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Abstract: Biofilms are mono- or multispecies microbial communities enclosed in an extracellular
matrix (EPS). They have high potential for dissemination and are difficult to remove. In addition,
biofilms formed by multidrug-resistant strains (MDRs) are even more aggravated if we consider
antimicrobial resistance (AMR) as an important public health issue. Quorum sensing (QS) and
horizontal gene transfer (HGT) are mechanisms that significantly contribute to the recalcitrance (re-
sistance and tolerance) of biofilms, making them more robust and resistant to conventional sanitation
methods. These mechanisms coordinate different strategies involved in AMR, such as activation of
a quiescent state of the cells, moderate increase in the expression of the efflux pump, decrease in
the membrane potential, antimicrobial inactivation, and modification of the antimicrobial target and
the architecture of the EPS matrix itself. There are few studies investigating the impact of the use of
inhibitors on the mechanisms of recalcitrance and its impact on the microbiome. Therefore, more
studies to elucidate the effect and applications of these methods in the food production chain and
the possible combination with antimicrobials to establish new strategies to control MDR biofilms
are needed.

Keywords: foodborne pathogen; multidrug resistance; food safety; food hygiene; quorum sensing;
recalcitrance

1. Introduction

Antimicrobial resistance (AMR) is considered one of the 10 main threats to public
health that humanity currently faces [1,2]. A microorganism that is resistant to at least one
agent of three or more classes of antimicrobials is defined as multidrug-resistant (MDR) [3].
MDR pathogens cause infections refractory to antimicrobials, which limit the therapeutic
options, and consequently result in worsening of the clinical condition of the patient,
prolonged hospital stays with intensive care, and a high fatality rate [2,4]. The rapid spread
of multidrug-resistant bacteria (MDR) has caused a global alert [4,5]. It is estimated that
approximately 700,000 deaths from infections per year are caused by antibiotic-resistant
strains, with an expected increase to 10 million in 2050 [6].

Given this scenario, a joint tripartite secretariat composed of the Food and Agriculture
Organization of the United Nations (FAO), the World Organization for Animal Health
(OIE), and the World Health Organization (WHO) was established to propose actions and
goals for the control of AMR. Since 2015, this subject has been addressed in a more specific
way, with the purpose of increasing awareness of antimicrobial resistance, and delaying
the development and dissemination of resistant microorganisms.

For a long time, infections caused by MDR microorganisms were associated almost
exclusively with hospital environments and nosocomial infections. However, it is now
known that antimicrobial resistance is a problem that also encompasses the food production
chain and can affect, in addition to risk groups, the general population [7,8]. Zoonotic
MDR bacteria can be selected through the widespread or indiscriminate use of antibiotics
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in production animals. Vegetables and fresh products may also have contact with MDR
microorganisms in the field through soil, water, or contaminated compounds. These
microorganisms can also be transmitted by food handlers, facilities, equipment, and tools
throughout the supply chain [9–13].

Several outbreaks involving food and MDR microorganisms have been reported in
recent years, corroborating the need for greater attention being paid to these pathogens in
the food production chain [14–17]. In 2014, an outbreak involving Salmonella Heidelberg
in mechanically separated meat (MSM) from poultry was reported in the USA, in which
67% of the isolates identified were MDR [18,19]. In 2017, Salmonella isolates from an
outbreak linked to papaya showed resistance to streptomycin and tetracycline [20]. In
2018, an outbreak caused by S. Reading in turkey meat resulted in 358 cases and one
death; 64% of the isolates had antimicrobial resistance genes [21]. Furthermore, in Europe,
high to extremely high levels of resistance to ciprofloxacin, nalidixic acid, and tetracycline
were observed in isolates of Campylobacter sp. Outbreaks involving methicillin-resistant
Staphylococcus aureus (MRSA) associated with chicken, turkey, beef, and/or pork meat have
also been reported in Austria, Germany, the Netherlands, and Switzerland [22].

Another aggravating factor in the presence of these microorganisms in the food chain is
the transmissibility of resistance genes in humans [23]. The transfer of antibiotic-resistance
genes can occur in the intestine through the consumption of contaminated food [18].
Cabello [24] reported that the accumulation of resistant bacteria in the gastrointestinal
tract may transform humans into a “bank of antibiotic resistance genes”. In addition,
some studies have shown that zoonotic MDR bacteria can be easily transmitted to humans
through food [25,26]. There is evidence of the transmission of mobile genetic determinants
(plasmids, transposons, and cassettes of genes in integrons) in resistant pathogens from
birds to humans [4].

Furthermore, some microorganisms have the ability to grow and form communities
on biotic or abiotic surfaces [27,28]. These clusters of macromolecules and microorganisms
are called biofilms. They are formed by bacteria, diatoms, fungi, and protozoa, and are
immersed in an extracellular matrix (EPS) composed of polysaccharides, proteins, and
exogenous DNA [29–31]. Biofilms confer advantages to cells as a survival strategy and
adaptation to a variety of stresses. It is estimated that approximately 80% of bacterial
infections are related to biofilms [32]. Biofilms resistant to antimicrobials are a significant
issue for public health and food production chain. The recalcitrance of biofilms, a phe-
nomenon that encompasses tolerance and resistance, confers to microbial communities the
ability to survive and resistance to bactericidal agents [11,33]. Tolerance is more directly
related to the characteristics of the EPS matrix and the physiological state of cells, whereas
antimicrobial resistance refers to different mechanisms, such as extracellular signaling and
horizontal gene transfer (HGT) [11,34–36]. Studies have suggested a possible correlation
between antimicrobial resistance and biofilm formation capacity [37–39]. In addition, the
patterns of resistance to multiple drugs presented by biofilms point to the need for a bet-
ter understanding of the recalcitrance mechanisms [34]. Thus, the aim of this review is
to present the main mechanisms of tolerance and resistance of MDR biofilms and their
occurrence in the food production chain.

2. Biofilms and Antimicrobial Resistance

Biofilm formation comprises different stages (Figure 1). The first step is the reversible
adhesion of cells to biotic or abiotic surfaces. This initial attraction occurs through Brown-
ian motion, gravitational force, and chemotaxis mediated by nonspecific physicochemical
interactions [40,41]. Anchorage may occur through adhesion of pili, flagella, fimbriae, or
glycocalyx, and may be triggered by bacterial immobilization [42,43]. In this initial stage,
only a small quantity of EPS is present [43,44]. The next step is irreversible adhesion,
when there is an increase in the production of EPS, in addition to the formation of micro-
colonies [45]. Subsequently, cell multiplication and breakdown of enzymes and substrates
begin. Thus, it acquires a three-dimensional and heterogeneous structure surrounded by
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pores and water channels, which are systems of entry and exchange of nutrients, oxygen,
and metabolites, and a barrier against the penetration of sanitizers and antibiotics [31]; this
stage is called maturation. The last stage is the dispersion stage, which can occur in two
ways: passive or active dispersion [46]. In passive dispersion, large detachments of cells
occur, which characterize the erosion of the biofilm. In active dispersion, isolated cells or
small clusters of the biofilm are released [47,48].
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Figure 1. Microbial biofilm adhesion steps: 1—Start of bacterial adhesion (weaker forces); 2—Action
of quorum sensing and beginning of stronger binding forces; 3—Formation of microcolonies
with stronger EPS production and formation of three-dimensional structures; 4—Mature biofilm;
5—Detachment and reversion to planktonic growth (cell dispersion).

The properties of the EPS matrix observed in biofilms, in addition to nutrient availabil-
ity, synthesis and secretion of extracellular material, microbial interaction (competition, co-
operation, or synergy), shear stress, and chemical (quorum sensing) or electrical (nanowire)
communication are distinctive features of biofilms compared to free-living cells [31,49].

3. Mechanisms and Strategies for Recalcitrance

Recalcitrance is a term used to define the ability of pathogenic biofilms to survive, even
in the presence of high concentrations of bactericidal agents. It comprises two independent
phenomena: resistance and tolerance to antimicrobials as shown in Figure 2 [11]. In
antimicrobial resistance, the cells not only survive but remain resistant, even after the
biofilm is dispersed. In contrast, in tolerance, cells generally survive only while they are in
the community, becoming susceptible to agents soon after dispersal [50,51].
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Figure 2. Mechanisms of recalcitrance. (A) Mature biofilm. (B) Mechanisms of tolerance: the extracel-
lular matrix interferes in the permeation of the antimicrobial by the biofilm which cause microbial
selection and development of resistance. These mechanisms lead to the activation of a quiescent state,
a moderate increase in the expression of the efflux pump, and a decrease in membrane potential.
Resistant bacterial cells (purple), sensitive bacterial cells (green). (C) Mechanisms of resistance.
(I) Reduction in intracellular accumulation: bacteria reduce the antimicrobial content by decreasing
membrane permeability and/or moderate increase in efflux pumps expression. (II) Modification of
antimicrobial targets: the target alterations occur through changes in the structure or the number of
transpeptidases involved in the construction of cell wall peptidoglycans. (III) Antibiotic degradation:
resistance occurs by transferring chemical groups to the antimicrobial or by complete degradation of
the antimicrobial. (IV) Plasmid: in biofilms, plasmid-mediated conjugation is considered one of the
main pathways for the dissemination of antibiotic resistance (ARG) genes in HGT.

3.1. Tolerance

Tolerance is related to environmental changes and external factors, and not necessarily
to gene expression, as observed in AMR [34]. Such survival strategies have a temporal
and conditioned character, and are mainly related to the characteristics observed in the
EPS matrix and the physiological state of the biofilm cells. These mechanisms lead to the
activation of a quiescent state, a moderate increase in the expression of the efflux pump,
and a decrease in membrane potential [11,34,52].

The EPS matrix consists of different components, such as soluble gel-forming polysac-
charides, extracellular proteins and DNA, amyloids, cellulose, fimbriae, flagella, and water.
The adsorption sites in the EPS matrix act as adhesion points for exoenzymes, a factor
that limits the transport of bactericidal agents and reduces their effectiveness by degrad-
ing metabolites [34,53]. In addition, the EPS matrix forms layers in the biofilm [54] that
promote poor penetration of antimicrobials through the diffusion barrier, thus leading to
entrapment, lower efficiency, or even inactivation of these agents [34,45]. The interference
in the diffusion of the antimicrobials by the biofilms results in sublethal concentrations,
which promotes microbial selection and the development of resistance. The state of cells,
specifically the rates of slow growth and dormancy, is commonly related to the survival of
biofilms exposed to antimicrobials [45]. As the biofilm matures, a greater number of cells
reaches the stationary phase, making the biofilm less susceptible to these agents [55,56].
Cao et al. [57], showed that mature P. aeruginosa biofilms (7 days old) were up to 4 times
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more resistant to antibacterial action than young biofilms (1 day old). In addition, slow
growth rates may lead to the establishment of a viable but non-cultivable state (VBNC) [58].
Another state, very common in resistant biofilms, is characterized by persistent cells, i.e.,
subpopulations of MDR bacteria within a biofilm that can differentiate into a protective
phenotype [11,36,45,59]. In tolerance, changes in the biofilm microenvironment, such as in
pH, osmotic stress, and substrate depletion, may be responsible for reducing the number of
input channels and thus limiting the permeability of the cell membrane to an antibacterial,
plus to reducing metabolic activity inducing the stationary phase [34,60]. In addition,
the physical barrier promoted by the EPS matrix results in sublethal concentrations, and
can promote microbial selection and emergence of sanitizer resistance in both MDR and
non-MDR biofilms [61,62]. However, not all bacteria that show tolerance when in biofilm
will show resistance after dispersion [11].

3.2. Antimicrobial Resistance

Resistance to antimicrobial agents is the ability of some microorganisms to survive
after being exposed to compounds considered lethal [45]. It is enabled by different mech-
anisms and can be classified into (I) intrinsic, (II) acquired, and (III) adaptive. Intrinsic
resistance (I) encompasses all mechanisms of inhibition of agents that are inherent to the
microorganism. In this type of resistance, strains may never have come into contact with
the antimicrobial and still be able to survive. In acquired resistance (II), the process occurs
through the incorporation of genetic material or mutations. This type is very common in
biofilms, given the proximity of the cells in this environment [34,45,52]. Adaptive resistance
(III) is the ability of a microorganism to survive due to changes in the expression of genes
or proteins caused by exposure to environmental stress [63,64]. However, the latter can be
a link between intrinsic and acquired resistance, since both genetic mutations and changes
caused by environmental stresses can alter the expression of intrinsic defense mechanisms,
and thus increase resistance to antimicrobials [11,34,36].

Quorum sensing (QS) and horizontal gene transfer (HGT) are the most commonly
observed mechanisms in biofilms and may be involved in all three types of resistance.
Nevertheless, other strategies to increase resistance to biocides can also be used, especially
by MDR microorganisms, such as antimicrobial target modification, antimicrobial inactiva-
tion, and reduction in intracellular accumulation through regulation of efflux pumps and
decreased membrane permeability [65,66]. In fact, these strategies are coordinated by QS
or through HGT.

3.2.1. Quorum Sensing (QS)

Quorum sensing (QS) is a cell-to-cell communication system that mediates chemical
signals allowing cooperative expression of genes. These genes are responsible for several
physiological mechanisms, such as biofilm formation, sporulation, conjugation, motility,
regulation of bacterial luminescence, and virulence factors, such as toxins, proteases, and
adhesins [67,68]. QS is dependent on population density and is based on communication
through autoinducers, signaling molecules that are recognized by cell surface receptors
or in the cytoplasm. As they are produced, these molecules accumulate in the biofilm
environment [7,69]. After recognition of the receptor, there is transcription involving genes
that code for surface proteins, virulence factors, transcription factors, and proteins involved
in biofilm development [70]. The autoinducers used by Gram-positive bacteria are peptides
(AIPs), and those used by Gram-negative bacteria are acylated homoserin lactones (AHLs).
For intra- and interspecies communication, autoinducer 2 (AI-2) is used in both Gram-
positives and Gram-negatives [11,69]. QS positively influences recalcitrance (tolerance
and AMR) [11]. However, most authors indicate a direct relationship and more significant
action on AMR. Further, QS is an intrinsic resistance mechanism, but it also seems to exert
an influence on adaptive resistance. Such thinking occurs because this mechanism allows
transient adaptive changes in the expression of biofilm genes; however, this phenomenon
can only occur through the previous existence of such genes [67]. Some studies found genes
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related to biofilm formation in MDR S. aureus (icaA icaB icaD and icaC), MDR Salmonella
(adrA, bapA, csgB, csgD, fimA, fimH) and MDR Listeria (flaA and luxS) and observed strong
biofilm production [13,71,72]. During exposure to stressors, QS promotes the overexpres-
sion of resistance genes, regulates the production of proteins involved in the permeability
of the outer membrane, and increases the formation of micro-colonies, favoring biofilm
formation and increasing sanitizer resistance [70,73]. Mutants with QS deficiency seem
to produce less structured biofilms and are apparently more susceptible to antimicrobials
since their structure is affected by this mechanism [11,34,45,72]. Furthermore, QS is directly
linked to the regulation process of drug efflux pumps and modification of antimicrobial
targets, important strategies of AMR [73–75]. These strategies have been previously as-
sociated with increased resistance to sanitizers and antibiotics [67]. In a recent study, the
authors investigated the relationship between QS and MDR pathogens and suggested
that biofilm formation by MDR bacteria provided greater antimicrobial resistance [76].
In addition, studies have tried to establish an association between AMR and increased
biofilm formation [37,39]. The defense strategies coordinated by QS make the MDR biofilm
a unique system with great resilience and a high potential for dissemination [77].

3.2.2. Horizontal Gene Transfer (HGT)

Another mechanism widely recognized for adaptation in bacteria that is responsible
for the increase and dissemination of resistance to antimicrobial agents by MDR biofilms
is horizontal gene transfer (HGT). HGT occurs in acquired resistance through the incor-
poration of genetic material and the uptake of resistance genes or mutations. However,
the genes responsible for coding AMR strategies are more expressed in gene transfer
than in mutations [78]. Mobile genetic elements (MGEs) such as transposons, integrative-
conjugative elements, integrons, or plasmids are easily disseminated from one bacterium to
another through HGT [79], i.e., in biofilm HGT is responsible to spread the AMR among the
community. Furthermore, HGT can contribute to MDR bacteria to acquire pathogenicity
factors and adapt to different conditions [80]. The HGT mechanism consists of three main
pathways: plasmid-mediated conjugation, transduction, and transformation; the first is
most commonly observed in biofilms [81–83]. Plasmids are circular sequences of extrachro-
mosomal DNA [78]. Plasmid-mediated conjugation is considered one of the main pathways
for the dissemination of antibiotic resistance (ARG) genes. During conjugation, the transfer
of resistance genes occurs laterally, by cell-to-cell contact, via pili or adhesin molecules.

In biofilms, whose populations are denser and more stable, there are higher rates
of gene transfer. Factors such as high cell density and accumulation of mobile genetic
elements contribute to the absorption of ARGs [84]. Plasmids can easily transfer ARGs
between phyla and genera [67,85]. The T6SS secretion system, in which effector proteins
and virulence factors are injected from the inside of a bacterial cell into another in a single
step, provides an alternative mechanism of HGT and requires cell-to-cell contact. This
fact emphasizes the proximity and the high cell density, common in biofilms, as important
factors in bacterial resistance [86,87]. In fact, bacteria have macromolecular complexes
capable of transporting various molecules from the cytosol to the extracellular environment.
These secretion systems are classified into nine types: I, II, III, IV, V, VI, VII, VIII, and IX, also
known as T1SS, T2SS, T3SS, T4SS T5SS, T6SS, T7SS, T8SS, and T9SS. Some of these systems
differ in terms of the mode of operation and molecules that transpose [88–91]. Besides the
T6SS the secretion, system type VIII (T8SS) has been related to biofilms. T8SS is composed
of three protein components that facilitate the assembly of curli fibers in the extracellular
environment and is used in the secretion of amyloid fibers by Enterobacteriaceae, which
is one of the main components of biofilms [88]. This mechanism confers resistance to
several antimicrobials [81–93]. Several studies have shown a strong relationship between
antibiotic resistance genes and the ability of forming biofilm [94–96]. In a recent study,
authors investigated a HGT encoded for antimicrobial resistance genes of MDR strains
of C. jejuni, E. coli, and S. enterica. The results highlighted strong biofilm formation and
promotion in HGT as being responsible for the evolution of the biofilm structure [82].
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3.2.3. Modification of Antimicrobial Targets

Some classes of antimicrobial agents use cellular components as targets. One of the
strategies used by MDR bacteria is the modification of these components [97]. Modification
of the target occurs through changes in the structure or the number of transpeptidases
(PBPs) involved in the construction of the cell wall peptidoglycans. The increase in the
number of PBPs leads to a decrease in the binding capacity of the antimicrobial and, conse-
quently, to a reduction in the action of or resistance to this agent [77]. The acquisition of
mecA genes in S. aureus, for example, promotes changes in the structure of PBPs and reduces
the capacity of the antimicrobial agent [91]. The acquisition of van genes through HGT also
confers resistance to vancomycin, as it results in changes in the structure of peptidoglycan
precursors and reduces their binding capacity [1]. Among the most widely used antimicro-
bial agents in both animal and human therapy are β-lactams. Resistance to these agents
may occur by interrupting the interaction between the target transpeptidases (PBPs) and the
agent, among others [98]. Another widely used class of antimicrobials is fluoroquinolones,
which act directly on the synthesis of nucleic acids. Bacteria modify the structure of DNA
gyrase and topoisomerase IV to become resistant to fluoroquinolones [67,99]. Some antimi-
crobials also act by inhibiting binding to the active site of enzymes. The strategy consists
of the expression of genes that promote modifications in these enzymes, interfering with
antimicrobial binding but still allowing the binding of the natural substrate [67,97].

3.2.4. Antimicrobial Inactivation

Another strategy adopted by MDR bacteria is the inactivation of antimicrobials, which
occurs mainly in two ways: by transferring chemical groups to the antimicrobial or by
complete degradation of the antimicrobial [97]. Inactivation by group transfer occurs most
commonly through acetylation, phosphorylation, and adenylation, with the addition of
acetyl, phosphoryl, and adenyl groups, respectively [63,100,101]. The synthesis of enzymes
capable of hydrolyzing antimicrobials and thus inactivating them is coordinated by QS.
These enzymes can be found intrinsically in the bacterial chromosome but can also be
acquired through a plasmid [102]. Among the hydrolyzing enzymes, β-lactamases stand
out [67,103]. When these enzymes confer resistance to next-generation cephalosporins, they
are called extended-spectrum β-lactamases (ESBLs) and include members of the CTX-M,
OXA, SHV, and TEM enzyme families [97]. Gram-negative bacteria such as Pseudomonas
spp. and members of Enterobacteriaceae have β-lactamase chromosomal genes. Such genes
are also found in Gram-positive bacteria such as S. aureus. Both groups have been widely
associated with the production of biofilms [82,92,104].

3.2.5. Reduction in Intracellular Accumulation

To avoid antimicrobial accumulation in the cell, bacteria reduce the agent content by
decreasing membrane permeability and/or regulating efflux pumps. Porins control the
selective access of small hydrophilic antimicrobial molecules to the periplasm by diffusion
through a water-filled channel [105]. Mutations may alter permeability, but several genetic
mechanisms may be involved in the synthesis of porins, reducing or inhibiting the process:
premature stop codons, insertion elements, and negative regulation of expression [11]. The
production of porins can act synergistically with efflux pumps, producing greater action
against antimicrobials. Both have also been associated with biofilm formation [106,107].

Efflux pumps can transport a wide variety of compounds [11]. In this strategy, some
proteins located in bacterial membranes function in the recognition and active transport
of substances to the interior or exterior of the cell. The expression of genes encoding
the pumpsis necessary and can occur in intrinsic resistance through the regulation of
QS, in the acquired resistance through HGT, and in adaptive resistance when genes are
induced or overexpressed after environmental stimuli or stress [11,63,97]. Efflux pumps
play an important role in AMR and are divided into six families: principal facilitator (MF),
extrusion of multiple drugs and toxins (MATE), small resistance to multiple drugs (SMDR),
ATP binding cassette (ABC), efflux families of proteobacterial antimicrobial compounds
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(PACE), and resistance-nodulation-division (RND). The MF family consists of membrane
proteins with 400 to 600 amino acid residues, and the MATE family has proteins with
400 to 700 amino acid residues. The SMDR family consists of smaller proteins with 100
to 120 amino acid residues organized as homodimers. Members of the PACE family can
confer resistance to a range of biocides such as acriflavine, proflavine, benzalkonium,
acriflavine, and chlorhexidine, and are encoded by many important Gram-negative human
pathogens [11,108]. ABC transporters are active transporters formed by one or two proteins
in addition to a dimeric cytoplasmic ATPase. Transporters of the RND family form a protein
complex consisting of approximately 1000 amino acid residues [109,110].

In general, bacterial efflux pumps are composed of outer membrane channel proteins,
fusion proteins, and cytoplasmic membrane efflux proteins. The fusion protein connects
the outer membrane channel protein and the cytoplasmic membrane efflux. The expression
of specific genes of the efflux pump can be regulated by QS, which has been demonstrated
in some recent studies [111,112]. In addition, several studies have endorsed the relationship
between efflux pump production, biofilm formation, and AMR [64,109,113]. According to
Zhao et al. [102], some genes responsible for encoding efflux pumps in different transporter
families are upregulated in biofilms. Baugh et al. [113], evaluating the inhibition of mul-
tidrug efflux as a strategy to prevent biofilm formation in S. Typhimurium, observed that
the exposure of cells to efflux pump inhibitors reduced the formation of biofilms, which
was also previously observed for K. pneumoniae and P. aeruginosa [106,114]. Efflux pumps
are also related to resistance to sanitizers. Lister et al. [115] observed that MDR P. aeruginosa
with RND family pumps was resistant to biocides. A recent study showed that several MDR
pathogens, including S. aureus, Proteus mirabilis, and members of Enterobacteriaceae, have
AmvA homologs (QacA, SmvA), which confer greater resistance to biocides (particularly
chlorhexidine) [116]. Overall, these studies point to the direct contribution of efflux pumps
in the AMR and its relationship with biofilm formation.

4. MDR Biofilms in the Food Production Chain

The food production chain is composed of several steps that go from farm to fork. The
indiscriminate use of antibiotics in animal production, whether for therapy, prophylaxis,
or growth promotion, has directly influenced food safety, since these pathogens can be
transmitted from feces or manure of contaminated animals to farm workers, vegetables,
water, or soil [9,11,47]. Jones-Dias et al. [117] reported the contamination of farm soil with
resistant E. coli and the transfer of the mobile bla gene. Class 1 integrons have played a
major role in the spread of antibiotic resistance. The presence of this integron has been
reported in an Enterobacter cloacae strain isolated from baby spinach leaves. This element
was previously described in human microbiota. The authors suggested that the integron
migrated to anthropogenic environments through food [80]. MDR pathogens such as
Salmonella, methicillin-resistant S. aureus (MRSA), Listeria monocytogenes, Campylobacter
jejuni, E. coli O157:H7, and Vancomycin-resistant enterococci (VRE) have been associated
with foodborne outbreaks [15,16,118,119]. Furthermore, in the USA these MDR microor-
ganisms are estimated to cause approximately two million illnesses and 23,000 deaths each
year [120].

The pathogenicity and difficulty in treating diseases caused by MDR pathogens is
not the only worrying factor about these microorganisms. The dissemination of MGEs
has gained attention in the food supply chain [5,39,82]. MGEs such as plasmids, trans-
posons, integrons, and gene cassettes—easily transferred in HGT—have potentiated the
acquisition of pathogenicity factors by different bacteria and increased the adaptability of
MDR foodborne pathogens to different niches of the food supply chain [80,117,121]. In
addition, MGEs can encode resistance to various antibioticsr from contaminated food to gut
microbiota of patients infected with MDR bacteria [5]. Glenn et al. [122], demonstrated the
presence of resistance genes that conferred phenotypic resistance against chloramphenicol
(floR and cmlA), tetracycline (tetA, tetB, and tetG), sulfonamides (sull1 and sul2), ampicillin
(temB), β-lactamase (bla PSE-1), and aminoglycosides (strA and aadA) in Salmonella. In
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addition, the antibiotic resistance genes (bla PSE-1, sul1, flor, aadA, and tetG) detected in
the study were potentially transferable. The presence of MDR Salmonella strains in foods,
such as poultry meat, is a major concern, considering their extremely resistant phenotypes
and several transferable determinants (resistance genes to plasmid- and integron-mediated
antibiotics) [39]. Bersot et al. [123] evaluated the antimicrobial resistance of Salmonella in
the pork production chain in Southern Brazil and reported a high incidence of MDR strains.
In addition, the authors pointed out the need for greater monitoring of antimicrobial resis-
tance in the pork production chain and the possibility of these strains to be transmitted to
humans. Furthermore, MDR enterococci are found extensively in food samples. Chotinan-
takul et al. [124] characterized the phenotypic virulence factors and the ability of horizontal
gene transfer of a streptomycin resistance gene among enterococci isolated from fermented
pork. The results demonstrated that the aadE gene can be transferred via conjugation
between enterococci isolated from pork, contributing to streptomycin resistance. In ad-
dition, the authors highlighted the importance of HGT within the food chain and that
transference to humans might be possible, causing harm or untreatable diseases. Indeed,
the transmission network does not end at the consumer. The selection and proliferation
of these MDR microorganisms can continue through environmental contamination and
return to the primary production through effluents and human and animal fecal matter,
resuming the transmissibility cycle [5,125].

MDR foodborne pathogens can spread through processing lines from raw materials,
workers, and soil or water reaching end products. In 2019 in the USA, a MDR Salmonella
outbreak linked to raw chicken products resulted in 129 cases and one death. Salmonella
Infantis was isolated from live chickens, raw chicken products, and in slaughter and pro-
cessing establishments [126]. From 2017 to 2019, a multi-country MDR Salmonella outbreak
with 358 cases and one death was associated with raw turkey products. The pathogen
was recovered in raw turkey products from 24 slaughter and 14 processing establish-
ments [127]. Another relevant aspect of MDR foodborne pathogens is their ability to form
biofilms. Biofilms are a major problem in the industrial environment of food produc-
tion [31,47]. Formation and development of these structures have been reported in some
types of food and food processing plants (Table 1), such as meat [12,123], poultry [13,128],
dairy [129,130], seafood [131,132], vegetables, fruits, and their products [133,134]. These
biofilms can be formed on diverse materials (stainless steel, PVC, polyethylene, polypropy-
lene, wood, rubber, and glass), remaining viable for a long time in the food processing
environment [31,135,136]. In fact, given the emergence of MDR bacteria to public health
and the difficulty to remove biofilms from food manufactory plants, it is necessary to estab-
lish a possible relationship between AMR and biofilm formation in this sector. However,
there are still few studies that identify virulence and resistance genes and associate them
with the production of biofilms isolated from the food production chain, especially in the
processing environment and facilities.

Table 1. MDR bacteria reported in food and food processing plants.

Microorganism Source AMR Profile Biofilm
Formation Biofilm Genes Biocide

Resistance Reference

Salmonella sp.
Chicken
slaughter

plant

AMP; STX; CN; C;
TET Strong biofilm - - [137]

Salmonella sp. Beef
slaughterhouse

TET; SFX; STR; CHL;
AMP

Strong
biofilms -

Quaternary
ammonium

chloride;
Chlorine and

Chlorine
dioxide

[138]
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Table 1. Cont.

Microorganism Source AMR Profile Biofilm
Formation Biofilm Genes Biocide

Resistance Reference

Salmonella sp. Chicken
slaughterhouse

AMC; AMP; FOX;
XNL; CEF; CHL; CIP;

FFN; GEN; NAL;
NEO; STR; TET; SXT

Modest biofilm -

Lactic acid and
Cetylpyri-

dinium
chloride

[139]

Salmonella
Poultry

processing
equipment

STR; GM; TET; SF;
CHL; GM

Modest biofilm
and strong

biofilm

adrA, bapA,
csgB, csgD, fimA,

fimH

Chlorine and
quaternary
ammonium
compounds

[13]

Listeria
monocytogenes

Chicken
slaughterhouse

AMX; AMP; OX;
CRO; VAN Strong biofilms - - [119]

Listeria sp.
Meat, milk,

vegetables, and
water

ERY; CM; CN; TET;
NOV; OX; NA; K Strong biofilm flaA and luxS - [15]

Staphylococcus
aureus Milk CRO; VAN; P Strong biofilms icaA icaB icaD

and icaC - [72]

Staphylococcus
aureus

Raw meat and
meat products P; AMP; TET; CN Modest biofilm icaABCD - [140]

Campylobacter
jejuni

Chicken carcass
CEP; CEF; AMX;

AGO; AZT; FLQ; NA;
OXA; E; TET; STX.

Strong biofilm flaA, flaB, flaC,
flaG, fliA, fliS,
flgA, and flhA

-

[71]

Raw milk
CEP; CEF; AMC;
AZT; FLQ; NAL;

OXA; E; TET; STX.
Modest biofilm -

Campylobacter
coli Ground meat

K; STREP; TOB; CEP;
CEF; AMX; AMC;

AZT; STX.
Modest biofilm -

Chicken meat

TOB; CEP; CEF;
AMX; AMC; AZT;

FLQ; NAL; OXA; E;
STX.

Modest biofilm -

Vancomycin-
resistant

enterococci
(VRE)
and

Enterococcus sp.

Poultry, pork,
and meat
products

TEC; C; ERY; Q/D;
CP; AMP; TET

Weak biofilm or
not biofilm
formation

- - [17]

Escherichia. coli

Farm animals
(goats, pigs,

poultry, cattle,
sheep) and

animal
products (milk,

cheese, beef,
chicken,
yogurt).

TIC; TET; AMP; D;
STX; LVX; ENR; CP;

AMP; CXM; CEF; CZ;
LEX; CAZ; TOB; CN;

AMX; K

Modest biofilm
agn43, bcsA,
papC, csgA,
fimH, fliC

- [141]
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Table 1. Cont.

Microorganism Source AMR Profile Biofilm
Formation Biofilm Genes Biocide

Resistance Reference

Enterococcus
faecalis and
Enterococcus

faecium

Chicken and
turkey

processing
plants

CHL; CP; ERY; FLA;
GEN; K; L; NIT; P;

Q/D; SM; STR; TET;
TYL; VAN

Modest biofilm - [142]

AK: Amikacin; AMC: Amoxicillin-clavulanic acid; AMP: Ampicillin (ampicilina); AMX: Amoxicillin; AZT:
Aztreonam; C: Chloramphenicol; CAZ: Ceftazidime; CB: Carbenicillin; CEF: Cefotaxime; CEP: Cephalothin;
CFC: Cefaclor; CFM: Cefixime; CHL: Chloramphenicol; CM: Clindamycin; CN: Cefalosporins; CP: Ciprofloxacin;
CRO: Ceftriaxone; CST: Colistin; CXM: Cefuroxime; CZ: Cefazolin; D: Doxycycline; ENR: Enrofloxacin; ERY:
Erythromycin; F: Florphenicol; FFN: Florfenicol; FLA: Flavomycin; FLQ: Flumequine; FOS: Phosphomycin;
FOX: Cefoxitin; FUR: Furazolidone; GEN: Gentamicin; GM: Aminoglycosides; K: Kanamycin; L: Lincomycin;
LEX: Cefalexin; LVX: Levofloxacin; LZD: Linezolida; NA: Nalidixic acid; NEO: Neomycin; NIT: Nitrofurantoin;
NOR: Norfloxacin; NOV: Novobiocin; OX: Oxacillin; OXA: Oxalinic acid; P: Penicillin G; Q/D: Quinupristin-
dalfopristin; S: Streptomycin; SAM: Ampicillin-sulbactam; SF: Sulfonamide; SFX: Sulfisoxazole; SM: Salinomycin;
STR: Streptomycin; STX: Trimethoprim/Sulfamethoxazole; TEC: Teicoplanin; TET: Tetracycline; TIC: Ticarcillin;
TOB: Tobramycin; TS: Trimetroprim+Sulfamethox; TYL: Tylosin; VAN: Vancomycin; XNL: Ceftiofur.

One of the first studies to assess whether strains resistant to antibiotics had the ability
to form biofilms was performed in 2008 in a hospital setting. Kwon et al. [143] evaluated
the relationship between methicillin resistance and biofilm formation by S. aureus strains.
This study demonstrated a higher rate of biofilm forming in MDR strains compared to
no-MDR. Tahaei et al. [104] evaluated the biofilm-forming ability of sensitive (MSSA) and
methicillin-resistant (MRSA) biofilms. Although no direct association was found between
methicillin resistance and biofilm formation, there was a positive relationship for biofilm
formation for other antibiotics, such as erythromycin, clindamycin, and rifampicin. In the
food production scenario, in Italy, in a study conducted in the pig production chain, 77.0%
of the S. aureus isolates were MDR, and 55.2% were able to produce biofilms after 24 h [32].
Olowe et al. [141] isolated 216 E. coli strains from animals, humans, and food. Thirty-seven
of the 216 isolates were MDR and showed the ability to form biofilms. It was also observed
that all genes associated with biofilm formation were detected in antibiotic-resistant isolates.
The authors also concluded that antibiotic resistance plays an important role in biofilm
formation [141].

In China, 176 P. mirabilis isolates were investigated regarding the association between
biofilm formation, virulence gene expression, and antibiotic resistance. The results indi-
cated that biofilm formation was significantly associated with resistance to doxycycline,
tetracycline, sulfamethoxazole, kanamycin, and cephalothin. Approximately 76.7% of
the isolates were MDR or extensively drug-resistant (XDR). In addition, there was a high
predominance of biofilm-producing isolates (92.05%), with a higher prevalence of virulence
genes in the biofilm-producing group than in the nonproducing group [39]. In Poland,
strains of MDR S. Enteritidis showed greater biofilm formation capacity [37].

In China, between 2014 and 2015, all Salmonella isolates from birds that showed
biofilm formation capacity were resistant to ciprofloxacin, doxycycline, sulfamethoxazole-
trimethoprim, ampicillin, and streptomycin, suggesting a relationship between biofilm
formation and the MDR phenotype [144]. A study conducted in nine pig farms in the
United Kingdom showed that most isolates of S. 4,[5],12:i:- (98.1%) and S. Typhimurium
(76.7%) exhibited the RDAR phenotype (colonies red, dry, and rough), indicating the pro-
duction of cellulose and curli fimbriae, which are related to biofilm formation. The presence
of MDR strains capable of forming biofilms with enormous biomass production, such as S.
4,[5],12:i:- and S. Typhimurium DT104 reinforces the relationship between multidrug resis-
tance and biofilm formation [145]. Ma et al. [82] investigated the HGT of chromosomally
encoded antimicrobial resistance genes between C. jejuni mutants in biofilms. The authors
highlighted HGT as a driving force for the spread of antimicrobial resistance genes among
C. jejuni strains. It has also been suggested that the evolution in the structure of these
biofilms may be directly involved in transmission to humans [146–148]. Several genes
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associated with biofilm formation, including genes involved in motility (flaA, flaB, flaC, flaG,
fliA, fliS, flgA, and flhA), oxidative stress (trxA, trxB, ilvE, and nuoC), stress response (spot,
csrA, ahpC, cosR, and cprS) and quorum detection (luxS) were also identified. In recent
studies, Baaboua et al. [71] evaluated the biofilm formation for nine strains of MDR C. jejuni
and C. coli isolated from food in Northern Morocco. The results demonstrated a strong
relationship between the presence of antibiotic-resistance genes and the ability to build
biofilm. Kaptchouang et al. [15] evaluated a total of 207 samples (meat, milk, vegetables,
and water) and found that L. monocytogenes isolates were resistant to several antibiotics and
showed a strong biofilm formation.

Although not fully understood, AMR seems to promote greater biofilm formation and
consequently higher protection against the action of biocides commonly used in the food
industry [149–151]. Wang et al. [138] evaluated biofilm formation, and antimicrobial and
sanitizer resistance of MDR S. enterica isolated from beef plants. The results indicated that
the strains were strong biofilm formers and highly resistant to quaternary ammonium chlo-
ride (QAC) and chlorine dioxide (ClO2), sanitizers widely used in the food industry. Obe
et al. [13] isolated MDR Salmonella from poultry processing equipment after disinfection
with chlorine and QAC. The authors observed strong biofilm-forming ability, and presence
of specific genes for biofilm formation, sanitizer, and antibiotic resistance. Therefore, to
reduce or minimize the occurrence of MDR foodborne outbreaks, the control and prudent
use of antimicrobials in primary production, in addition to the implementation of Good
Agricultural Practices (GAPs), are essential. In addition, cross-contamination must be
avoided throughout the food supply chain through strict Good Hygiene Practices (GHPs),
environmental monitoring, and control and prevention of biofilms.

5. Conclusions

Biofilm formation is a survival strategy influenced by several environmental factors
that can enhance the survival capacity of various pathogens. However, these mechanisms
are still poorly understood. In this review, we describe the different strategies encompassed
in the mechanisms of resistance and tolerance to antimicrobials (activation of a quiescent
state of cells, moderate increase in the expression of the efflux pump, decreased mem-
brane potential, antimicrobial inactivation, modification of the antimicrobial target, and
architecture of the EPS matrix). In addition, we demonstrate how some of these strategies
have been related to biofilm formation and how they confer greater robustness to biofilms.
Some lines of research aimed at interrupting the regulation of resistance genes, known as
"Quorum Quenching", have been based on blocking the expression of target genes by the
use of substances present in medicinal plants. However, there are few studies investigating
the impact of the use of these inhibitors on recalcitrance mechanisms and their impact on
the microbiome or even the use of strategies that combine other antimicrobials. In addition,
more studies are needed to answer questions such as: How does the industrial environment
influence the formation of these biofilms? Can the technological processes, common in the
food industry, affect the expression of biofilm formation genes? Or what is their impact on
the virulence and resistance of MDR pathogens?
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