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Abstract: Xyloglucan endotransglycosylase/hydrolase (XTH) genes play an important role in plant
resistance to abiotic stress. However, systematic studies of the response of Boehmeria nivea (ramie)
XTH genes (BnXTHs) to cadmium (Cd) stress are lacking. We sought to identify the BnXTH-family
genes in ramie through bioinformatics analyses and to investigate their responses to Cd stress. We
identified 19 members of the BnXTH gene family from the ramie genome, referred to as BnXTH1-
19, among which BnXTH18 and BnXTH19 were located on no chromosomes and the remaining
genes were unevenly distributed across 11 chromosomes. The 19 members were divided into four
groups, Groups I/II/IIIA/IIIB, according to their phylogenetic relationships, and these groups
were supported by analyses of intron–exon structure and conserved motif composition. A highly
conserved catalytic site (HDEIDFEFLG) was observed in all BnXTH proteins. Additionally, three
gene pairs (BnXTH6–BnXTH16, BnXTH8–BnXTH9, and BnXTH17–BnXTH18) were obtained with
a fragment and tandem-repeat event analysis of the ramie genome. An analysis of cisregulatory
elements revealed that BnXTH expression might be regulated by multiple hormones and abiotic
and biotic stress responses. In particular, 17 cisregulatory elements related to abiotic and biotic
stress responses and 11 cisregulatory elements related to hormone responses were identified. We
also found that most BnXTH genes responded to Cd stress, and BnXTH1, BnXTH3, BnXTH6, and
BnXTH15 were most likely to contribute to the Cd tolerance of ramie, as evidenced by the substantial
increases in expression under Cd treatment. Heterologous expression of BnXTH1, BnXTH6, and
BnXTH15 significantly enhanced the Cd tolerance of transgenic yeast cells. These results suggest
that the BnXTH gene family is involved in Cd stress responses, laying a theoretical foundation for
functional studies of BnXTH genes and the innovative breeding of Cd-tolerant ramie.

Keywords: Boehmeria nivea; XTH gene family; genome-wide identification; Cd stress; expression analysis

1. Introduction

Cadmium (Cd) is a nonessential trace metal with high mobility and toxicity [1]. It
accumulates in plants through polluted farmland, soil, and water sources and enters the
human body through the food chain, thus affecting human health [2]. According to statistics,
more than 5 million soils worldwide, mainly in developing and underdeveloped countries
(India, Bangladesh, Pakistan, etc.), are polluted with heavy metals [3]. China has the most
serious heavy-metal pollution among these countries, with several “Cd rice” incidents [4].
A survey of cultivated land in China showed that about 2.79 × 109 m2 of agricultural
land, accounting for 20% of the total cultivated land area, is polluted with Cd [5,6]. The
southern provinces, such as Hunan, Guizhou, Guangdong, Guangxi, and Fujian, have the
most Cd pollution mainly because they are mining areas and smelting-process zones of
nonferrous metals; their wastewaters are used for irrigation without treatment, polluting
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the surrounding cultivated soils [7–9]. Therefore, Cd pollution poses a major threat to
global food security and human health, necessitating urgent mitigation.

Phytoremediation is a better mitigation measure for Cd pollution, involving Cd en-
richment and accumulation in plants from contaminated soils [10]. Ramie is a nonedible
perennial plant with rapid growth, a high biomass, a high Cd tolerance and enrichment
ability, and a high economic value. Therefore, ramie is an ideal plant resource for remedia-
tion of Cd-contaminated soils [11]. Recent evidence has shown that cell walls, especially
hemicellulose, may affect the Cd tolerance of ramie, since most Cd is enriched in hemicellu-
lose [12]. However, it is not clear how hemicellulose binds to Cd. Therefore, it is necessary
to further explore the role and the potential physiological and molecular mechanisms of
action of hemicellulose in Cd accumulation and tolerance.

Hemicelluloses can be divided into four classes: xylans, mannans, β-glucans with
mixed linkages, and xyloglucans [13]. Xyloglucans are the most abundant hemicellulose in
the primary cell walls of dicotyledons and nonGramineae monocotyledons [14]. Their syn-
thesis requires a glycosidic-bond synthase and various glycosyltransferases [15]. Xyloglu-
can endoglycosidase/hydrolase (XTH), a key xyloglucan-modifying enzyme belonging to
the glycoside hydrolase 16 (GH16) family, catalyzes the cleavage and polymerization of
xyloglucan molecules, thereby modifying the cellulose–xyloglucan composite structure of
the cell wall [16]. XTH exhibits two catalytic functions: xyloglucan endohydrolase (XEH)
activity, which catalyzes hydrolysis of xyloglucan, and xyloglucan endotransglucosylase
(XET) activity, which cuts and rejoins xyloglucan chains [17].

XTH gene family members have been identified in many species, including Arabidopsis
thaliana (33 members) [18], Nicotiana tabacum (56 members) [19], Oryza sativa (29 mem-
bers) [20], Medicago truncatula (44 members) [21], Brassica rapa (53 members) [22], Poplar
spp. (41 members) [23], Glycine max (61 members) [24], and Schima superba (34 mem-
bers) [25]. Based on their phylogenetic relationships, XTH genes are classified into three
major groups: Group I, Group II, and Group III [18]; however, some scholars have further
divided Group-III members into groups IIIA and IIIB [20].

Recent research of XTH genes has focused on abiotic stress responses, including
osmotic, salt, and low-temperature stress responses. Unique members of the XTH gene
family have also been identified in many species in response to abiotic stress. For example,
in A. thaliana roots, AtXTH14, AtXTH15, and AtXTH31 are downregulated in response
to aluminum (Al) stress [26]. In M. truncatula, 28 MtXTH genes respond to Hg stress,
21 respond to salt stress, and another 21 respond to drought stress [21]. Three homologous
genes, CaXTH1, CaXTH2, and CaXTH3, were found to respond to drought, high salt, and
low-temperature stress in pepper [27]. The functions of some XTH genes have also been
studied. For example, PvXTH9 and PvXTHb were associated with Al accumulation in
the cell wall of the common bean [28]. Overexpression of CaXTH3 improves drought
and salt tolerance in transgenic tomatoes [29], and overexpression of AtXTH31 improves
flooding-stress tolerance in Glycine max [30]. Moreover, AtXTH19 can improve the freezing
tolerance of A. thaliana after cold and subzero acclimation [31].

This study identified and analyzed BnXTH genes from the ramie genome to reveal
the role of XTH-family genes in response to Cd stress. We also explored the responses of
these genes to Cd stress through yeast expression experiments. The findings of this study
provide a theoretical basis for functional studies of BnXTH-family genes in ramie.

2. Results
2.1. Identification of Chromosomal Locations and Physicochemical-Property Analysis of the
BnXTH Gene Family

A total of 19 BnXTH genes were identified from published ramie genome data. The
genes were denoted BnXTH1-19, among which BnXTH6-19 were named based on chro-
mosomal positions (Figure S1 and Table 1). As illustrated in Figure S1, BnXTH18 and
BnXTH19 were located on the Scaffold16 fragment and not on the chromosome, which
may have been due to the poor assembly of the ramie genome. The other 17 BnXTH genes
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were unevenly distributed on chromosomes 2, 4, 5, 6, 7, 8, 9, 11, 12, 13, and 14. Chromo-
somes 1, 3, and 10 had no XTH genes, and chromosome 6 contained the largest number
of BnXTH genes (3; 15.79%), followed by chromosomes 4, 5, and 14, which contained two
BnXTH genes each. The remaining chromosomes only had one BnXTH member each. This
study also found that the number of family genes mapped in the chromosomes had no
correlation with chromosome length. To further understand the physical and chemical
properties of the BnXTH-protein family, we evaluated each protein’s CDS length, amino
acid (aa) number, molecular weight (Mw), isoelectric point (PI), grand average of hydro-
pathicity (GRAVY), and aliphatic index. We also predicted the subcellular locations of
these proteins (Table 1). These results showed that out of the 19 BnXTH protein sequences,
the shortest was BnXTH10, which was encoded by 264 amino acids, while BnXTH3 was
the longest, encoded by 395 amino acids. The Mw of the BnXTHs ranged from 30.812
(BnXTH10) to 40.228 kDa (BnXTH4), while the GRAVY ranged from −0.800 (BnXTH12) to
−0.223 (BnXTH5). The aliphatic index of the proteins was between 59.44 (BnXTH12) and
73.39 (BnXTH7), and the PI ranged from 4.64 (BnXTH17) to 9.47 (BnXTH9). Moreover,
subcellular localization prediction showed that BnXTH13/17 might have been located in
extracellular regions, while BnXTH3/7/9/15/18/19 may have been located in the cell wall
or cytoplasm, and the remaining BnXTH proteins may have played roles in the cell wall.

Table 1. Molecular characterization of BnXTH genes.

Name Gene
Name

Genome
Location PI Mw (kDa)

Peptide
Residue

(aa)
GRAVY Aliphatic

Index

CDS
Length

(bp)

Predicted
Subcellular
Localization

BnXTH1 Bni05G007034
Chr5:

9195318–
9197779

4.83 34.757 302 −0.536 62.02 909 Cell Wall

BnXTH2 Bni14G018696
Chr14:

919549–
5922548

7.60 33.076 289 −0.362 70.55 870 Cell Wall

BnXTH3 Bni14G018759
Chr14:

6848323–
6851051

8.59 33.88 395 −0.406 69.73 1188 Cell
Wall/Cytoplasm

BnXTH4 Bni07G010864
Chr7:

13012796–
13017451

8.57 40.228 358 −0.259 71.42 1077 Cell Wall

BnXTH5 Bni09G013633
Chr9:

15698329–
15700698

7.16 34.447 307 −0.223 71.47 924 Cell Wall

BnXTH6 Bni02G003149
Chr2:

16541099–
16543546

6.59 34.170 303 −0.559 61.82 912 Cell Wall

BnXTH7 Bni04G005825
Chr4:

11902190–
11926110

8.77 32.334 286 −0.385 73.39 861 Cell
Wall/Cytoplasm

BnXTH8 Bni04G006001
Chr4:

13734274–
13737675

5.61 33.550 297 −0.315 67.27 894 Cell Wall

BnXTH9 Bni05G007965
Chr5:

18140865–
18142082

9.47 32.9 292 −0.404 65.24 879 Cell
Wall/Cytoplasm
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Table 1. Cont.

Name Gene
Name

Genome
Location PI Mw (kDa)

Peptide
Residue

(aa)
GRAVY Aliphatic

Index

CDS
Length

(bp)

Predicted
Subcellular
Localization

BnXTH10 Bni06G008340
Chr6:

1295993–
1298134

8.98 30.812 264 −0.548 67.58 795 Cell Wall

BnXTH11 Bni06G008558
Chr6:

4531957–
4533699

6.46 35.716 304 −0.509 73.39 915 Cell Wall

BnXTH12 Bni06G008923
Chr6:

8233006–
8239486

5.74 37.169 320 −0.800 59.44 963 Cell Wall

BnXTH13 Bni08G012131
Chr8:

12169484–
12170900

9.11 33.171 291 −0.355 73.02 876 Extracell

BnXTH14 Bni09G013009
Chr9:

8910982–
8915126

8.20 38.519 340 −0.478 69.12 1023 Cell Wall

BnXTH15 Bni11G015460
Chr11:

9722688–
9725914

9.11 31.746 279 −0.323 71.58 840 Cell
Wall/Cytoplasm

BnXTH16 Bni12G017196
Chr12:

15189643–
15192043

9.31 34.254 299 −0.396 60.40 900 Cell Wall

BnXTH17 Bni13G017592
Chr13:

6362009–
6373079

4.64 33.589 301 −0.347 65.42 906 Extracell

BnXTH18 BniUnG019321
Sca16:

619625–
621073

8.69 31.917 286 −0.338 69.58 861 Cell
Wall/Cytoplasm

BnXTH19 BniUnG019322
Sca16:

639410–
654270

6.44 32.448 286 −0.329 70.94 861 Cell
Wall/Cytoplasm

PI, isoelectric point; Mw, molecular weight; aa, amino acid; GRAVY, grand average of hydropathicity.

2.2. Phylogenetic Analysis and Multiple Sequence Alignment of BnXTHs

To better understand the evolutionary relationships between BnXTHs and deter-
mine their classifications, we used the sequences of the 19 ramie BnXTH genes and the
AtXTH family protein sequences of A. thaliana to generate a phylogenetic tree (Figure 1)
using the maximum likelihood (ML) method. We divided the BnXTH-family proteins
identified in ramie into four subgroups based on a previous classification of the family:
namely, Groups I, II, IIIA, and IIIB. The BnXTHs were mainly clustered in Groups I and II,
which had 14 members. Among these members, BnXTH1/2/3/7/10/11/12 belonged to
Group I, while BnXTH8/9/13/17/15/18/19 belonged to Group II. The remaining BnXTHs
(BnXTH4/5/14/6/16) were included in Groups IIIA and IIIB.

Multiple alignments of the 19 BnXTHs showed that the BnXTH proteins contained
a highly conserved catalytic site (HDEIDFEFLG) (Figure 2), with a deviation of one or
two amino acids in a few sequences (Figure 2a). Except for the BnXTHs in Group III
(BnXTH5/6/16), the active catalytic regions (HDEIDFEFLG) (shown with rectangular
purple frames in Figure 2b) of the BnXTHs were adjacent to the N-linked glycosylation site.
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2.3. Structural Analysis of the Conserved Motifs of BnXTHs

To analyze the gene structures and conserved motifs of BnXTHs, we constructed
an evolutionary tree using 19 BnXTH proteins (Figure 3a), which were grouped into four
subclasses. Structural analysis of the genomic DNA sequence showed that each BnXTH had
two or three introns (Figure 3b) and that the members in Group I, except for BnXTH10, each
contained three introns. The Group II members, except for BnXTH13, contained two introns
each, while the Group IIIA and Group IIIB members had three introns each. Furthermore,
MEME analysis showed that 10 conserved motifs were found in the 19 BnXTH protein
sequences (Figure 3c). The amino acid sequence that encoded the protein sequences and
the SeqLogo of the 10 conserved motifs are shown in Table S1. Motifs 1, 2, 3, 4, 5, and 6
were abundant in BnXTH proteins, among which motif 2 contained the characteristic active
site (HDEIDFEFLG), suggesting that it is the specific motif for the enzymatic reaction of this
family of proteins and present in all BnXTHs. We also found that motif 8 seemed unique to
Group I, while motif 10 mainly existed in Groups I and II. Thus, these results also support
the group-classification results of the phylogenetic tree above.
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gene family.

2.4. Gene-Duplication Analysis of BnXTHs

To determine the relationships between BnXTH members, we used the MCScanX
method for a collinearity analysis. Six genes (BnXTH6–BnXTH16, BnXTH8–BnXTH9,
and BnXTH17–BnXTH18) exhibited complex segmental duplication events (Figure 4a),
implying that segmentally duplicated genes may have similar functions regulated via the
same biological pathways in ramie. To further evaluate the evolution and development of
the BnXTH family, we compared the collinearity of XTH genes between B. nivea and four
other plants (O. sativa, S. bicolor, A. thaliana, and P. trichocarpa) (Figure 4b–e). These results
showed that three pairs of homologous genes existed between B. nivea and O. sativa, while
two pairs existed between B. nivea and S. bicolor. Moreover, 18 pairs of homologous genes
were detected between B. nivea and A. thaliana, and 21 pairs were identified between B.
nivea and P. trichocarpa (Table S2). These results show that ramie XTHs have less homology
with monocotyledons than with dicotyledons, and thus, we speculate that these XTH genes
may be involved in differentiation of dicotyledons.
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2.5. Ciselement Analysis of the BnXTHs

We used the PlantCARE service to analyze the cisregulatory elements of BnXTHs in
the upstream sequences (~2000 bp) of their promoters that were associated with response
to abiotic and biotic stress, phytohormone signaling, and plant growth and development.
We predicted 56 related cisacting elements (Figure 5 and Table S3), among which 17 were
involved in abiotic- and biotic-stress responses. ARE, MYC, STRE, and MBS were the most
abundant among the 17 ciselements. Moreover, 11 cisregulatory elements were related to
plant hormone responses, including abscisic acid (ABA), gibberellin (GA), salicylic acid
(SA), methyl jasmonate (MeJA), and auxin responses. These elements included TGACG
motifs, ABREs, TCA elements, TGA elements, and other related ciselements. There were
28 cisregulatory elements related to plant growth and development, among which light-
responsive elements, including GT1 motifs, TCCC motifs, GATA motifs, Sp1, and other
related elements, were the most abundant.
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2.6. Expression Analysis of the BnXTH-Family Genes under Cd Treatment

To determine whether BnXTH-family genes are involved in Cd stress responses, we
treated ramie seedlings with CdCl2 and sampled the roots at 0, 3, 6, 9, 12, 24, and 48 h after
this treatment. The expression levels of the 19 BnXTH genes (Figure 6) were analyzed with
RT-qPCR, and these results showed that expression of BnXTH1/6/15, especially BnXTH1,
increased significantly under Cd treatment. The expressions of the BnXTH1 genes at 6 h
and 9 h after the treatment were 5.78 and 6.34 times higher than that at 0 h, respectively.
BnXTH3 was slightly upregulated and had the highest expression at 12 h: 41.22% higher
than that at 0 h. Conversely, expression of BnXTH4/9/14/19 genes had no response to the
Cd treatment, while the other BnXTH genes exhibited were downregulated under the Cd
treatment. In general, the BnXTH-family genes responded differently to Cd stress.
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2.7. Functional Analysis of BnXTHs in Yeast

Since the expression levels of BnXTH1/3/6/15 genes were upregulated in response
to Cd stress, we selected BnXTH1, BnXTH3, BnXTH6, and BnXTH15 as candidate genes
and analyzed their roles in Cd tolerance. The full-length CDSs of BnXTH1, BnXTH3,
BnXTH6, and BnXTH15 were cloned and ligated into yeast expression vector p426 GPD
and introduced into Cd-sensitive yeast mutant ∆yap1. The Cd-tolerance characteristics of
transgenic yeast were then analyzed (Figure 7). We found no significant difference in the
growth between the BnXTH1/3/6/15 transgenic yeast strains and the empty vector on the
SD-URA medium without Cd. However, the growth of the yeast strains that contained
the empty vector was significantly lower compared to that in the BnXTH1/6/15-containing
yeast strains, particularly the BnXTH1-carrying yeast strains, on the medium that contained
75 µM of Cd. These results suggest that BnXTH1/6/15 genes play important roles in Cd
tolerance. However, the growth of the transgenic yeast strain that contained BnXTH3 was
not significant under Cd stress, indicating that BnXTH3 had no Cd tolerance. These results
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show that the BnXTH gene family is related to the Cd tolerance of ramie, and the three
Cd-tolerant genes (BnXTH1/6/15) can be used for genetic improvement of Cd tolerance
in ramie.
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diagram of the constructed yeast vector. p426 represents the empty vector, while p426–BnXTH1,
p426–BnXTH3, p426–BnXTH6, and p426–BnXTH15 represent the recombinant p426 vectors that
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of BnXTH genes in transgenic yeast (∆yap1). The yeast cells were treated with 0 µM and 75 µM of Cd
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3. Discussion
3.1. Evolutionary Characteristics of the BnXTH Gene Family in Ramie

A total of 19 BnXTH genes were identified in ramie, compared with the 33 family
members in A. thaliana and 29 in O. sativa, suggesting that there are many fewer members of
the BnXTH gene family in ramie. This may have been due to the incomplete assembly of the
genome, resulting in a failure to identify other members of the BnXTH gene family or a loss
of several BnXTH genes in the genome [32]. This result is consistent with those of a previous
study that showed that Brassica oleracea contains fewer XTH family members than those in
Brassica rapa [22]. These phylogenetic results showed that BnXTHs were relatively conserved
at the DNA and protein levels and could be divided into four subclasses (Figure 1), similar to
those of other plants [33,34]. There were 14 BnXTH members in Groups I and II, accounting
for 73.68% of all members. When only BnXTH-family proteins were used to construct an
evolutionary tree, members of Groups I and II clustered together, making it difficult to
distinguish them (Figure 3a). This was similar to the findings of previous studies, which
reported no significant difference between members of Groups I and II, suggesting that
the two can be combined into a larger group: that is, Group I/II [35,36]. Furthermore, a
multiple sequence alignment showed that the members of Groups I, II, and IIIB (except
for BnXTH5) were located near the XET catalytic site (HDEIDFEFLG) and had typical N-
glycosylation residues, while Group IIIA members lacked a consensual N-glycosylation site.
The same phenomenon was reported in A. thaliana [37,38]. Additionally, variation of the
conserved catalytic motif (HDEIDFEFLG) was observed in BnXTH proteins, consistently
with previous studies involving plants, such as A. thaliana [18] and P. trichocarpa [14].
Variation in this motif may affect its enzyme catalytic activity, which necessitates further
studies of the enzyme activity and other functions of these motif-variant genes.
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3.2. Evolutionary Analysis of the BnXTH Gene Family

It is speculated that A. thaliana experienced genome-wide duplication thrice in the past
250 million years, while O. sativa experienced genome-wide duplication about
70 million years ago [39]. As early as 1970, scholars proposed that gene replication is
the basic mechanism through which genes obtain new functions, enabling one gene to
maintain its original function and another to change its function [40]. Gene duplications
are also considered one of the main forces of evolution and expansion of gene families [41].
Previous studies of XTH-family genes have shown that gene-fragment-repetition events
have occurred in tobacco [19], soybeans [30], and other plants. Gene-duplication phenom-
ena also occurred in the BnXTH gene family of ramie, with fragment-repetition events of
the three pairs of isogenous genes (BnXTH6–BnXTH16, BnXTH8–BnXTH9, and BnXTH17–
BnXTH18) (Figure 4a). This indicates that gene replication plays a certain role in evolution
of BnXTH genes but is not the main driver of the expansion of the BnXTH gene family. The
sequence similarity between the BnXTH8–BnXTH9 and BnXTH17–BnXTH18 gene pairs
was significantly high (Figure 3a), and these two gene pairs exhibited similar expression
patterns under Cd stress (Figure 6). Although the BnXTH6–BnXTH16 gene pair also had
high sequence similarity, its expression patterns were completely different under Cd stress.
Similar observations were reported in B. rapa, where the BraA.XTH32.a–BraA.XTH32.c
pair and the BraA.XTH14.a–BraA.XTH14.b pair showed similar expression patterns, while
BraA.XTH23.a and BraA.XTH23.b showed different expression patterns [22]. This may have
been because duplicate genes underwent nonfunctionalization, neofunctionalization, or
subfunctionalization during evolution, resulting in similar or different gene-expression
patterns [42]. There were few collinear gene pairs between ramie and monocotyledonous
plants (O. sativa and S. bicolor) compared to the gene pairs detected between ramie and
dicotyledonous plants (A. thaliana and P. trichocarpa). This indicates that numerous XTH
gene variations and replications may occur in dicotyledonous plants during evolution. This
evolution phenomenon was also found in the CAX-family genes of P. trichocarpa [43].

3.3. BnXTH Gene Response to Cd Stress

Abiotic stress can lead to transcript-level changes in XTH genes. For example, ex-
pression of AtXTH14 and AtXTH15 decreased significantly under Al stress, resulting in
reduced XET activity and thus enhancing the Al tolerance of A. thaliana [26]. Additionally,
expression of PeXTH was significantly upregulated in the roots and leaves of P. euphratica
under Cd stress [44]. The current study found that the BnXTH gene family responded
to Cd stress, under which BnXTH1, BnXTH3, BnXTH6, and BnXTH15 were upregulated,
while BnXTH5, BnXTH16, BnXTH17, and BnXTH18 were significantly downregulated.
Similar contrasting expression patterns of this gene family in response to abiotic stress have
been reported in other plants. For example, expression of CsXTH1, CsXTH4, CsXTH6, and
CsXTH7 was upregulated, while that of CsXTH3 was downregulated, in Camellia sinensis
under fluorine stress [33]. Furthermore, we also found that BnXTH-family proteins have
different subcellular localizations; for example, most BnXTH-family proteins were located
in the cell wall, while BnXTH13 and BnXTH17 were located in the extracellular region.
This may have been due to the expression-pattern diversity of the XTH gene family [18].
The differences in the subcellular localizations and expressions of proteins in the same
family lead to differences in gene function [45], indicating that the different members of the
BnXTH gene family exhibit different functions.

Expression of a gene often depends on the regulation of its upstream promoter [46];
thus, it is particularly important to analyze the upstream promoter sequences of a gene. The
sequence analysis of the upstream promoter sequence of the BnXTH-family gene showed
that the promoter of the BnXTH-family gene contained several cisacting elements, such as
MYB, ABRE, AS-1, STRE, and MBS, that were involved in biotic and abiotic stress responses.
MYB, MBS, and other ciselements are the binding sites of MYB transcription factors, which
regulate defense responses by binding to the MBS elements on target genes [47]. Some
hormone response elements, such as EREs and ABREs, are also involved in biotic and abiotic



Int. J. Mol. Sci. 2022, 23, 16104 12 of 16

stress responses, whereby ABREs play important roles in response to abiotic stress [48,49].
These elements ensure that BnXTH genes are rapidly induced under stressful conditions.

Excessive absorption of heavy metals by plants causes serious toxicity to those
plants [50]. Cell walls, especially hemicellulose, are reportedly the key Cd storage ar-
eas in plants [12]. In A. thaliana, phosphorus-deficiency tolerance significantly reduced
hemicellulose content in the cell wall and alleviated Cd toxicity [51]. Heterologous expres-
sion of PeXTH in tobacco increased the root length and fresh weight of transgenic plants by
enhancing their tolerance of Cd [44]. Similarly, in this study, the tolerance analysis of the
transgenic yeast showed that heterologous expression of BnXTH1, BnXTH6, and BnXTH15
under Cd stress could enhance the Cd tolerance of yeast cells (Figure 7). These results
suggest that the BnXTH gene family is involved in Cd stress responses.

4. Materials and Methods
4.1. Identification and Analysis of BnXTH-Family Genes in the Ramie Genome

There are two conserved domains in XTH proteins: the Glyco_hydro_16 domain
(PF00722) and the XET_C domain (PF06955) [22]. We generated a hidden Markov model
(HMM) file of these two conserved domains using the Pfam database (https://Pfam.xfam.
org/ (accessed on 13 October 2021)) [52]. The ramie genome was analyzed using HMMER
v3.3.2 (Howard Hughes Medical Institute, Washington, DC, USA) [53], which identified
candidate genes. Redundant sequences were manually removed, and the ramie BnXTH
genes were finally obtained.

The corresponding BnXTH gene locations were obtained from the annotation file
of the ramie genome and visualized on chromosomes via MG2C v2.1 online software
(http://mg2c.iask.in/mg2c_v2.1/ (accessed on 20 October 2021)) [54]. ExPASy software
(https://web.expasy.org/protparam/ (accessed on 20 October 2021)) [55] was used to
predict the physical and chemical properties of the selected BnXTH-family members. These
properties included each gene’s PI, Mw, GRAVY, and aliphatic index. Furthermore, Plant-
mPLoc (http://www.csbio.sjtu.edu.cn/bioinf/plant-multi/ (accessed on 20 September
2022)) [56] was used to predict the subcellular localization of the BnXTH-family proteins.

4.2. Sequence Alignment and Phylogenetic Analyses

The XTH protein sequence of A. thaliana was searched for in the NCBI protein database
(http://www.ncbi.nlm.nih.gov/protein/ (accessed on 21 September 2022)), and coding
sequences (CDSs) of BnXTH-family genes were used to generate BnXTH protein sequences.
A neighbor-joining (NJ) phylogenetic tree based on full-length sequences of AtXTHs and
BnXTHs was constructed via MEGA 6.0 [57] using 1000 bootstrap replicates. A multiple
sequence alignment of all BnXTH proteins was then conducted with Clustal (version:X 2.0,
University College Dublin, Dublin, Ireland) [58].

4.3. Gene Structure and Motif Composition Analysis

The genomic sequences and CDSs of the BnXTH-family genes were extracted from the
ramie genome, and structures of the BnXTH-family genes were constructed using GSDS 2.0
online software (http://gsds.gao-lab.org/ (accessed on 22 September 2022)) [59]. MEME
online software (https://meme-suite.org/meme/tools/meme (accessed on 22 September
2022)) [60] was then used to analyze the conserved motifs of the BnXTH proteins, after
which the conserved sites were set at 6–50 and the conserved-motif number parameter was
set to 10. These structures were then visualized using TBtools (version: v1.098774, South
China Agricultural University, Guangzhou, China) [61].

4.4. Analysis of Gene Duplication Events and Collinearity of the BnXTHs

We used a multiple-collinearity scanning toolkit (MCScanX) and TBtools software plug-
ins to analyze gene duplication events of BnXTH in the ramie genome and the collinearity
of the XTH genes between Boehmeria nivea and O. sativa, Sorghum bicolor, A. thaliana, and
Populus trichocarpa. A collinearity graph was then generated using TBtools.

https://Pfam.xfam.org/
https://Pfam.xfam.org/
http://mg2c.iask.in/mg2c_v2.1/
https://web.expasy.org/protparam/
http://www.csbio.sjtu.edu.cn/bioinf/plant-multi/
http://www.ncbi.nlm.nih.gov/protein/
http://gsds.gao-lab.org/
https://meme-suite.org/meme/tools/meme
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4.5. Analysis of the BnXTH Gene Promoter

The 2000 bp sequence upstream of the BnXTH gene was predicted using the Plant-
CARE database [62], and its cisregulatory elements were analyzed. These cisregulatory
elements were then counted and classified according to the functional effects on the pro-
moter. Thereafter, TBtools was used to visualize results and generate heat maps.

4.6. RT-qPCR Analysis of BnXTH Expression under Cd Stress

The “Xiangzhu No. 3” ramie material used in this study was provided by our research
group at Hunan Agricultural University. Terminal buds were cultured in a half-strength
Hoagland nutrient solution for 3 weeks, after which the roots of ramie seedlings with the
same growth rate were collected. After 1 week of culturing in the half-strength Hoagland
nutrient solution, the ramie seedlings were treated with 50 µM of CdCl2, and the root
samples were collected at 0, 3, 6, 9, 12, 24, and 48 h after the treatment. The samples were
frozen in liquid nitrogen and preserved at −80 ◦C. The growth conditions of the ramie
were as follows: 14 h day/10 h night photoperiod, day and night temperature of 26/24 ◦C,
relative humidity of 60%, and light intensity of 20,000 lux.

Total RNA was extracted according to the instructions of the plant RNA extraction kit
(Vazyme, Nanjing, China). The extracted RNA was reverse-transcribed into cDNA using a
reverse transcription kit (Vazyme, Nanjing, China) with primers that were designed using
Premier 5.0 and synthesized via Sangon Biotech (Shanghai, China). The primer sequences
are presented in Table S4. The synthesized cDNA was used as a template for qPCR analysis
on the Bio-Rad CFX96 instrument (Bio-Rad, Hercules, CA, USA) using the AceQ® Universal
SYBR qPCR kit (Vazyme, Nanjing, China) and the BnActin gene as the control. Each sample
was quantified in triplicate, and the relative quantitation of each gene was conducted using
the 2−∆∆Ct method [21].

4.7. Functional Analysis of Cd-Induced Expression of BnXTHs in Yeast

The BnXTH1, BnXTH3, BnXTH6, and BnXTH15 genes, which were shown to respond
to Cd stress, were introduced into the yeast cells for functional analysis. Briefly, the ramie
cDNA was used as a template for PCR, using the primers shown in Table S4. The PCR
conditions and procedures were as described by Jiang et al. [14]. Thereafter, the PCR
products were cloned into the pEASY-blunt vector (TransGen Biotech Company, Beijing,
China) and sequenced at Sangon Biotech (Shanghai, China), followed by subsequent cloning
into the p426 GPD vector at the SmaI/SalI sites. The p426–BnXTH1/3/6/15 recombinant
vector and the empty p426 vector were introduced into a mutant Saccharomyces cerevisiae
yeast strain, ∆yap1, which lacked transcriptional regulatory protein YAP-1 for Cd tolerance.
For the Cd-tolerance analysis, the transgenic yeast cells were inoculated into a liquid
synthetic dropout medium without uracil (SD-URA) and incubated at 30 ◦C on a shaker at
200 rpm until OD600 = 1.0 was reached. The precipitate was collected via centrifugation at
10,000 rpm for 1min, followed by suspension in ddH2O. The suspension was diluted to
10−1, 10−2, and 10−3 times its original state, and 2 µL of the 10−2 dilution was cultured as
droplets on solid SD-URA media that contained 0 and 75 µM of CdCl2. The plates were
incubated at 30 ◦C for 3 days, and the cultures were observed and photographed.

4.8. Statistical Analysis

All data are presented as means ± SD. The data were analyzed with one-way analysis
of variance (ANOVA), followed by an LSD post hoc test using SAS 9.4 (SAS Institute, Cary,
NC, USA) at a p ≤ 0.05 significance level.

5. Conclusions

This study identified 19 BnXTHs and evaluated their evolution, phylogeny, chromo-
somal locations, gene duplications, and cisregulatory elements. RT-qPCR results showed
that most BnXTH genes responded to Cd stress. Many cisregulatory elements in BnXTH
gene promoters were related to abiotic and biotic stress responses. In summary, under
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Cd stress, transcription factors that are located upstream of BnXTHs are triggered to bind
to the cisregulatory elements that are upstream of BnXTHs and regulate expression of
BnXTH genes to enhance the Cd tolerance of ramie. Additionally, functional analysis of
heterologous expression in yeast showed that BnXTH1, BnXTH6, and BnXTH15 may be
involved in Cd tolerance. However, further validation, using transgenic methods, in ramie
or other plants is needed. These results improved our understanding of the BnXTH gene
family and laid a foundation for exploration of the function of BnXTH genes in Cd tolerance
and enrichment in ramie.
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