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Abstract: Bone formation is critically needed in orthopedic clinical practice. We found that, bone
morphogenetic protein-7 (BMP-7) gene expression was significantly increased in fractured mice,
which activates canonical Wnt signaling exclusively in osteocytes. Wnt and BMP signaling appear to
exhibit synergistic or antagonistic effects in different kinds of cells. However, the communication
between Wnt/β-catenin signaling and BMP signaling in osteocytes is almost unknown. Our study
verified in vitro that BMP-7 expression was significantly increased when Wnt signaling was activated
in osteocytes. Next, BMP-7 in osteocytes was overexpressed using an adenovirus, the osteogenesis of
bone marrow stem cells (BMSCs) was enhanced, when cocultured with osteocytes. On the contrary,
BMP-7 in osteocytes was silenced using an adenovirus, the osteogenesis of bone marrow stem cells
(BMSCs) was weakened. In addition, the osteogenesis of BMSCs was no longer promoted by Wnt-
activated osteocytes when BMP-7 was silenced. Therefore, the results showed that BMP-7 mediated
the anabolic actions of Wnt/β-catenin signaling in osteocytes. Our study provides new evidence for
the clinical application of BMP-7-overexpressed osteocytes.
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1. Introduction

Bone formation is critically needed in orthopedic clinical practice. The limited stability
and differentiation of mesenchymal stromal cells make the osteogenic-inducing microenvi-
ronment necessary [1]. Osteocytes, the most abundant cells in bone tissue, integrate and
transmit hormonal and mechanical signals that coordinate the functions of osteoblasts
and osteoclasts. In addition, osteocytes affect cells in both the bone/bone marrow niche
by paracrine mechanisms and distant organs by endocrine mechanisms [2]. Osteocytes
activating canonical Wnt/β-catenin signaling provide an osteogenic microenvironment
for BMSCs via the Notch signaling pathway [3]. The osteogenic effect of Wnt-activated
osteocytes on BMSCs was also demonstrated in a three-dimensional environment [4]. On
the contrary, sclerostin, an inhibitor of Wnt signaling, is secreted specifically by osteocytes
and negatively regulates the osteogenic differentiation of BMSCs [5,6]. In addition, over-
expressing Dll4 in osteocytes promotes the osteogenic differentiation of BMSCs via the
RBPjκ-dependent canonical Notch signaling pathway [7]. We found the BMP-7 expression
increased in Wnt-activated osteocytes. However, until now, the relation of BMP-7 and Wnt
signal in osteocytes in bone formation is almost unknown.

The synergistic or antagonistic effects of Wnt and BMP signaling may depend on
the target cell type or the different stages of target cells. BMPs are recognized as potent
bone induction factors, and BMP-2, BMP-4, BMP-6, BMP-7, and BMP-9 promote osteogenic
differentiation of BMSCs in vitro and in vivo [8–11]. β-catenin synergistically promotes
osteoblast differentiation with BMP-2, and BMP-2 mediated by Wnt signaling increases
ALP expression and mineralization in preosteoblasts [12,13]. Conversely, BMP-3, a negative
regulator of BMP signaling, has been proven to be downstream of the Wnt signaling [14].
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In addition, BMP signaling in osteocytes antagonizes the Wnt signal by inducing sclerostin
secretion. Sclerostin is reduced after the knockout of BMPR1 in osteocytes, weakening
its inhibition of Wnt [15]. In contrast, BMPR1 deletion significantly inhibits Wnt genes in
cortical bone [16]. Runx1 has been confirmed in recent studies to regulate bone homeostasis
by increasing BMP-7/Alk3/Smad1/5/8/Runx2/ATF4 and Wnt signaling. BMP-7 overex-
pression can save Alk3, Runx2, and ATF4 expression in Runx1-deleted BMSCs, indicating
that BMP and Wnt signaling can be coordinated by Runx1 [17]. Activation of Wnt signaling
in mice osteocytes (daβcatot mice) promotes bone anabolism and bone formation [18], but
the link between Wnt signaling and BMP signaling in osteocytes remains unclear.

Our study aimed to investigate the role of BMP-7 in Wnt/β-catenin-activated osteo-
cytes in regulating osteogenic differentiation. We hypothesized that BMP-7 mediates the
anabolic actions of Wnt/β-catenin signaling in osteocytes. To confirm our hypothesis, we
first measured the expression of BMP-7 in osteocytes activated by Wnt/β-catenin in vivo
and in vitro. Subsequently, the osteogenic differentiation of BMSCs was examined when
cocultured with the osteocytes overexpressed or silenced BMP-7. Finally, BMP-7-silenced
osteocytes were treated with Wnt3a to investigate the osteogenic differentiation in the
coculture system. These specific cellular responses could elucidate the role of BMP-7 in
Wnt/ β-catenin-mediated bone anabolism in osteocytes. These results would become a
critical step in translational application.

2. Results

2.1. BMP-7 Is Highly Expressed in Osteocytes of daβcatot Mice Which Activating Wnt/β-Catenin
Signaling in Osteocytes

The daβcatot mice aged 8–10 weeks were used for in vivo experiments and cre- mice
from the same litter were considered controls. The X-ray (Figure 1A) showed that daβcatot

mice exhibited higher bone mineral density than the control group. BMD quantification
results (Figure 1A) were consistent with X-ray images. Tissue RNA from fractured mice tib-
ias was collected for gene sequencing. Cluster analysis (Figure 1B) showed BMP signaling
increased in the tibias of daβcatot mice compared with control mice. BMP-7, BMP-8b were
significantly increased in daβcatot mice. BMP-7 immunohistochemistry showed osteocytes
were abundant in the tibial cortical bone of daβcatot mice compared with control mice,
and the proportion of BMP-7-positive osteocytes was significantly increased in daβcatot

mice (Figure 1C). Subsequently, primary osteocytes were isolated from daβcatot mice. The
qPCR results showed BMP-7 gene expression was significantly increased in osteocytes of
daβcatot mice compared with control mice (Figure 1D).

2.2. In Vitro: BMP-7 Is Highly Expressed in Osteocytes When Osteocytes Activate
Wnt/β-Catenin Signaling

For in vitro experiments, the MLO-Y4 cells were stimulated with Wnt3a supernatant
for 48 h and then cocultured with ST2 cells in a 1:4 ratio for 3 days. ALP staining results
showed that Wnt3a-activated MLO-Y4 cells exerted a more potent effect on promoting
osteogenic differentiation of ST2 cells (Figure 2A). The regulatory protein of Wnt signaling,
β-catenin, was increased in MLO-Y4 after treatment with Wnt-3a (Figure 2C). Osteogenic
marker genes Alp and Col I were significantly increased in the coculture system (Figure 2B).
Simultaneously, the BMP-7 protein level (Figure 2D) and gene expression (Figure 2E) in
Wnt3a-activated MLO-Y4 cells were significantly increased.
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Figure 1. BMP-7 expression in bone tissue and osteocytes of daβcatot mice. (A). X-ray images and 

BMD quantification results. (B). Cluster analysis heat map of BMP signal in fractured tibial bone 

tissue of daβcatot mice and differential gene expression of BMP-7, two significantly increased genes 

are in the red box. (C). Immunohistochemical staining of BMP-7 in osteocytes and quantitative anal-

ysis of BMP-7-positive osteocytes in tibial cortical bone of daβcatot mice. (D). RT-qPCR analysis of 

BMP-7 gene expression in primary osteocytes of daβcatot mice. * p < 0.05, compared with control 

group. 
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Figure 1. BMP-7 expression in bone tissue and osteocytes of daβcatot mice. (A). X-ray images and
BMD quantification results. (B). Cluster analysis heat map of BMP signal in fractured tibial bone tissue
of daβcatot mice and differential gene expression of BMP-7, two significantly increased genes are in
the red box. (C). Immunohistochemical staining of BMP-7 in osteocytes and quantitative analysis of
BMP-7-positive osteocytes in tibial cortical bone of daβcatot mice. (D). RT-qPCR analysis of BMP-7
gene expression in primary osteocytes of daβcatot mice. * p < 0.05, compared with control group.
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 Figure 2. BMP-7 expression in Wnt-activated osteocytes in vitro. (A). ALP staining in the coculture
system of Wnt3a-treated MLO-Y4 cells and ST2 cells. (B). Osteogenic marker gene expression in the
coculture system of Wnt3a-treated MLO-Y4 cells and ST2 cells. (C). The protein level of β-catenin
in MLO-Y4 cells after treatment with Wnt3a by Western blotting. (D). The protein level of BMP-7
in MLO-Y4 cells after treatment with Wnt3a based on Western blotting. (E). The gene expression
of BMP-7 in MLO-Y4 cells after treatment with Wnt3a using RT-qPCR. * p < 0.05, compared with
MLO-Y4+L-control group. Scale bar: (A) 50 µm.

2.3. BMP-7-Overexpressed Osteocytes Promote Osteogenic Differentiation of ST2 Cells

Whether highly expressed BMP-7 in osteocytes induced by the Wnt signal is beneficial
to osteogenic differentiation. First, the effects of osteocytes that highly expressed BMP-7 on
the osteogenic differentiation of ST2 cells were investigated.
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A recombinant adenovirus overexpressing BMP-7 (Ad-BMP-7) was constructed. Green
fluorescence was observed in the MLO-Y4 cells when Ad-BMP-7 or Ad-GFP (control group)
was effectively infected. In this case, 80% of the cells in each group were successfully
infected after 48 h. CCK-8 results showed that there was no significant difference in cell
proliferation between Ad-BMP-7 and Ad-GFP group (Figure 3A); Western blotting analysis
showed BMP-7 was highly expressed in MLO-Y4 cells infected with Ad-BMP-7 compared
with Ad-GFP (Figure 3B), indicating a successful transfection. Therefore, the transfected
cells were suitable for further experimental use.
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Figure 3. The construction of osteocytes with high expression of BMP-7. (A). Fluorescence image
and proliferation of MLO-Y4 cells after transfection of Ad-BMP-7. (B). Western blotting validated
the BMP-7 protein level in MLO-Y4 cells transfected with Ad-BMP-7. * p < 0.05, compared with
MLO-Y4GFP group.

BMP-7/GFP-overexpressed MLO-Y4 cells were cocultured with ST2 cells in a 1:4 ratio.
ALP staining and quantitative ALP activity (Figure 4A) showed osteogenesis was more evi-
dent after 3 days of coculture in ST2+MLO-Y4BMP−7 cells compared with ST2+MLO-Y4GFP

cells. Osteogenic marker genes of the cocultured cells were detected using qPCR (Figure 4B),
while Alp and Runx2 gene expression in ST2+MLO-Y4BMP−7 cells was significantly higher
than in ST2+MLO-Y4GFP cells.
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Figure 4. The osteogenic differentiation of ST2 cells when cocultured with BMP-7-overexpressed
osteocytes. (A). ALP staining and ALP activity in the coculture system of ST2 cells and BMP-7-
overexpressed MLO-Y4 cells. (B). Osteogenic gene expression in the coculture system of ST2 cells and
BMP-7-overexpressed MLO-Y4 cells. * p < 0.05, compared with MLO-Y4GFP group. Scale bar: 50 µm.

2.4. MLO-Y4 Cells Silencing BMP-7 Inhibited the Osteogenic Differentiation of ST2 Cells

Next, the effects of lowly expressed BMP-7 osteocytes on osteogenic differentiation
were investigated. An adenovirus silencing BMP-7 (Ad-siBMP-7) was constructed. Red
fluorescence was observed when MLO-Y4 cells were successfully transfected with Ad-RFP
(control group) and Ad-siBMP-7. The transfection rate was approximately 80% after 48 h.
CCK-8 results showed that there was no significant difference in cell proliferation between
Ad-siBMP-7 and Ad-RFP group (Figure 5A). The BMP-7 protein level in MLO-Y4 cells was
measured after successful transfection and Western blotting results showed Ad-siBMP-7
effectively inhibited BMP-7 expression in MLO-Y4 cells (Figure 5B).

Subsequently, BMP-7-silenced MLO-Y4 cells were cocultured with ST2 cells in a 1:4
ratio for 3 days. Compared with ST2+MLO-Y4RFP cells, ALP staining and ALP activity
(Figure 6A), and gene expression of osteogenic markers were significantly decreased in
ST2+MLO-Y4∆BMP−7 cells (Figure 6B). These results showed MLO-Y4 cells silencing BMP-7
inhibited the osteogenic differentiation of ST2 cells in the MLO-Y4 environment.

2.5. BMP-7-Silenced MLO-Y4 Cells Cannot Promote Osteogenic Differentiation of ST2 Cells, Even
Though Wnt3a Stimulates These MLO-Y4 Cells

Whether BMP-7 mediates the osteogenesis induced by the Wnt signal in osteocytes
was investigated. MLO-Y4RFP cells and MLO-Y4∆BMP−7 cells were treated with Wnt3a
or L-control (control cells) supernatant for 48 h, and then cocultured with ST2 cells in a
1:4 ratio for 3 days. ALP staining and ALP activity quantification (Figure 7A) showed
the osteogenic differentiation of ST2 cells was significantly increased in the MLO-Y4RFP

environment when MLO-Y4RFP cells were treated with Wnt3a supernatant compared
with L-control supernatant. In contrast, compared with the MLO-Y4RFP environment, the
osteogenesis of ST2 cells in the MLO-Y4∆BMP−7 environment was no longer increased
when MLO-Y4∆BMP−7 cells were treated with Wnt3a supernatant. The gene expression
of osteogenic differentiation markers (Figure 7B) confirmed the results. These results
indicated that BMP-7 mediates the osteogenic differentiation of ST2 cells in the osteocytic
Wnt environment.
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cells, which were pretreated Wnt3a. (A). ALP staining and quantitative analysis of ALP activity in
the coculture of ST2 cells and BMP-7-silenced MLO-Y4 cells treated with Wnt3a. (B). The osteogenic
gene changes in the coculture of ST2 cells and BMP-7-silenced MLO-Y4 cells treated with Wnt3a
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3. Discussion

The crosstalk between Wnt signaling and BMP-7 signaling in osteocytes is almost
unknown. In our study, we sequenced the fracture tissue of daβcatot mice (mice activated
Wnt/β-catenin signaling in osteocytes), activated Wnt signaling in osteocytes in vitro, and
found BMP-7 expression was significantly increased in osteocytes. We further transfected
osteocytes with adenovirus in order to overexpress BMP-7 and found the increased osteo-
genesis of BMSCs when coculture with BMP-7-activated osteocytes. On the contrary, when
BMP-7 was silenced in osteocytes by adenovirus, the osteogenesis of BMSCs was weakened
after coculture with BMP-7-silenced osteocytes. Finally, BMP-7-silenced osteocytes were
treated with Wnt3a, and the osteogenesis of BMSCs in the coculture system was weakened.

Osteocytes are involved in fracture healing. In the early stage of fracture, osteocytes
around the fracture site highly express inflammatory markers such as interleukin-6 (IL-
6) and cyclooxygenase-2 (COX-2). Both the upregulation of osteocytic-specific markers
such as E11 and DMP-1 and the downregulation of sclerostin promote osteogenesis. In
the intermediate stage of fracture healing, osteocytes express growth factor BMP and
cysteine-rich 61(CYR61), which can promote chondrogenesis [19]. Thus, osteocytes can
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provide a microenvironment for stem cell development. Therefore, we collected the fracture
tissue of daβcatot mice one week after fracture for sequencing analysis. BMP-7 and BMP-
8b increased, indicating that the above genes were closely related to Wnt signaling in
osteocytes.

Multiple cells, such as osteocytes, osteoblasts, osteoclasts, and chondrocytes, exist in
the tissue taken from the fracture site. Therefore, the osteocytic BMP-7 level could not be
specifically explained based on gene sequencing results. In order to determine the BMP-7
level in Wnt-activated osteocytes, immunohistochemical staining of BMP-7 was performed
on paraffin sections of the tibia of daβcatot mice, and BMP-7-positive osteocytes were
counted. In addition, osteocytes were extracted from daβcatot mice and BMP-7 expression
was detected and verified in vitro.

The applications of BMPs have been reported in nonunion, open fracture, aseptic
osteonecrosis, and severe bone defects [20,21]. However, to obtain the desired bone-
inducing effect, these proteins are always at super-physiological concentrations when
applied directly and lead to safety problems, including explosive release and uncontrolled
concentration [22,23]. Therefore, a carrier that can provide sustained, controlled, and
effective concentration at the bone generation site is urgently needed [24].

Researchers attempted to achieve osteogenic effects around osteoblasts. However,
activating the classical Wnt signaling of osteoblasts leads to leukemia [25]. When knocking
out BMP type I receptor A (BMPR1A) in osteoblasts and osteocytes, sclerostin decreased,
and Wnt signaling increased, promoting bone mass and mechanical strength in mice [26,27].
However, in osteocytes, few studies discussed the relation between BMP signaling and
Wnt signaling. Therefore, it needs further exploration.

BMP-7 was approved by the FDA for clinical use in spinal fusion in 2001. Although
high costs and safety concerns hampered BMP-7, there is little debate regarding its treatment
potential [28]. In order to accelerate the product’s clinical transformation, we studied BMP-
7 first. Compared with the BMP-7 protein, we used osteocyte overexpressing BMP-7
and its supernatant as an osteogenic microenvironment. We suspected osteocytes would
activate the specific pathway by BMP-7 and secrete other osteogenic factors besides BMP-
7. We are planning to sequence the osteocytes overexpressing BMP-7 and its exosomes.
We are working on the osteogenesis of osteocytes overexpressing BMP-8b. The bone-fat
balance was decided by the lineage allocation of mesenchymal stem cells to adipocytes
or osteoblasts [29]. Different from BMP-7, BMP-8b has been extensively studied in fat
metabolism. For example, BMP-8b increases brown adipose tissue thermogenesis [30].
Based on the negative effect of BMP-8b on adipogenesis, it is reasonable to believe that the
overexpression of BMP-8b in osteocytes promotes osteogenic differentiation.

In order to improve transfection efficiency, we selected adenovirus to transfect MLO-
Y4 cells. Adenovirus cannot be integrated into the genome, and MLO-Y4 cells cannot
express the target gene stably after passage [31]. In order to maintain the overexpression or
silencing of BMP-7 in osteocytes, we needed to add adenovirus multiple times. However,
MLO-Y4 cells and ST2 cells had been cocultured. The additional adenovirus would transfect
into both MLO-Y4 cells and ST2 cells. Therefore, we need to plate enough transfected
MLO-Y4 cells at the beginning. It made the coculture cells fill the plate in 3 days. Based
on the above, we analyzed the bone formation after 3 days of coculture. The ultimate goal
of our study is to build an osteogenic microenvironment to treat bone defects. In order
to achieve mineralization, the experiment must involve a late coculture result of 5, 7, 14,
28 days. The stable expression of BMP-7 in MLO-Y4 cells can reduce the initial amount of
MLO-Y4 cells in a coculture system. Lentiviruses may be a better choice.

In conclusion, this study showed that, in osteocytes, Wnt signaling promotes bone
formation through overexpression of BMP-7. We aim to implant this BMP-7-activated osteo-
cytic microenvironment in an injectable hydrogel to accelerate bone formation. We expect
to provide evidence for the clinical transformation of the osteogenic microenvironment of
BMP-7-activated osteocytes.
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4. Materials and Methods
4.1. Animals

The control group and the daβcatot group, with 6 mice in each group (3 females and
3 males, respectively). In this case, daβcatot mice at 8–10 weeks of age are genetically
modified mice used by our research group. The control mice came from the same litter
of daβcatot mice [18]. Catnb lox (ex3) mice produce the daβcatot mice with dentin matrix
protein 1 (DMP1)-8kb-Cre mice. The loxP sequence is inserted in the third exon of the
Catnb gene, the β-catenin continuous phosphorylation site. The site is recognized by DMP1-
8kb-Cre recombinase and spliced out to ensure β-catenin is stable and abundant in the
cytoplasm because it is not degraded by phosphorylation. DMP1-8kb-cre is a recombinant
enzyme that specifically expresses Cre only in osteocytes.

The mice were fed and operated on in the experiment center of Chongqing Medical
University. The animals were kept in a conditioned room (24 ± 1 ◦C) with 12-h light/12-h
dark cycles and free access to water and food. All animal experiments were performed in
compliance with the institutional ethical requirements and approved by the Committee of
Chongqing Medical University for the Use and Care of Animals.

4.2. Tissue Collection

In this case, daβcatot mice at 8–10 weeks of age were sacrificed and had their tibias
collected. The tibias were fixed in 10% formalin overnight at room temperature on a shaker.
Next, excess muscle was removed from the bone surface and bones immersed in 14% EDTA
solution (pH 7.0), stirred continuously with a magnetic mixer in a 4 ◦C refrigerator for
decalcification for 21 days.

4.3. Collection of Primary Osteocytes

The osteocytes were isolated from the tibia and femur as previously described [32].
The tibias and femurs were cut into pieces 1–2 mm in size and placed into 6-well plates.
First, 1 mL type I collagenase (Sigma, St Louis, MO, USA) was added and the 6-well plates
were placed in an 80 rpm shaker at 37 ◦C for 15 min. Type I collagenase was then removed
and 1 mL complete medium added and the plates were kept on ice for 5 min. The first
step was repeated twice. Second, the complete medium was removed and 1 mL of 4 mM
EDTA solution added. The 6-well plates were placed in an 80 rpm shaker at 37 ◦C for 5 min.
Next, EDTA was removed and 1 mL type I collagenase added. The plates were placed in an
80 rpm shaker at 37 ◦C for 5 min. The second step was repeated twice. After treatment, the
bone fragments were cultured at 37 ◦C in a 5% CO2 incubator.

4.4. Cell Culture

The osteocytic cell line MLO-Y4 cells and bone marrow stromal cell line ST2 cells
were a gift from Professor Lynda Bonewald. The primary osteocytes were extracted from
daβcatot mice. The MLO-Y4 cells, ST2 cells, and primary osteocytes were cultured in
α-MEM complete medium (Thermo, Waltham, MA, USA) containing 10% fetal bovine
serum (BI, Kibbutz Beit Haemek, Israel) and incubated at 37 ◦C in 5% CO2.

4.5. Transfection of Adenovirus in MLO-Y4 Cells

Ad-BMP-7 and Ad-siBMP-7 adenovirus were reconstituted using AdEasy plasmid
system. The target fragment was first amplified by PCR and cloned into shuttle plas-
mids with high-fidelity Taq enzyme. The recombinant shuttle plasmid and adenovirus
genome plasmid were co-transfected into 293 cells. BMP-7 overexpression and silencing
recombinant adenovirus were obtained by labeling with green and red fluorescent proteins,
respectively. Blank controls (Ad-GFP and Ad-RFP) were constructed in the same way.

MLO-Y4 cells were inoculated into 6-well plates at a density of 5 × 104/well. After
cell adherence, adenovirus Ad-BMP-7 (control group Ad-GFP) or Ad-siBMP-7 (control
group Ad-RFP) was added, as well as polybrene (Sigma Aldrich, St. Louis, MO, USA) in a
1:1 ratio to the virus. After 48 h, the transfection effect was determined using a fluorescence
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microscope. Ad-BMP-7 and Ad-GFP were successfully transfected and showed green
fluorescence, which were named MLO-Y4BMP-7 and MLO-Y4GFP cells, respectively, in
this research. Ad-siBMP-7 and Ad-RFP were successfully transfected and showed red
fluorescence, which were named MLO-Y4∆BMP-7 and MLO-Y4RFP cells, respectively. The
cells were collected after the transfection rate reached 70–80% and BMP-7 protein was used
to verify transfection. The transfected MLO-Y4 cells were used for coculture with ST2 cells.

4.6. CCK-8 Assays

The MLO-Y4 transfected with Ad-GFP, Ad-BMP-7, Ad-RFP, and Ad-siBMP-7 was
cultured into 96-well plates at 5000/well. After 24 h, 10 µL CCK-8 reagent (GLPBIO,
Montclair, CA, USA) was added. After 4 h of culture, the optical density (OD) value at the
wavelength of 450 nm was detected.

4.7. Coculture Assays

The 2 × 104/well adenovirus-transfected MLO-Y4 cells and 8 × 104/well ST2 cells
were mixed and cocultured in 24-well plates for 3 days [4,7]. ST2 cells cocultured with
BMP-7-overexpressed MLO-Y4 cells were named ST2+ MLO-Y4BMP−7 (control group ST2+
MLO-Y4GFP). ST2 cells cocultured with BMP-7-silenced-MLO-Y4 cells were named ST2+
MLO-Y4∆BMP−7 (control group ST2+ MLO-Y4RFP).

4.8. Immunohistochemistry

Immunostaining was performed using a standard protocol. The sections were de-
paraffinized, subjected to 0.25% trypsin at 37 ◦C for 30 min to retrieve the antigen, treated
with 3% H2O2 to inhibit endogenous peroxidase activity at room temperature for 20 min,
blocked with 10% goat serum at room temperature for 30 min, and then incubated with
rabbit polyclonal anti-BMP-7 antibody (1:100; Wanlei, Shenyang, China) overnight. On
the second day, the sections were incubated with goat anti-rabbit secondary antibody
(1:100, Bioss, Beijing, China). The color was developed using a diaminobenzidine substrate
chromogen system (Bioss, Beijing, China). The cells expressing BMP-7 were stained brown
and negative cells purple. Corresponding nonimmune IgGs were used as negative controls.

4.9. Alkaline Phosphatase (ALP) Assay

After 3 days of coculture, the cells in 24-well plates were rinsed with PBS and fixed
with 4% neutral formaldehyde at room temperature for 10 min. The ALP staining reagent
(Beyotime Biotechnology, Shanghai, China) was prepared according to the manufacturer’s
instructions and 250 µL was added to each well followed by incubation in a dark room
at room temperature until color developed. We used ALP kits (Beyotime Biotechnology,
Shanghai, China) to quantitate ALP, cells in 24-well plates were cocultured for 3 days, then
rinsed with PBS, and 300 µL Tris (50 mmol/L, pH = 7.4) was added to each well. The cells
were collected into an Eppendorf tube and crushed using ultrasound and cooling. The cells
were centrifuged at 12,000 rpm for 3 min at room temperature, the supernatant removed,
and the protein concentration determined using the BCA assay (Beyotime Biotechnology,
Shanghai, China). The standard sample and substrate were added following the manufac-
turer’s instructions, incubated at 37 ◦C, and the timing was started. When the working
solution turned yellow, the termination solution was added and the timing stopped. The
absorbance was measured at 405 nm with a microplate reader.

4.10. qPCR

Total RNA was extracted from the tibia using TRIzol (Invitrogen, Carlsbad, CA, USA).
cDNA was synthesized by PrimeScript™ RT reagent kit with gDNA Eraser (Takara, Shiga,
Japan) and used as the template for qPCR with primer sets (Table 1). The gene expres-
sion was analyzed by qPCR using SYBR® Premix Ex Taq™ II (Takara, Shiga, Japan), and
primer probe sets from Takara Bio Inc. Relative mRNA expression levels were normal-
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ized to the control group using the ∆∆Ct method. GAPDH or β-actin was used as the
housekeeping gene.

Table 1. The sequences of primers used for RT-PCR (mouse).

Primer Forward Reverse

Gapdh GCACAGTCAAGGCCGAGAAT GCCTTCTCCATGGTGGTGAA
beta-actin AGAGGGAAATCGTGCGTGAC CCATACCCAAGAAGGAAGGCT
Bmp-7 TCCAAGACGCCAAAGAACCAAGAG CCTTCAGGTGCAATGATCCAGTCC
Alp CACGGCGTCCATGAGCAGAAC CAGGCACAGTGGTCAAGGTTGG
Col1 GACAGGCGAACAAGGTGACAGAG CAGGAGAACCAGGAGAACCAGGAG
Runx2 CCGGTCTCCTTCCAGGAT GGGAACTGCTGTGGCTTC

4.11. Western Blotting

Protein lysates were prepared from the cells. The supernatant was extracted to deter-
mine the protein concentration using the BCA protein assay kit (Beyotime Biotechnology,
Shanghai, China). Equal amounts of protein (30 µg) were run on a 10% SDS-polyacrylamide
electrophoresis gel and transferred to a 0.22 PVDF membrane. The membranes were
blocked for 2 h in 5% bovine serum albumin (BSA) in a shaker at 37 ◦C, then incubated
with primary BMP-7 antibody (1:500; Wanlei, Shenyang, China) overnight at 4 ◦C, followed
by incubation with anti-goat rabbit secondary antibodies (1:5000; Wanlei, Shenyang, China)
in a shaker for 2 h at room temperature. The proteins were detected using an enhanced
chemiluminescence (ECL) detection kit. The bands were finally quantified using ImageJ
software (https://imagej.nih.gov (accessed on 26 June 2019)).

4.12. Statistical Analysis

The data were analyzed using GraphPad Prism 8 (https://www.graphpad.com/
(accessed on 12 March 2021)). All the results are presented with mean and standard
deviation (SD). The differences between two and multiple groups were compared using
two-tailed Student’s t-test and one-way analysis of variance (ANOVA). All results were
repeated at least three times, and p ≤ 0.05 was considered to indicate statistical significance.

5. Conclusions

BMP-7 mediated the anabolic actions of Wnt/β-catenin signaling in osteocytes. The
overexpression of BMP-7 in osteocytes promotes the osteogenesis of BMSCs.
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