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Abstract: Through the approaches in this article, an attempt was made to analyze the bonding of
Al-Cu bimetallic composite layers and the highlight of the diffusion at the boundary between the
layers, by hot rolling. An aluminum alloy 6060 plate (EN-AW AlMgSi) and a Cu-ETP 1/2 hard
(CW004A) plate were used. All of these layers of materials were TIG-welded, at both ends, into a
heat-treated layered composite and subsequently subjected to the hot-rolling process. The Al-Cu
composite material obtained was analyzed by scanning electronic microscopy (SEM) analysis, after
being subjected to the tensile test, as well as energy-dispersive X-ray (EDX) analysis. The obtained
results highlighted the diffusion at the boundary between the layers of the Al-Cu composite as well
as its ductile breakage and the distribution of the amount of Al and Cu at the interface of the layers.

Keywords: hot rolling of multilayers; Al-Cu composite; diffusion at the interface; severe deformation;
bimetallic composite

1. Introduction

The discovery of new materials with special properties, against the background of
resource depletion and the need to recycle existing materials, always arouses the interest of
researchers [1–14] around the world. The production of light-resistant materials, which is
necessary for the aeronautical, naval, energy, electrical, and electronic industries, pushes
research towards the association of materials with completely different properties [15–22].
Aluminum, copper, and their alloys were used as a matrix in the component of rolling
composite materials [23–25].

Copper’s properties such as its high thermal and electrical conductivity, high modulus of
elasticity, and good strength makes it widely useable for gas and water pipe devices, which
allows heat transfer such as boilers, electronic circuits, and electrical components within the
fields of industry: energy, aeronautical, naval, and automotive. Copper was used as a rein-
forcing element in the production of rolling composite materials [8,9,11,17,21,23–25], through
the ARB process (accumulative roll bonding) [7,9–12,19–25] or hot rolling [1,2,17,18]. Along
with other materials such as Ti, Sn, Mg, Fe, Nb, and Al, the properties of rolled composites
have increased [3,9,15,17,21,23–25]. The problem with the bonding mechanism within layers of
composite materials was the main subject of numerous studies [1,2,7,9–12,15–25], throughout
the last decades. Regarding the mechanism of the bonding of the layers, the theories were
dependent on the choice of the deformation process [3,16–18] (in this case rolling), which can
take place through hot or cold conditions. These theories have been narrowed down to four:
two are attributed to cold bonding [7,10–12,19–25], they include the film theory and the energy
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barrier theory; and two are attributed to hot bonding [1,3,17,18], these include the theory of
diffusion bonding and the theory of diffusion bonding and the joint recrystallization theory.

Research in the field of layered composites has intensified since 2013. Lee K.S. et al.
analyzed the influence of the reduction ratio [26]; Kim I.-K. et al. analyzed the effect of
component layer [27]; Kocich R. et al. analyzed the fabrication of cold-swaged multilay-
ered [28]; Li X-B. et al. and Yu C. analyzed the roll bonding [29,30]; Jandaghi M.R. analyzed
the impact on the corrosion [31]; Ebrahimi M. analyzed the characteristic investigation of
the tri-layered composite [32]; and Mo T. et al. [33] and Zhang J.-P. et al. [34] analyzed the
interface effect on the microstructure. The microstructure problems were also investigated
by Liu T. [35], Shayanpoor A.A. [36], Venugopal S. [37], and Zhu Y. [38]. Cheng, J. et al. pro-
posed a post-weld composite-treatment process for improving the mechanical properties of
AA 6061-T6 aluminum alloy welded joints [39].

The main objective of this work is to obtain a multilayer Al-Cu composite by hot
rolling and determine the characteristics of this layered composite. This composite could
lead to the accumulation of advantages offered by both materials with very different
properties and a reduction in their major disadvantages. The obtained material should
have well-connected layers, and the entire composite system should be highly resistant to
tensile strength and to wear value and consist of ductile properties.

2. Materials and Methods
2.1. Sample Preparation

The purpose of this work was to create multilayer type samples of copper and
aluminum. To make these samples, were used commercial extrusion aluminum from
the 6000 series (EN-AW-6060 T6) and Cu-ETP (electrolytic tough pitch copper) 1/2 hard
(CW004A). The multilayering of the composite was made after hot rolling. The samples
were made of four layers (Figure 1), two of aluminum and two of copper, which were
clamped alternately by front faces welding (Figure 2) type TIG (tungsten inert gas welding)
with the addition of aluminum at both ends of the sample to reduce the possibility of
sliding between the layers at the entrance to the rolling mill. Before TIG welding, the four
layers were mechanically cleaned, degreased, and individually sprayed with a solution of
30% Al2O3 + 70% H2O2.
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Figure 2. TIG welding with addition of aluminum at both ends of the initial sample.

The materials used in this work were chosen for reasons of hardness and resistance to
shocks, but at the same time to have a high ductility. The materials used were aluminum
EN AW-6060 T6 (AlMgSi) and Cu-ETP 1/2 hard (CW004A) with chemical composition,
presented in Tables 1 and 2, respectively, and the mechanical properties in Tables 3 and 4.
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Table 1. The chemical composition (wt.%) EN-AW-6060 (EN-AW AlMgSi) according to EN573-3 [40].

Si Fe Cu Mn Mg Cr Zn Ti Other Al

0.3–0.6 0.1–0.3 0.10 0.10 0.35–0.6 0.05 0.15 0.1 0.05 Remainder

Table 2. Chemical composition Cu-ETP 1/2 hard according to EN 1652 [41] (wt.%).

Cu O Si Bi Pb Other Elements

99.90 0.040 maximum 0.015 0.0005 0.005 Remainder

Table 3. Mechanical properties EN-AW-6060 (EN-AW AlMgSi) according to EN755-2 [42].

Temper
A50 (%)

Wall Thickness,
e (mm)

Yield Stress
Rp0.2 (MPa)

Tensile
Strength, Rm

(MPa)

Elongation
Hardness

(HB)A
(%)

A50
(%)

T6 <5 150 190 8 6 65

Table 4. Mechanical properties Cu-ETP 1/2 hard according to EN 13601 [43].

Material
Tensile

Strength,
Rm (MPa)

0.2% Proof
Strength Rp0.2

(MPa)

Elongation Hardness

A100 mm
(%)

A
(%)

Brinell
HBW

Vickers
HV

R250 1/2

Hard 250 minimum
180 8 12 65–90 70–95

The chosen materials were commercial materials delivered in the form of a plate with
dimensions of 20 × 3 × 4000 mm.

In the first stage, several pieces of plates of decreasing size were cut from the following
materials: aluminum, one plate of 300 mm and one of 290 mm, after cutting two plates of
copper, one of 295 mm and one of 285 mm, which were arranged as seen in the Figure 2.

The Cu plates were annealed in advance in an electric furnace type Carbolite
CTF/12/75/700 at a temperature of 700 ◦C and kept for one hour, after which the copper
plates were removed and cooled in water. The pieces were then placed one on top of the
other, which then made a multilayer composite specimen (Figure 1). The samples were
TIG-welded with additional aluminum (Figure 2) at both ends to minimize the risk of
layer slippage.

Four cycles of annealing and hot rolling were performed (Figure 3). Before the hot-
rolling cycle with a reduction of 50% by one pass, the composites samples were placed
in the electric furnace for 1 h at 500 ◦C. The rolling multilayer composites samples were
performed using a rolling machine with a rolling diameter of 220 mm and a rolling speed
of 36 rpm.

After the first cycle of annealing and hot rolling, the copper layer underneath bonded.
It can be deduced that the micro volumes at the interface did not adhere very well together,
and the existence of some oxides can prevent bonding. Another hypothesis can be the
different friction coefficient between the roll of the rolling mill and the copper layer and
between the roll of the rolling mill and the aluminum layer.

The second cycle of annealing and hot rolling (with 3 layers) was carried out with a
reduction of 50%. The sample with three layers was cut. The two pieces were stacked, and
a sample with 6 layers was obtained, to achieve the third cycle of annealing and hot rolling
with the same reduction percent.

In the fourth cycle of annealing and hot rolling, at the same reduction, the debonding
of 2 layers (one of Cu and the other of Al) occurred. Therefore, a sample with 4 layers,
Al-Cu-Al-Al, was obtained.
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Figure 4 shows the annealing of the copper layer at 700 ◦C and the 4 cycles of annealing
at 500 ◦C followed by hot rolling. The elongation to failure increased after annealing.
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2.2. Material Characterisation

The sample prepared for SEM analysis was evaluated in the normal rolling direction,
as were the EDX analyses performed to characterize the chemical composition and the
elemental distribution in the Al-Cu multilayer composite, using the energy dispersive
X-ray spectroscopy (EDX). For the SEM image recording, a JEOL JSM 5600LV electron
microscope (Tokyo, Japan) was used, and for EDX, an Ulrim MAX 65 detector (Oxford
Instruments, Aztech software, the version number 4.2) was used. A cross-sectional analysis
was carried out to highlight the breakage of the specimen, on a Heckert 200 kN universal
tensile-compression testing machine EDZ-20S (WEB Werkstoffprüfmaschinen, Leipzig,
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Germany) and an NI 6211 data acquisition board (National Instruments, Austin, TX, USA)
for recording data.

The fracture surfaces after the tensile tests were also observed through SEM to deter-
mine the failure mode. Tensile testing, in accordance with the EN ISO 6892-1 test method
at room temperature, was performed at 20 ◦C, and stress–strain curves were determined.
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3. Results and Discussions

For the sample composites, after two cycles of annealing 1 h at 500 ◦C and hot rolling
with 50% theoretical reduction, the dimensions obtained were 480 × 27 × 3 mm (Figure 5).
Unfortunately, there was one Cu layer debonding and thus only three remaining layers:
two layers of Al on the outside, and a layer of Cu in the center.
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Figure 5. The sample composite after second cycle of rolling.

In order to test our hypothesis, a material with different characteristics and good
adhesion between layers was needed to perform some destructive and non-destructive
tests. The tensile test performed at 20 ◦C using a plate tensile specimen (Figure 6), with
three layers, obtained after two cycles of annealing and hot rolling, highlighted a ductile
fracture (Figure 7).

Figure 7 represents the room-temperature engineering stress–strain tensile test of the
Cu-Al bimetallic specimen after the annealing and hot-rolling process. It can be seen that
the first broken layer was the Al layer, from the outside, at a stress value of 157 MPa. The
second breakage occurred simultaneously, within the two layers of Al and Cu, at 108 MPa.

In the fracture zone, the layers have unbonded. The elongation to failure, of the first
aluminum layer, was increased after the first two cycles of annealing and hot rolling up to
23%. The elongation to failure of simultaneously broken Al-Cu layers was 34%.
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It can be said that the mechanical properties obtained from engineering stress–strain
curves are similar to those obtained in specialized literature by Taiqian Mo et al. [34] and
Jun-peng Zhang et al. [35].

A comparison between the mechanical properties of the ultimate tensile strength of
sample Al-Cu multilayered with ultimate theoretical tensile strength for each material Al
(AlMgSi), and Cu-ETP is presented in Figure 8. As expected, the results of the tensile test
of the Al-Cu multilayer composite specimen were closer to the tensile strength but still
strongly influenced by the successive annealing process.

Figure 9 represents the sizes of the layers (Figure 9a) and the magnification of each
layer, respectively (Figure 9b–d). It can be seen from the figures that each layer, after
stretching, created an evident dimple. The area reduction of different layers (Figure 9) was
calculated (from left to right Al 75.6%, Cu 81.9%, Al 80.03%), and the deformation of each
layer was analyzed. After two cycles of annealing and hot rolling, the SEM analyses were
conducted. From there, the deformation of the grains can be seen at the neck, indicated with
white lines and dark dimples in all three layers of Al-Cu-Al. The fractography, in the cross
section, is presented in Figure 9, and the elemental distribution map of Al-Cu multilayer
composite (Figure 10) confirms the results of tensile test. The layers have separated in the
fracture. SEM observations of the fracture behavior showed that the number of breaking
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germs (dimples) increased with the stretching of the material, which resulted in the ductile
fracture of both materials.
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rolling—low magnification ×35 with the percentage reduction calculated for each layer: (a) the
multilayer composite, (b) EN-AW 6060 (AlMgSi)—high magnification detail—×500, (c) Cu-ETP 1/2

hard-high magnification detail—×500, and (d) EN-AW 6060 (AlMgSi) ×500.

The distribution maps presented in Figure 10 provides evidence of the adherence of
the layers and the small diffusion of the interface.

The EDX line and area analyses shown in Figure 11 aim to characterize the Al-Cu
multilayer composite from the point of view of chemical composition and to show the
diffusion of the elements during the hot-rolling process. The area between the layer of the
Al-Cu composite along the direction of rolling after two cycles was analyzed.

The analysis shows that at 50 µm (Figure 11) diffusion is present at the interface of
Al-Cu and that the layers have a good adhesion.
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In the multilayers made of the Al-Cu composite after two cycles of annealing–hot
rolling, one of the Al layers debonded, necessitating the realization of new hot deforma-
tion cycles.
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The third cycle was performed on a sample obtained by cutting and overlapping (see
diagram of process Figure 3) the three previously rolling layers. Annealing for 1 h and
severe rolling with a 50% theoretical reduction were also applied in this case.

The fourth cycle repeated the annealing–hot rolling in similar conditions. The layers
size after the fourth cycle and the elemental map of the distribution of Al-Cu elements along
the direction of rolling is presented in Figure 12. After the fourth cycle of annealing and
hot rolling, the two Cu-Al layers below were debonded. The aluminum layers deformed
differently from the copper layers. The Al-Cu TIG composite welding, which experienced
problems with flatness during heating, can have been one of the causes of debonding.
Through the distribution map of the Al-Cu composite and the SEM analysis, the remaining
interfaces (four layers) connected were investigated.
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Figure 12 illustrates that after four passes of the hot-rolling process, the Al-Cu multi-
layer composite has a heterogeneous structure, with discreet cracks at the interface bonding.
The area reduction of different layers was calculated (from top to bottom Al 85.23%, Cu
86.86%, and Al 92.36%, and a second layer of Al 83.16%)), and the bonding interlayer was
analyzed. The existence of microcracks at the interface creates the premise for the appear-
ance of diffusion at the interface between the Al-Cu and Cu-Al layers. This phase, created
at the interface between the layers, can be observed in the SEM micrographs recorded at
higher magnification shown in Figure 13.

The chemical composition recorded in the key area of the interface is presented in
Figure 14 alongside an image showing the phase contrast of the phases. Thus, in spectrum
area 14 we have 99.2% Cu and 0.8% Al, in spectrum area 14 we have 81.4% Cu and 18.6%
Al, in spectrum area 15 we have 92.6% Cu and 7.4% Al, in spectrum area 16 we have 53.6%
Cu and 46.4% Al, and in spectrum 17 we have 7% Cu and 93% Al.
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After the chemical composition analysis in the interface area, the possible phases
(according to the Al-Cu binary phase diagram) appearing in each area spectrum numbering
13–17 can be seen in Table 5.

Table 5. The possible phases (according to the Al-Cu binary phase diagram).

Area Spectrum No. Al
(wt.%)

Cu
(wt.%) Possible Phases

13 99.2 0.8 Cu(α) + Al(α)
14 81.4 18.6 Cu + Al2Cu + Al5Cu8
15 92.6 7.4 Cu + Al2Cu + Al5Cu8
16 53.6 46.4 Al2Cu + Al9Cu11
17 93 7 Cu + Al2Cu

Binary phase diagrams are maps that represent the relationships between the tempera-
ture and the compositions and quantities of phases at equilibrium, which influences the
microstructure of an alloy after William D. Callister, Jr. and David G. Rethwisch [44].

In Figure 15, the scan line drawn from the area of the Cu layer to the area of the Al layer
(the same area as in the previous micrograph) also crosses the area with intermediate phases.
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It can be concluded that the line scan confirms that over 36 µm diffusion occurred at
the interface of the Al-Cu multilayer composite, with the formation of intermediate phases.

The microstructures and the EDX elemental mappings of the diffusion layers indicated
that the metallurgical bonding interface was validated by the EDX presented in Figure 15.
The bonding of the layers was closely related to the breaking stress, from the test to the
tension. The role of diffusion in the fracture is to modify the properties of the interface
layer (composite). With stronger bonding between the layers, we will be able to obtain
increased resistance of the Al-Cu multilayer composite. However, it cannot be considered a
failure even though the result shows that the outer layer, that of Al, gives way first. The
further elongation of the remaining layers can lead us to think of applications in which the
appearance of a crack or the breaking of a layer is of more concern, having the effect of
raising an alarm signal before the final break.

4. Conclusions

Al-Cu sheets were fabricated via hot-rolling bonding at 500 ◦C with 50% theoretical
rolling reductions.
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The SEM and EDX images confirmed the ductile fracture predicted by the stress–strain
curve. The specimen’s microstructures and mechanical properties were investigated. The
findings are summarized below:

1. The Al-Cu rolling sheets show poor interfacial bonding. A heterogeneous structure
can be observed with discrete cracks and defects at the interface of the Al-Cu layers.
With an increased number of cycles of the annealing–hot rolling of the multilayer
Al-Cu composite, this becomes a more homogeneous structure.

2. The rolling reduction has a significant effect on the deformation of Al-Cu hot-rolled
sheets. The deformation of each layer was analyzed. Severe deformation by hot rolling
leads to better bonding. As the number of severe hot rolling increases, diffusion occurs,
and a better bond between them is obtained.

3. The stress–strain curve indicates that the fracture appears first in the Al layer.
4. The elongation to failure was increased after the first two cycles of annealing and hot

rolling up to 23% (first break of aluminum) and was increased at 34% (second break).
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