 
Table S2.

In a previous study [9], we reported a total of 309 genes 
involved in the metabolism of fatty acids (Additional 
file 1: Table S3).

Identification of differentially expressed genes associated 
with fatty acid metabolism
The differentially expressed genes (DEGs) associated 
with fatty acid metabolism were compared between 
normal and malignant tissues utilizing the R package 
“limma” with |log2[fold change (FC)] |> 1 and false dis-
covery rate (FDR) < 0.05. The R package “pheatmap” 
was utilized to display the findings.

Construction and validation of the prognostic risk score 
model
As a training set, the LUAD data in the TCGA group 
were employed. The LUAD data in GSE31210 dataset 
was used as the test set. First, we explored the prog-
nosis-related genes from fatty acid metabolism-associ-
ated DEGs using a univariate Cox regression model. If 
p < 0.05, the genes were retained. In addition, we ana-
lyzed the gene mutations in the LUAD samples from 
the TCGA cohort using the R package of “map tools”. 
To refine the selection of critical genes associated with 
fatty acid metabolism for prognostic risk assessment, 
the least absolute shrinkage and selection operator 
(LASSO) regression analysis was utilized. The following 
risk score formula was used: Risk score = expression of 
gene 1 × β1 + expression of gene 2 × β2+ · · ·+ expres-
sion of gene n × βn. β reflects the regression coefficient 
of the associated gene based on the LASSO regres-
sion analysis. All LUAD samples were categorized into 
lower- and higher-risk cohorts based on the median 
value of the risk score. To analyze the difference in sur-
vival between lower- and higher-risk groups, a log-rank 
test and Kaplan–Meier analysis were conducted.

To assess the predictive accuracy of prognostic risk 
scoring model, a receiver operating characteristic 
(ROC) curve analysis was performed. Lastly, the prog-
nostic model for risk score was validated using the 
GSE31210 dataset.

Principal component analysis before and after risk score 
prognosis
First, depending on the genes involved in fatty acid 
metabolism, we utilized the R package of “limma” to 
perform the principal component analysis (PCA) of 
sample distribution between the lower- and higher-
risk  cohorts. Then, depending on the genes identified 
in the prognostic risk score model, PCA was performed 
again. Finally, we displayed the findings of PCA using 
the R package of “ggplot2”.

Relationship between clinical parameters and risk scores
The relationship between risk scores and clinical 
parameters including gender, age, and TNM stage was 
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determined. Based on the difference in risk scores, the 
LUAD samples were separated into distinct groups.

Gene set variation analysis
Gene set variance analysis (GSVA) is an unsupervised 
approach used to determine the variation in pathway 
activity across a sample population [10]. Therefore, to 
investigate the biological processes between higher-
risk and lower-risk groups, GSVA was conducted using 
the “GSVA” R package. The gene set of “c2.cp.kegg.
v7.4.symbols” downloaded from the molecular signa-
ture database (MSigDB) was used as the reference gene 
set. FDR < 0.05 was regarded as a statistically significant 
enrichment pathway.

Characteristics based on risk stratification
To predict the drug sensitivity of chemotherapy and 
targeted therapy in the two risk groups of LUAD, the 
half-maximal (IC50) inhibitory concentration of drugs 
was determined utilizing the “pRRophetic” R package 
[11]. Additionally, we identified cell types by the cal-
culating relative subsets of RNA transcripts (CIBER-
SORT) to investigate immune cell infiltration in every 
LUAD sample obtained from the higher- and lower-risk 
groups. CIBERSORT is a computational approach used 
to measure immune cell fractions based on gene expres-
sion patterns in bulk tissues derived from RNA-sequence 
analysis [12]. The study demonstrated that CIBERSORT 
was effective in reliably estimating the immune cell land-
scapes of a variety of malignancies [13]. The gene sets 
were obtained from a prior study in order to investigate 
immune-related activities in the tumor microenviron-
ment (TME) [14–16]. The immune-related activity was 
scored among the higher- and lower-risk groups via sin-
gle-sample gene set enrichment analysis (ssGSEA), such 
as co-inhibition and co-stimulation of T cells. Finally, 
the tumor dysfunctional immune system and exclusion 
(TIDE) score (http://​tide.​dfci.​harva​rd.​edu) was utilized 
to evaluate the potential response to immunotherapy in 
patients with LUAD in both risk categories [17]. In gen-
eral, a lower TIDE score indicated improved immuno-
therapy response.

Screening of DEGs in the higher‑ and lower‑risk groups 
for GO and KEGG analyses
The DEGs in higher- and lower-risk groups were 
obtained utilizing the “limma” R package. Genes with 
the |log2FC|> 1 and FDR < 0.05 were considered as 
DEGs. The gene ontology (GO) and Kyoto Encyclope-
dia of Genes and Genomes (KEGG) enrichment analy-
ses of DEGs were performed utilizing the R package of 
“clusterProfiler”.

Statistical analysis
The statistical difference in distribution (gene expression 
and scores) between the two groups was compared using 
the Wilcoxon test, and between three or more groups via 
Kruskal–Wallis test. Univariate Cox regression analysis 
and LASSO regression analysis were performed to deter-
mine the prognosis-related genes. Kaplan–Meier analysis 
with log-rank test was conducted to determine the over-
all survival (OS) and progression-free survival (PFS) of 
the two risk categories. P < 0.05 was considered statisti-
cally significant.

Results
Identification of fatty acid metabolism‑associated DEGs 
in patients with LUAD
Figure  1 presents the comprehensive flowchart of this 
investigation. We analyzed the expression of fatty acid 
metabolism-associated genes between the LUAD tissue 
sample and normal lung tissue in the TCGA cohort. Of 
the 309 genes associated with fatty acid metabolism, 67 
were DEGs, which included 27 downregulated genes and 
40 upregulated genes in LUAD tissue samples (Fig.  2A, 
B).

Construction and assessment of a prognostic risk scoring 
model based on selected fatty acid‑metabolism‑associated 
genes
Samples obtained from the TCGA cohort were used 
as the training set. Of the 513 patients with LUAD in 
the TCGA group, only 504 were included in the sur-
vival analysis because of missing survival times involv-
ing 9 patients. First, a univariate Cox regression analysis 
was of 67 DEGs involved in fatty acid metabolism was 
performed. We obtained 11 genes related to progno-
sis (p < 0.05). Among the 11 genes, 7 genes (ACSBG1, 
DPEP2, ALDH2, HPGDS, CA4, PTGDS, and CYP4B1) 
were negatively related to prognosis because of 0 < hazard 
ratio (HR) < 1, whereas 4 genes (ELOVL6, MIF, ALDOA, 
and LDHA)were positively related to prognosis based on 
HR > 1 (Fig. 3A). We then analyzed the somatic mutations 
of 11 fatty acid metabolism-associated DEGs related to 
prognosis in 561 LUAD samples from the TCGA data-
base. The findings revealed that 46 LUAD samples (8.2%) 
carried mutations involving fatty acid metabolism-
associated genes (Fig.  3B). CYP4B1 showed the highest 
mutation frequency in LUAD samples, whereas no MIF 
mutations were found in LUAD samples (Fig. 3B).

Initially, LASSO regression analysis was con-
ducted to determine the key genes among the 
above 11 fatty acid metabolism-associated DEGs 
related to prognosis (Fig.  3C, D). Finally, five genes 
(LDHA, ALDOA, CYP4B1, DPEP2, and HPGDS) 
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were used to construct the prognostic risk scor-
ing model according the following formula: Risk 
score = LDHA expression × (0.363478498) + ALDOA 
e x p r e s s i o n  ×   ( 0 . 0 2 2 1 6 2 0 5 3 )  +  C Y P 4 B 1 
e x p r e s s i o n  ×   ( −   0 . 0 4 8 3 1 0 8 6 )  +  D P E P 2 
expression × (− 0.002618813) + HPGDS expres-
sion × (− 0.065320579). The details of the five genes are 
displayed in Additional file  1: Table  S4. The expression 
of the five genes in normal lung and LUAD tissues of 
the TCGA group and GSE31210 dataset is illustrated in 
Additional file 1: Figure S1.

As a cut-off number, based on the median value of risk 
scores in the TCGA, patients with LUAD were stratified 
into lower risk (n = 252) and higher risk (n = 252). First, 
PCA was conducted to identify patients at higher and 
lower risk. As demonstrated in Fig. 4A, B, the prognostic 
risk scoring model can be used to distinguish LUAD in 
different risk groups. The Kaplan–Meier curve analysis of 
the TCGA cohort revealed that individuals at lower risk 
had longer OS and PFS than those at higher risk (Fig. 4C, 
E). To establish the accuracy of the prognostic risk scores, 
they were applied to patients in the GSE31230 dataset 
based on the TCGA cut-off value. As illustrated in Fig. 4F, 
D, the higher-risk cohort (n = 112) had a worse OS and 
PFS than the lower-risk cohort (n = 114). The prognostic 
risk scoring model accurately predicted the outcome in 
patients with LUAD.

Risk score is an independent prognostic indicator
Cox regression analysis (univariate and multivariate) 
was used to determine whether the risk score was a sig-
nificant  and independent predictor of LUAD. Numer-
ous clinicopathological factors were analyzed, including 
gender, stage and age. The univariate analysis revealed 
that stage and risk score were associated with prognosis 
(Fig.  5A). Additionally, subsequent multivariate analysis 
demonstrated that risk score and stage were related to 
survival (Fig. 5B). These data indicate that the risk score 
may be utilized as a stand-alone prognostic factor for 
LUAD.

The values of area under the ROC curve (AUC) for the 
risk scores at one, three, and 5 years of OS  were 0.685, 
0.690, and 0.628, respectively (Fig. 5C). Additionally, the 
AUC value revealed that risk score had a better prognos-
tic value than age, gender, and stage (Fig. 5D).

Relationship between risk scores and clinicopathological 
features
To determine the relationship between risk scores and 
clinical characteristics, the risk score distributions based 
on age, gender, and T, N, and M stages were analyzed. 
There was no significance in risk scores associated with 
gender, age, T, and M. However, greater risk scores were 
associated with lymphoid metastases and advanced stage 
of cancer (Fig. 6).

Fig. 1  The flowchart for this investigation
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Fig. 2  Identification of fatty acid metabolism-associated DEGs. a Volcano map of DEGs in LUAD and normal tissue; b The heatmap of DEGs in 
normal tissue and LUAD tissue
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Drug response to chemotherapy and targeted therapy
The “pRRophetic” package was employed to evaluate 
the drug sensitivity of LUAD to investigate the vari-
ation in sensitivity between patients with lower and 
higher risk. We selected a single targeted drug therapy 
(erlotinib) and three chemotherapy drugs (gemcitabine, 
paclitaxel, and etoposide), which are widely utilized 
in clinical practice for the treatment of LUAD. The 
chemotherapy drugs were negatively correlated with 
risk scores and showed higher IC50 among patients at 
lesser risk (Fig.  7). However, erlotinib was positively 
correlated with risk scores and had a higher IC50 in the 
higher-risk group. The findings suggest that patients 
in  the lower-risk cohort were highly vulnerable to 

chemotherapy, whereas targeted treatment was appro-
priate for those in the higher-risk cohort.

GSVA
GSVA was utilized to compare the pathway activ-
ity among the lower- and higher-risk  categories in the 
TCGA group. The results showed that a total of 76 
pathways were statistically significant. The top 50 path-
ways are displayed in the heatmap (Fig. 8). Interestingly, 
the lower-risk group had an abundance of metabolic 
pathways, comprising arachidonic acid, linoleic acid, 
fatty acid and glycerophospholipid metabolism.

Fig. 3  Construction of a risk score prognostic model. a The forest plot of eleven genes involved in fatty acid metabolism; b Eleven fatty acid 
metabolism-associated genes mutation rate in 561 LUAD samples from the TCGA database; c LASSO coefficients of the eleven fatty acid 
metabolism-associated genes; d Cross-validation for the purpose of identifying critical genes for the predictive method based on the risk score
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Fig. 4  The prognostic value of risk score model. a Principal component analysis depended basically on all genes involved in fatty acid metabolism 
in LUAD; b Principal component analysis based upon 5 fatty acid metabolism-associated genes from risk score prognostic model; c Kaplan–Meier 
curves for the overall survival of patients between the higher-risk and lower-risk groups in the TCGA cohort; d Kaplan–Meier curves for the overall 
survival of patients between the higher-risk and lower-risk groups in the GSE31210 dataset; e Kaplan–Meier curves for the progression free survival 
of patients between the higher-risk and lower-risk groups in the TCGA cohort; f Kaplan–Meier curves for the progression free survival of patients 
between the higher-risk and lower-risk groups in the GSE31210 dataset
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Immune cell infiltration in the risk groups
The infiltration of 22 immune cells in the risk cohorts 
was evaluated according to the CIBESORT deconvolu-
tion algorithm. The lower-risk group had less activated 
memory CD4 T cells, M0 macrophages, resting NK cells, 
active mast cells, M1 macrophages, and neutrophils than 
the higher-risk group (Fig. 9A). By contrast, resting den-
dritic cells, memory B cells, resting memory CD4 T cells, 
monocytes, M2 macrophages and resting mast cells in 
the lower-risk cohort were substantially higher than in 
the higher-risk cohort (Fig. 9A). Additionally, the immu-
nological function in the higher-risk group was decreased 
compared with the lower-risk group, based on human 
leukocyte antigen (HLA) and Type II IFN response 
(Fig. 9B). Finally, the TIDE score in two groups was cal-
culated to assess the effectiveness of immunotherapy 
(PD-1 inhibitor and CTLA-4 inhibitor) using an online 

TIDE database. The results suggested that patients at 
lower risk had elevated TIDE scores than those at higher 
risk, implying that higher-risk individuals may be more 
amenable to immunotherapy (Fig. 9C).

GO and KEGG analyses of DEGs in the higher‑ 
and lower‑risk groups
To investigate the difference between the two groups, 
the DEGs in the higher- and lower-risk groups were 
determined. We obtained 504 DEGs. Among the 504 
DEGs in the higher-risk group, 291 and 213 genes were 
downregulated and upregulated, respectively. GO and 
KEGG analyses of these 504 DEGs were conducted. GO 
analysis revealed that DEGs were significantly enriched 
during mitotic sister chromatid segregation, antimi-
crobial humoral response, nuclear division, humoral 
immune response, chromosome segregation, mitotic 

Fig. 5  Identification independent prognostic factors in LUAD. a, b Analysis of Cox regression, both univariate and multivariate, for clinical 
parameters and risk scores model; c ROC curves of risk score model at one, three, and 5 years of overall survival; d ROC curves for clinical parameters 
and a model of the risk score
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Fig. 6  Association between risk scores and clinicopathological parameters, including age (A), gender (B), T stage (C), N stage (D), M stage (E), and 
TNM stage (F)

Fig. 7  The role of risk score model in chemotherapy and targeted therapy. The correlation between risk scores and IC50 value of paclitaxel (A), 
gemcitabine (C), etoposide (E), and erlotinib (G); The drug response of paclitaxel (B), gemcitabine (D), etoposide (F), and erlotinib (H) between the 
higher-risk and lower-risk groups
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nuclear division and regulation of chromosome segrega-
tion (Fig. 10A). KEGG analysis revealed that DEGs were 
abundant in pathways associated with fatty acid metab-
olism, particularly arachidonic acid and linoleic acid 
metabolism (Fig. 10B).

Discussion
Aberrant metabolic reprogramming is associated with 
initiation and progression of cancer [18]. Studies have 
indicated that metabolism-associated genes are reliable 
prognostic biomarkers in cancer. For instance, a nine-
gene amino acid metabolism-related risk signature was 
utilized to predict the prognosis of patients with hepato-
cellular carcinoma [19]. Zhang et al. reported that a nine 
glycolysis-related gene signature effectively predicted 
metastasis and survival in patients with LUAD [20]. 
However, the characteristics of genes involved in fatty 
acid metabolism in LUAD are not fully understood.

To determine the prognosis of patients with cancer, we 
conducted a comprehensive analysis of genes involved 
in fatty acid metabolism associated with LUAD. First, 
depending on RNA-seq data of the TCGA group, 67 
fatty acid metabolism-associated DEGs with strict fil-
ter conditions between LUAD and normal lung tissues 
were obtained. Second, we selected the five OS-related 
genes (LDHA, ALDOA, CYP4B1, DPEP2, and HPGDS) 

from DEGs utilizing univariate Cox and LASSO regres-
sion analysis to develop a predictive model of risk score. 
Further, the GSE31210 dataset was utilized for predictive 
risk assessment. After integrating with clinical dimen-
sions, the model for predictive risk assessment was estab-
lished as an adequate and effective prognostic indicator. 
Finally, utilizing the risk score approach, patients with 
LUAD were divided into higher- and lower-risk catego-
ries. The differences between higher- and lower-risk cate-
gories, including clinical parameters, chemotherapy drug 
susceptibility, targeted therapy, immunotherapy, and 
infiltration of immune cells were analyzed.
LDHA is a member of lactate dehydrogenase, which 

catalyzes pyruvate to lactate during aerobic glycolysis 
[21]. Evidence suggests that LDHA participates in fatty 
acid synthesis [22]. Overexpression of LDHA has been 
established in a number of malignancies, including hepa-
tocellular carcinoma [23], breast cancer [24], and gas-
tric cancer [25]. Additionally, investigations have shown 
that the expression of LDHA was also upregulated in 
LUAD; the upregulation of LDHA is a strong predictor 
of low survival in patients with LUAD [21, 26]. ALDOA 
is a crucial enzyme that is associated with fatty acid 
metabolism [27]. Numerous studies have established that 
ALDOA plays a role in cancer initiation and progression 
[28–30]. For instance, Dai et  al. reported that ALDOA 

Fig. 8  GSVA enrichment analysis between the high-risk and low-risk groups
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was highly expressed in colorectal cancer and high lev-
els of ALDOA contributed to the aggressiveness and poor 
prognosis of colorectal cancer [28]. Our results revealed 

that ALDOA might be an oncogene in LUAD and was 
associated with survival in patients suffering from LUAD. 
CYP4B1 is a member of the mammalian CYP4 enzyme 

Fig. 9  The role of the risk score model in immunotherapy. a Twenty-two distinct kinds of immune cells seen in the tumor microenvironment in 
higher- and lower-risk groups; b The differences of common function for immunity regulation between the higher-risk and lower-risk groups; c TIDE 
scores in the higher-risk and lower-risk groups
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family and plays an essential role in the oxidative metabo-
lism of an extensive spectrum of endogenous compounds 
and xenobiotics [31]. CYP4B1 was downregulated in 
LUAD and the expression of CYP4B1 was negatively 
correlated with prognosis of patients with LUAD [31]. 
HPGDS is a type of glutathione transferase that catalyzes 
the isomerization of prostaglandin H2 to prostaglandin 
D2 [32]. HPGDS is relevant to the metabolism of fatty 
acids [33]. HPGDS promotes tumor cell apoptosis and 
inhibit invasion in lung cancer [34]. DPEP2 is involved in 
the biosynthesis of leukotriene, and abnormal expression 
of DPEP2 is responsible for dysregulated lipid metabo-
lism [35, 36]. However, the effect of DPEP2 in cancers, 
particularly lung cancer, is still unclear. In the current 
study, a decrease in DPEP2 expression in LUAD indi-
cated poor prognosis of patients suffering from LUAD.

To enhance the clinical management of patients 
with LUAD, we compared the differences in patients’ 
responses to common chemotherapeutic agents as well 
as a targeted agents in the higher- and lower-risk cohorts. 
It was found that the higher-risk group exhibited a low 
sensitivity to chemotherapeutic agents (gemcitabine, 
paclitaxel, and etoposide), suggesting chemoresistance. 
Fortunately, erlotinib, a targeted agent, appears to be 
effective in individuals at higher risk. Since patients in 
the higher-risk group might not be indicated for chemo-
therapy, we investigated whether immunotherapy was 
effective in such cases.

Immune cell infiltration of the tumor microenviron-
ment occurs mainly in tumor proliferation and is an 
important prognostic indicator and determines patients’ 
response to immunotherapy in cancer, based on clini-
cal trials using immune checkpoint inhibitors [37, 38]. 
Therefore, we comprehensively analyzed the immune 
cell infiltration in two groups. The results csuggested 

that activated memory CD4 T cells, resting NK cells, M0 
macrophages, M1 macrophages, activated mast cells, and 
neutrophils were enriched in the higher-risk group. Acti-
vated mast cells are correlated with tumor angiogenesis 
and poor prognosis [39]. Elevated neutrophils increase 
tumor burden, which contributes to tumor progression 
and metastasis [40]. High levels of neutrophils might sup-
press the antitumor effects of T cells and NK cells [41]. 
Further, the immunological function was suppressed in 
the higher-risk group, including HLA and Type II IFN 
response. Therefore, individuals at higher risk of LUAD 
are highly amenable to immunotherapy, consistent with 
the prediction outcome of TIDE.

Of course, the current investigation has certain limi-
tations. First, the samples in the GSE31210 dataset were 
relatively small in size, suggesting the need for additional 
large external datasets to validate the risk scores. Sec-
ond, experimental studies involving five predicted genes 
are needed to investigate the comprehensive molecular 
mechanisms of LUAD initiation and development.

Conclusion
To summarize, the current work developed and validated 
for the first time a unique risk score prediction model 
based on five genes related to fatty acid metabolism. Fur-
ther, we analyzed the differences in clinical characteris-
tics, chemotherapy and targeted treatment sensitivity, 
and infiltration of immune cells among individuals with 
LUAD at higher and lower risk, which might facilitate 
the treatment of patients. In brief, not only does this risk 
score model enable the prognosis of patients with LUAD, 
but also provides new insights into the carcinogenesis 
and therapeutic strategies of LUAD.

Fig. 9  continued
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Fig. 10  GO and KEGG analyses for DEGs between the high-risk and low-risk groups. a Analysis of GO enrichment for DEGs; b Analysis of KEGG 
enrichment for DEGs
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