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Abstract: Accurate segmentation of mandibular canals in lower jaws is important in dental im-
plantology. Medical experts manually determine the implant position and dimensions from 3D CT
images to avoid damaging the mandibular nerve inside the canal. In this paper, we propose a novel
dual-stage deep learning-based scheme for the automatic segmentation of the mandibular canal.
In particular, we first enhance the CBCT scans by employing the novel histogram-based dynamic
windowing scheme, which improves the visibility of mandibular canals. After enhancement, we
designed 3D deeply supervised attention UNet architecture for localizing the Volumes Of Interest
(VOIs), which contain the mandibular canals (i.e., left and right canals). Finally, we employed the
Multi-Scale input Residual UNet (MSiR-UNet) architecture to segment the mandibular canals using
VOIs accurately. The proposed method has been rigorously evaluated on 500 and 15 CBCT scans from
our dataset and from the public dataset, respectively. The results demonstrate that our technique
improves the existing performance of mandibular canal segmentation to a clinically acceptable range.
Moreover, it is robust against the types of CBCT scans in terms of field of view.

Keywords: mandibular canal; 3D segmentation; jaw localization; CBCT

1. Introduction

The Inferior Alveolar Nerve (IAN), also known as the mandibular canal, is the most
critical structure in the mandible region which supplies sensation to the lower teeth. Simi-
larly, sensation to the lips and chin is provided by the mental nerve, which passes through
the mental foramen [1]. An essential step in implant placement, third molar extraction and
various other craniofacial procedures, such as orthognathic surgery, is determining the
position of the mandibular canal. It is also crucial for diagnosing vascular and neurogenic
diseases associated with the nerve, diagnosing lesions near the mandibular canal and
planning oral and maxillofacial procedures. If the mandibular canal gets injured during
any of these processes, patients may experience aches, pain and temporary paralysis [2,3].
Therefore, preoperative treatment planning and simulation are necessary to avoid nerve
injury and the identification of the exact location of the mandibular canal aids in achieving
the required planning strategy for the patient [4].

One of the most frequently used three-dimensional (3D) imaging modalities for preop-
erative treatment planning and postoperative assessment in dentistry is the Cone Beam
Computed Tomography, also known as CBCT [5]. The CBCT volume is reconstructed using
projection images realized from different angles with a cone-shaped beam and stored as a
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sequence of axial images [6]. Multi-Detector Computed Tomography (MDCT) is a clinical
replacement for CBCT; however, high radiation doses and insufficient spatial resolution
limit its application. In contrast, the CBCT allows more precise imaging of hard tissues
in the dentomaxillofacial area and its effective radiation dosage is lower than that of the
MDCT1. CBCT is also inexpensive and readily available. Nonetheless, in practice, there
are certain challenges associated with mandibular canal segmentation from CBCT images,
such as inaccurate density and large amount of noise [7].

Surgical planning and pre-surgical examination are crucial in dental clinics. A standard
imaging tool used for such assessments and planning is the panoramic radiography, which
is constructed from a dental arch to provide all the relevant information in a single view.
These radiographs bear disadvantages, such as difficulty in determining the 3D rendering
of an entire canal and connected nerves [8]. Another common preoperative assessment
approach is annotating the canal in 3D images to produce the segmentation of the canal.
This kind of manual annotation is very knowledge-intensive, time-consuming and tedious.
Thus, there is a need for a tool to assist the radiologist and reduce the burden by using
automatic or semi-automatic segmentation of the canal.

Complications in accurate segmentation of the mandibular canal arise as the CBCT
values of the mandibular canal are similar to surrounding tissues in the mandible region.
General parameters associated with imaging, i.e., scan resolution, pixel spacing and pixel
values, also significantly influence the segmentation performance. Additionally, other
characteristics of the mandibular canal, such as the curvature of the canal and the geometry,
also impact the segmentation accuracy. In the current dentistry workflow, dentists usually
use manual delineation or semi-automatic preoperative segmentation of the mandible.
Manual delineation requires experienced dentists to use software to delineate the contour
of the mandibular canal on each slice of the CBCT scan. Semi-automatic segmentation
includes region growth, level set and other methods requiring continuous interactive
operations. These methods make the segmentation process slow and inefficient [9,10],
greatly increasing the workload of implant doctors. Therefore, improving the segmentation
efficiency of the mandibular canal has become an urgent problem to be solved for implant
planning software.

Several studies have attempted to overcome the challenges mentioned above by
developing various systems for automatic segmentation of the mandibular canal in CBCT
scans. Such systems include classical image processing-based techniques and advanced
deep learning-based methods [11]. Classical methods mostly rely on raw voxel values and
consider 2D contextual information to determine the mandibular canal position. These
canal analyses lack the 3D sequential perspective, which limits their performance and
robustness. On the other hand, DL-based methods have shown the potential to segment the
3D structures in various 3D imaging modalities accurately. However, DL-based techniques
require extensive well-annotated data to develop an accurate and generalized algorithm.
Although a significant amount of raw CBCT scans are available, obtaining annotation on
3D scans is a serious obstacle. Additionally, there is a lack of publicly available annotated
data sets due to the privacy constraints associated with the sharing of medical data, owing
to the patient’s personal information.

To overcome these challenges, in this study, we first develop the largest CBCT dataset,
which consists of 1010 3D scans with mandibular canal annotation. Then, for automatic
segmentation of the mandibular canal in 3D CBCT scans, we design a dual-stage 3D
Convolutional Neural Network (CNN)-based technique. The proposed framework first
localizes the mandibular region using naive segmentation produced by deeply supervised
attention UNet. In the second stage, volumes of interest are extracted from a full 3D
CBCT scan to apply multi-scale deeply supervised UNet architecture for mandibular canal
segmentation. The proposed technique has been rigorously evaluated on 500 scans of our
dataset and 15 scans from the publicly available dataset. The results demonstrate that our
framework not only outperforms the existing methods in terms of dice score and mIoU but
also exhibits significant robustness regarding scan variations.
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The rest of the paper is organized as follows. In Section 2, we present related works.
In Section 3, the details of each step of our proposed method as well as the materials used
are described. In Section 4, we present the obtained results and comparison of our study
with other studies as well as analysis and discussion of our work and then we conclude
in Section 5.

2. Related Work

Several efforts have been made to develop semi-automated or fully automated so-
lutions for automatic segmentation of mandibular canal [11]. Based on the techniques
utilized for development, these systems can be classified into two categories, i.e., classical
image processing-based methods and advanced deep learning-based techniques.

In [12], Kim et al. utilized 3D panoramic Volume Rendering (VR) and texture analysis
techniques for mandibular canal segmentation. Specifically, they introduced color shading
and compositing methods in 3D panoramic VR for the enhancement of foramens and later
they employed line tracking to compute the path of mandibular canal. Similarly, in [13],
Abdolali et al. presented a hybrid framework that combines anatomical and statistical
information to segment the mandibular canal. They first applied a low-rank decomposition-
based algorithm for pre-processing, which was later combined with a statistical shape
model and fast marching to segment the mandibular bone and canals. The study reported
an improved performance in terms of Average Symmetric Surface Distance (ASSD) and
average mean curve distances. They extended their work in [14] by employing a Lie
group-based statistical shape model to represent the shape variations and applied fast
marching to localize the mandibular canal in CBCT scans. This extension achieved a
significantly higher performance in terms of dice score and symmetric distance on their
private dataset. In [15], Wei et al. first applied windowing and then K-mean clustering
algorithm to cluster the texture parameters to improve the visibility of the mandibular
canal in Multi-Plane Reconstruction (MPR) views. Finally, a 2D line-tracking method was
applied for rough segmentation of the mandibular canal, further refined by fitting the
fourth-order polynomial.

Although classical image processing-based studies have reported promising results
on limited private datasets, these methods lack generalization ability, making them inef-
ficient for real-time application. On the other hand, deep learning-based methods have
made vast inroads into various computer-aided medical applications [16], such as disease
detection [17] and the segmentation of affected regions [18]. Consequently, deep learning
has also been applied for mandibular canal segmentation to boost performance.

For instance, Kwak et al. [19] implemented three deep learning models, i.e., 2D SegNet,
2D and 3D UNets, for mandibular canal segmentation. Prior to the segmentation, they
applied thresholding-based teeth segmentation to eliminate the non-mandibular region
from 3D CBCT scans. The study suggests that the 3D UNet outperforms both 2D models. In
another study, Jaskari et al. [20] presented a 3D fully Convolutional Neural Network-based
technique for mandibular canal segmentation. They evaluated their model on private data
consisting of 15 scans and achieved dice scores of 0.57 and 0.58 for the left and right canals,
respectively. Similarly, Faradhilla et al. [21] also presented a Residual Fully Convolutional
Network (RFCN) with dual loss functions, i.e., non-mandibular region and boundary
of mandibular canal-based loss functions, for segmenting the mandibular canal in 2D
parasagittal views of CBCT scans. The study used 500 parasagittal 2D images for validation
and reported promising results in terms of dice score.

Furthermore, Widiasri et al. [22] simultaneously detected alveolar bone and mandibu-
lar canal on 2D coronal views of CBCT scans by applying a modified version of YOLOv4 [23].
However, these methods can be classified as semi-automated as they require 2D views
generated by manual inputs from dentists. Dhar et al. [24] used a model based on 3D
UNet to segment the canal. They used pre-processing techniques to generate the center
lines of the mandibular canals and used them as ground truths in the training process.
Verhelst et al. [25] used a patch-based technique to localize the jaw and then applied the
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3D UNet model to segment the canal in that ROI. In a similar way, Lahoud et al. [26] first
coarsely segmented out the canal and then using the patches extracted based on this coarse
segmentation, performed fine segmentation of the canal. Capriano et al. [27] developed a
novel and large publicly available dataset for applying deep learning with dense and sparse
annotations on CBCT scans. To generate dense voxel-level annotations, they reconstructed
the polygon mesh in the form of the α-shape. They exploited their developed dataset to
achieve state-of-the-art performance by employing a deep learning-based method pro-
posed by Jaskari et al. [20]. The same authors extended their work in [28] by leveraging
their dataset with 3D dense annotations to train a deep label propagation model which
outperformed the previous techniques.

Alternatively, Du et al. [29] proposed another framework based on 3D Convolutional
Neural Networks (CNNs) trained using the dataset developed by Capriano et al. [27].
In contrast to Capriano et al. [27], they first generated the annotations by employing the
centerline combined with regional growth method. Afterward, they incorporated Spatial-
Channel Squeeze and Excitation attention scheme to a 3D UNet architecture and achieved
significantly better performance with respect to their annotation scheme. However, their re-
sults cannot be compared with Capriano et al. [27] as they used different target annotations
to train their model.

Table 1 summarizes recently published deep learning-based studies for mandibular
canal segmentation. It also presents the techniques used in each study with the nature of
accessibility of datasets (i.e., private or public) along with the types of data used as input to
the models, i.e., full and medium views. It can be observed that each listed study which
achieved significantly higher performance utilized medium view, that is, the sub-volume
of full view as described in Figure 1. In contrast, only a single study utilizing the full view,
full-face 3D CBCT scan, was found. However, it obtained limited performance. In this
work, we employed a dual-stage mechanism to automatically localize the mandibular canal
region in full view, after which Volumes Of Interest (VOIs) are extracted to segment the
mandibular canal. The proposed method has been trained and evaluated on the largest
CBCT dataset, consisting of 1010 3D CBCT full-view scans. The results demonstrate that
our framework outperforms state-of-the-art segmentation performance and offers better
generalization ability.

Figure 1. Field of views (FOVs) representing (a) Large FOV (140 mm × 165 mm) and (b) Medium
(80 mm × 100 mm) (Figure Credit: [30]).



Sensors 2022, 22, 9877 5 of 16

Table 1. Summary of recently published deep learning-based methods for mandibular canal segmen-
tation in CBCT scans.

Author,
Study and

Year of
Publication

Technique
Type of

Dataset and
FOV

No. of CBCT Scans Contributions Limitations

Training +
Validation Test

Kwak
et al. [19],

2020

Thresholding-based
teeth segmentation

+ 3D UNets

Private, Full
View 82 20

Employed 2D and 3D Deep
Learning models and

demonstrated the superior
performance of 3D UNets

Limited performance in terms of
Mean mIoU

Jaskari
et al. [20],

2020

3D Fully
Convolutional

Neural Networks
(FCNNs)

Private,
Medium

View
509 128

The study utilized a large number
of CBCT scans to train 3D FCNNs

and achieved an improved
performance.

Overall achieved performance for
left and right canal was limited in

term of Dice score

Faradhilla
et al. [21],

2021

Residual FCNNs +
Dual auxilary Loss

functions

Private, 2D
view NA NA

The study exploited Residual
Fully Convolutional Network

with dual auxiliary loss functions
to segment the mandibular canal

in parasagittal 2D images and
reported promising results in

terms of dice score

Requires manual input from
dentists to generate the 2D

parasagittal views from CBCT.
Study provides no information

about the CBCT scans used for the
experimentation

Verhelst
et al. [25],

2021

3D UNet trained in
two phases

Private,
Medium

View
160 30

Trained 3D UNet in two phases,
i.e., before and after the

deployment, to achieve promising
performance.

Requires an extensive effort to
train the model and inputs from

experts are needed to improve its
performance of the model.

Widiasri
et al. [22],

2022
YOLOv4 Private, 2D

view NA NA

The study utilized YOLOv4 for
mandibular canal detection in 2D

coronal images and achieved
significantly higher detection

performance.

The study used 2D coronal
images which need manual input
to generate from CBCT scans. The

technique just provides the
bounding box around the canal

region, which lacks the exact
boundary information which can
be obtained from segmentation.

Lahoud
et al. [26],

2022

Two 3D UNets, one
for coarse

segmentation and
other for finetuning

on patches

Private,
Mixed FOVs 196 39

Adjusted to the variability in
Mandibular Canal shape and

width by using voxel-wise
probability approach for

segmentation

The scheme requires an extensive
effort to train the models and

evaluate performed on a limited
private dataset does not prove the

generalization

Cipriano
et al. [27],

2022

Jaskari et al. [20],
2020

Public,
Medium

view

76 with
Dense

annotation

15 with
Dense

Annotations

The first publicly released
annotated dataset and source

code, validated their dataset on
three different existing techniques

Utilized the existing segmentation
methods, with no contribution in

terms of technique novelty.

Cipriano
et al. [28],

2022

3D CNN + Deep
label propagation

technique

Public,
Medium

view

76 with
Dense anno-
tation+256

with Sparse
Annotations

15 with
Dense

Annotations

Combined 3D segmentation
model trained on the 3D
annotated data and label

propagation model to improve the
mandibular canal segmentation

performance

The study utilized the scans with
a medium Field Of View (FOV)
which is 3D sub-volume from

CBCT scans, however, no
mechanism for localization of

medium FOV is provided.

3. Materials and Methods
3.1. Study Design

The objective of this study is to design a deep-learning approach for automatic
mandibular canal segmentation. The study design consists of pre-processing, model
training and post-processing, each discussed in detail in the sections below. The details
about the dataset and pre-processing steps are explained in Sections 3.2 and 3.3, respectively.
The network design is discussed in detail in Section 3.4 Network Architecture. The network
was validated on 500 scans.

3.2. Datasets

In this work, we utilized two datasets; one which we developed in this study and
the second, a publicly available dataset released by Cipriano et al. [27]. The following
subsections provide details about both datasets and finally we summarize their comparison
in Table 2.
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Table 2. Comparison of our dataset with public dataset.

Our Dataset Public Dataset [27]

Total Number of CBCT scans 1010 347

Densely annotated scans 1010 91

Sparsely Annotated scans - 256

Minimum Resolution 512 × 512 × 460 148× 265× 312

Maximum Resolution 670 × 670 × 640 178× 423× 463

Pixel Spacing 0.3 mm–0.39 mm 0.3 mm

Field of View Large Medium

3.2.1. Our Dataset

We developed the largest CBCT dataset for mandibular canal segmentation. To de-
velop our dataset, 1010 dental CBCT scans were obtained from the PACS of the Seoul
National University Dental Hospital. The data was annotated in two stages; in the first
stage 28 trained medical students from Seoul National University Dental Hospital per-
formed annotations and in the second stage 6 doctors from the same institute validated the
annotated data. The CBCT scans were in DICOM format with voxel spacing ranging from
0.3 mm to 0.39 mm. The annotated data was available as a set of floating point polygon coor-
dinates for each of the left and right canals, stored in JSON file format for every patient. The
spatial resolution of scans ranges from 512 × 512 × 460 voxels to 670 × 670 × 640 voxels.
The Field Of View (FOV) of all the scans in this data is large, as described in Figure 1. The
large FOV captures the complete dentition, including both temporo-mandibular joints and
the cranial base. The CBCT scans in our dataset consist of three Hounsfield Unit (HU)
values ranges, i.e., from −1000 to +1000, −1000 to +2000 and 0 to 5000 HU as demonstrated
in Figure 2. All the experiments are conducted using 100, 200, 300 and 400 scans for training
and tested on 500 samples.

Figure 2. The intensity histograms of the different types of scans. WC represents the Window Centre
calculated at run-time based on each histogram.

3.2.2. Public Dataset

The 347 CBCT images in the public dataset [27] have a fixed pixel spacing of 0.3 mm
and the Hounsfield Unit (HU) values for all scans fall within a fixed range of −1000 to
5264. The spatial resolution of scans ranges from 148× 265× 312 to 178× 423× 463. The
347 scans that make up this dataset are split into two parts; the primary dataset, which
includes the 91 volumes for which both dense and sparse annotations are accessible and
the secondary dataset, for which only the sparsely annotations are available. As shown
in Figure 1b, the FOV of these scans are medium as opposed to our dataset which has
large FOV.

Table 2 compares the two datasets utilized for experimentation and validation of
our proposed technique. Figure 3 shows the 3D rendered scans from both datasets with
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mandibular canal annotations. In contrast to the public dataset with medium FOV, scans in
our dataset are acquired with large FOV.

Figure 3. Three-dimensional rendered CBCT scans with left and right mandibular canal annotations.
(i) Samples from our dataset. (ii) Samples from public dataset [27]. (a–c) the right, frontal and left
side views of CBCT volumes, respectively.

3.3. Data Pre-Processing

Although CT scans follow a worldwide standard for ranges of HU values for different
body parts such as teeth, gums, bones, etc., 3D CBCT scans, follow no such standard and
therefore can have different ranges of HU values and relative intensities when acquired
from different manufacturers and under different scanning conditions. Fixed window levels
and window widths can give varying contrasts and can be a cause for poor results during
processing. To make the algorithm robust, dynamic windowing was applied to bring the
contrast of all the scans to a similar level. This was done by calculating the window levels
and widths (WL/WW) on run-time for each scan by analyzing the trend of the intensity
histogram of the scan. This ensured a standard contrast of the scan after windowing.
The intensity histogram of the three different types of CBCT scans, each acquired from a
different manufacturer and the placement of their calculated Window Centre (WC) through
the above logic, is shown in Figure 2. To perform the dynamic windowing, the intensity
histogram of the individual scan was evaluated and the intensity with the highest frequency
was set as the window center. The Window Width (WW) is determined by the range of
intensities—the longer the range, the higher the window width—with less change in WW
as the range reaches high intensities.

3.4. Overview of Dual-Stage Framework

The major problem faced in the segmentation of the mandibular canal is the imbalance
between the mandibular canal and background classes. CBCT scans include the whole
face and jaws, while the region of interest for mandibular canal extraction is only the jaw
region. This problem often leads to misclassifications, especially at pixels on the boundary
of the canal. Another problem that arises while refining the results of segmentation is
computational power. Thus, in this study, our aim was to resolve these issues by using
two cascade networks to produce a full-resolution segmentation output. The first CNN
performed a coarse segmentation of the MC and the second network utilized the VOIs
from the first network to produce refined segmentation. The output of the first model
was used to isolate the left and right parts of the face as well as crop the regions around
the mandibular canal. Hence, the model gives two VOIs, i.e., the region around the left
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mandibular canal and the region around the right mandibular canal. These cropped VOIs
were used as the input of the second model, which produced the final fine segmentation of
left and right mandibular canals.

3.4.1. Jaw Localization

Jaw localization will inherently improve the accuracy and reduce noisy segmentation
maps of the canal. Moreover, optimizing a model for full-size 1010 scans of dimensions
128× 128× 128 is computationally expensive as compared to a localized scan. Reducing
the size of the scan would also affect the appearance of the mandibular canal. Hence, we
utilized 20% of the data, i.e., 200 scans to train a localization model to coarsely segment the
mandibular canal. This segmentation is used to roughly localize the canal and as an input
to the second model for segmentation.

Since the anatomical contexts in 3D medical pictures are far more complex than those
in 2D images, 3D variations of UNet with significantly more parameters are often needed
to capture more representative characteristics. However, a large number of parameter
weights and depth in the 3D UNet creates various optimization challenges, like over-fitting,
slow convergence rate, gradient vanishing [31] and repetitive computation while training.
However, the 3D CBCT scans contain much redundant information which significantly
increases the network parameters and its optimization time.

In this study, these issues are resolved using Deeply Supervised Attention UNet archi-
tecture [32]. The input to the network is a 3D CBCT scan x ∈ R128×128×128 and the output is
a segmentation map Φ(x) ∈ [0, 1]128×128×128. The model’s output is a segmentation mask
that coarsely segments the canals.

The network consists of encoder and decoder blocks. The encoder network learns
to extract the necessary information from an input image, which is then passed on to the
decoder. Each decoder block consists of attention gate skip connections from the encoder.
The attention gate assists the model in selecting more useful features. It takes two inputs:
the up-sampling feature in the decoder and the corresponding depth feature in the encoder,
as shown in Figure 4a. The feature from the encoder is used as a gating signal to enhance the
learning of the feature in the decoder. Attention gates automatically learn to focus on target
structures without additional supervision. At test time, these gates generate soft region
proposals implicitly on runtime and highlight salient features useful for a specific task.
Moreover, they reduce the computational load and improve the model’s sensitivity and
accuracy for dense label predictions by suppressing feature activations in irrelevant regions.

In order to capture the inter-slice connectivity of the canal and obtain fine-tuned seg-
mentation results, the framework combines the current 3D Attention UNet model with a 3D
deep supervision mechanism during training. This strengthens the propagation of gradient
flow inside the network and therefore acquires more effective and representative features.
The 3D deep supervision method greatly regulates the training of the hidden layers. It
is only used in training mode as it helps with segmentation by properly regularizing the
network weights.

The segmentation masks produced in this step were used to divide the scan into left
and right parts and the VOI for fine segmentation of the canal was extracted by cropping
the region around the segmented canal.

3.4.2. 3D Mandibular Canal Segmentation

The size of the mandibular canal was analyzed statistically, as shown in the Figure 5.
It is visible that both the right and left canals vary in size. Thus, to ensure that the model’s
performance remains similar for all sizes of canal VOIs, Residual UNet architecture with
multi-scale inputs was utilized to perform the task of 3D segmentation of the mandibular
canal, as shown in (b) in Figure 4. The sizes of three inputs are kept as 208 × 240 × 240,
144 × 176 × 176 and 108 × 144 × 144. The benefit of multi-scale input is that it caters to all
the different available sizes of the mandibular canal and hence reduces the segmentation
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error around the boundary. This structure enables the encoder of the network to extract
features better. The output was binarized by applying a thresholding of 0.5.

Figure 4. Proposed dual-stage scheme for mandibular canal segmentation, describing the model
architectures utilized at each stage. (a) Deeply supervised attention UNet model for jaw localization
which coarsely segments the canal. (b) Multi-scale input ResUNet model used to produce fine
segmentation of mandibular canals (i.e., left and right canals).

Figure 5. Histograms depicting the difference in sizes of the left and right mandibular canal.

The ResUNet or Deep Residual UNet architecture was utilized for 3D mandibular
canal segmentation [33], an architecture that relies on deep residual learning and UNet.
Its structure can be divided into an encoding network and a decoding network. The two
consecutive layers are applied to the basic residual block and the same padding is used
in the encoding branch. A batch normalization layer follows each convolutional layer,
followed by a ReLU layer (non-linear layer). Downsampling is done by max-pooling
operation after the residual block. The number of feature channels is doubled at each down-
sampling step. In order to restore the size of the segmented output, the same amount of up-
sampling operations are carried out in the decoding network. A transposed convolution is
used to achieve each up-sampling and the number of channels of feature is reduced by half.
After passing through the channel attention block, skip connections are created to transfer
features from the encoder to the decoder and basic residual blocks with two successive
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convolutional layers (with the same padding) are used for feature extraction. Similar to
this, a batch normalization layer and a ReLU layer is placed after every convolutional layer.
By using concatenation, which is employed in UNet, the encoded and decoded data are
combined. The final segmentation masks, obtained from the network, are further refined
by classical image processing techniques such as dilation, erosion and opening and closing
morphological operations [34] to remove the noise as well as discontinuities in the canal.

3.5. Implementation Details and Training Strategy

For this study, all the CNN architectures were implemented using the Keras frame-
work [35] with TensorFlow [36] as back-end. We performed our experiment on two pow-
erful NVIDIA Titan RTX GPUs with 4608 CUDA cores and 24 GB GDDR6 SDRAM. The
batch size for this experiment was set to 2 for both models and the proposed architecture
was optimized with the Adam optimizer. The learning rate to train the model was set to
1× 10−5. To reduce the training time and use the GPU efficiently, we use 10 to 20 percent of
the 3D CBCT scans for training of model for jaw localization as well as canal segmentation.
The size of images while training the jaw localization model is kept to 128 × 128 × 128.
After localizing the jaw, the 3D images are cropped and resized to three fixed sizes as
mentioned in Section 3.4.2. We used the dice loss function Equation (1) to calculate the
loss. Labels are the segmentation annotation of images containing 0 as background and 1
as foreground. We trained the localization model for 50 epochs and the 3D segmentation
models for 80 epochs by keeping the learning rate lower in order to train a generalized
model. The batch size, epoch and learning rate were reset depending upon the need.

Dice Loss = 1−Dice Coefficient (1)

where, dice coefficient is given by Equation (6).

3.6. Performance Measures

In order to measure the performance of the deep learning model, we calculated the dice
score, mean IoU, precision, recall, F1 score and specificity using the following equations:

precision =
TP

TP + FP
(2)

recall =
TP

TP + FN
(3)

F1 score =
TP

TP + 0.5(FP + FN)
(4)

IoU =
TP

TP + FP + FN
(5)

DSC =
2TP

2TP + FP + FN
(6)

where, TP refers to true Positives, FP refers to False Positives, FN refers to False Negatives
and TN refers to True Negatives. IoU refers to Intersection Over Union and DSC is
Dice Coefficient.

4. Results and Discussion

To evaluate our proposed framework, we performed various experiments on our
dataset, the largest full-view CBCT dataset with voxel-level annotations of the mandibular
canal. Additionally, we also tested on the public dataset [27], which has 91 medium view
CBCT scans with dense annotations of the mandibular canal. We start our analysis by
benchmarking the performance of dual-stage deeply supervised attention-based Convolu-
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tional Neural Networks over its other variants. Later, the results are quantitatively analyzed
in terms of overall performance and qualitative/visual analysis.

4.1. Benchmarking Results

First, we benchmark the performance of our proposed framework with its possible
modifications. Our framework consists of two networks, one for the localization and a
second for the fine-tuning of mandibular canal segmentation. Among these, the second
stage, on which 3D Multi-Scale input Residual UNet (MSiR-UNet) architecture is employed,
is more critical as it performs the final segmentation of the mandibular canal. Therefore,
we implemented two versions of our MSiR-UNet to demonstrate the contribution of each
component. In particular, we implemented one network without multi-scale input and
another without residual connections while keeping the remaining pipeline the same as the
proposed framework. We trained all three models on 300 CBCT scans and evaluated their
performances with respect to the evaluation parameters described in Section 3.6. Table 3
summarizes the results obtained from each model, clearly showing the contribution of each
component of the proposed network.

Table 3. Benchmarking results of the proposed Multi-Scale input Residual UNet (MSiR-UNet)
architecture against its two versions, i.e., without multi-scale input and residual connections, by
using various evaluation parameters.

Performance
Parameters Without Multi-Scale Without Resiudual

Connections

With Residual
Connections and

Multi-Scale Inputs

mIoU 0.779 0.785 0.795

Precision 0.683 0.679 0.69

Recall 0.81 0.824 0.83

Dice Score 0.72 0.72 0.751

F1 Score 0.741 0.745 0.759

Without multi-scale input, the model has to rely on a single dimension that comes
from the resizing module, either after up-sampling or down-sampling of the original VOI.
This limits the model to having untampered information which originally belongs to the
sub-volume of the CBCT scan. Subsequently, the version without the incorporation of
multi-scale input showed degraded performance. Similarly, the residual connections enable
the flow of information from features of various scales in the network. Therefore, the
version implemented without residual connection failed to achieve the same performance
as the proposed MSiR-UNet. To this end, it can be safely concluded from our experiments
that including multi-scale inputs and residual connections improve the network’s learning
ability, enabling the network to achieve better segmentation results.

4.2. Impact of Increasing the Amount of Data

Although we developed a dataset consisting of 1010 CBCT scans and voxel level
annotations of the mandibular canal, we trained our proposed dual-stage deeply super-
vised attention-based Convolutional Neural Network on different amounts of data to
demonstrate the effectiveness of the presented framework. In particular, we trained three
models on 100, 200, 300 and 400 CBCT scans and used the fixed 500 CBCT scans for testing.
Table 4 summarizes the average results obtained on the test set with various evaluation
parameters defined in Section 3.6. We observed that the model improves quite strongly
initially when the amount of data is increased up to 300 scans; however, beyond that, we
observe a plateauing effect in the performance. Concretely, the performance in terms of
F1 score is improved by 1.6 % and 2.3 % for the left canal when we increase the samples
from 100 to 200 and 200 to 300, respectively. However, only a 0.2 % increase in F1 score is
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observed when increasing the number of training samples from 300 to 400, which is not an
optimal choice with respect to computational time. Therefore, for our final solution, we
selected the model trained on 300 scans to obtain final results.

Table 4. Impact of increasing the amount of data on the performance of model.

Number of
Scans 100 200 300 400

Canal Side Left Right Left Right Left Right Left Right

mIoU 0.755 0.771 0.78 0.789 0.79 0.8 0.798 0.806

Precision 0.639 0.667 0.657 0.69 0.679 0.718 0.686 0.72

Recall 0.818 0.795 0.832 0.8 0.847 0.817 0.854 0.819

Dice Score 0.721 0.731 0.734 0.746 0.749 0.753 0.752 0.759

F1 Score 0.718 0.725 0.734 0.741 0.754 0.764 0.761 0.766

4.3. Overall Performance Analysis

We analyzed the overall performance of the proposed framework quantitatively while
also comparing the results with previously published techniques with respect to the eval-
uation parameters described in Section 3.6. In the literature, most studies have utilized
private datasets, which vary in terms of the number of samples and type of scan, i.e.,
full view or medium view. Therefore, in Table 5, we summarize the results obtained by
existing deep learning-based methods which utilize private datasets, along with their
dataset details and the nature of the solution for a fair comparison. In the listed techniques,
Verhelst et al. [25] achieved the highest performance in terms of dice score; however, their
method requires extensive human assistance, which makes it a semi-automated technique.
Jakarta et al. [20], Kwak et al. [19] and Dhar et al. [24] used scans with medium FOV to
develop a fully automatic solution for mandibular canal segmentation. Although Kwak
et al. [19] utilized less data for training reported and reported the highest mIoU score,
the work provides no information about the number of test samples and uses only one
evaluation parameter, which is insufficient to prove the effectiveness of their method. On
the other hand, Jaskari et al. [20] utilized a significantly large amount of training data and
reported their performance in terms of dice score and F1 score, which is inadequate for
clinic applications. Dhar et al. [24] used less data for training and testing their solution;
however, they reported a similar performance as in [20]. Among all the studies, only
Lahoud et al. [26] utilized large-view CBCT scans along with medium-view scans and
achieved slightly better performance in terms of dice score. However, Lahoud et al. [26]
used only 30 CBCT scans for testing, including large and medium FOV scans, while in this
study, results are obtained on 500 large-view CBCT scans. It is important to mention that
mandibular canal segmentation becomes more challenging in large FOV CBCT scans due to
bigger volume and dimensions of scans. Nevertheless, the proposed framework achieved
consistent performance on 500 scans, depicting its robustness against the variations caused
by the scanning devices and facial structures.

We also evaluate our framework on a publicly available dataset [27] to demonstrate
its effectiveness. We trained an independent model from scratch on the public dataset,
following the same pipeline as described in Section 3.4. Concretely, we first trained deeply
supervised UNet architecture for jaw localization and later trained multi-scale input resid-
ual UNet architecture for fine segmentation of the mandibular canal. We only used densely
annotated scans for training. The data distribution was 76 scans for training and 15 for
testing, which is the same distribution as used in [28]. Table 6 summarizes the results
from our study and two previously published studies. Our method achieved an improved
performance compared to previous baseline results obtained with only dense annotations.
However, our overall performance on the public dataset is degraded compared to the per-
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formances achieved on our dataset. This can be attributed to the amount of data utilized for
training the model with the public dataset, which is several times smaller than our dataset.

Table 5. Comparison of our technique with other techniques on private dataset.

Study Field of View Training Scans Testing Scans Solution Type mIoU Precision Recall Dice Score F1 Score

Jaskari et al. [20], 2020 Medium 457 128 Automated - - - 0.575 -

Kwak et al. [19], 2020 (3D) Medium 61 - Automated 0.577 - - - -

Dhar et al. [24], 2021 Medium 157 30 Automated 0.7 0.63 0.51 - 0.56

Verhelst et al. [25], 2021 Medium 196 39 Semi-Automated 0.946 0.952 0.993 0.972 -

Lahoud et al. [26], 2022 Medium + Large 166 39 Automated 0.636 0.782 0.792 0.774 -

100 500 Automated 0.763 0.653 0.807 0.726 0.721

Our method Large 200 500 Automated 0.785 0.67 0.816 0.74 0.737

300 500 Automated 0.795 0.69 0.832 0.751 0.759

Table 6. Results of our technique on public dataset.

Study IoU Dice Score

Jaskari et al. [20], 2022 0.52 0.67

Cipriano et al. [28], 2022 0.61 0.75

Our method 0.79 0.77

4.4. Qualitative Analysis

We further qualitatively analyze the proposed technique on our developed dataset and
public dataset [27]. Firstly, as shown in Figure 6, we analyzed the results in a 2D manner
using parasagittal, Maximum Intensity Projection (MIP) images of the front, left and right
sides. It can be observed that the proposed framework can accurately track the mandibular
canal curve and produces performance quite similar to the ground truth. Although the
predicted results are smoother than the ground truth, such smoothness has no impact on
the clinical application.

We extend our visual analysis to 3D by rendering the medium view scans from the
public dataset [27]. Figure 7 shows the results obtained from the proposed framework
along with the ground truth dense annotations. From visual analysis, it can be observed
that our framework produces results quite similar to ground truth annotations. Despite
achieving the clinically acceptable dice score of 0.75 [26], our results do not fully match
with the annotations made by expert dentists. However, it is important to note that an
expert takes almost an hour to segment the mandibular canal in a large view CBCT scan
while our framework only takes less than a minute, demonstrating its effectiveness.

Figure 6. Ground truth (row 1) vs. Model Prediction (row 2). (a) Parasagittal view of right MC.
(b) Maximum Intensity Projection of Coronal view (blue as right canal and red as left canal. (c) Right
canal comparison with ground truth. (d) Left canal Comparison with ground truth. (e) Parasagittal
view of Left Canal.
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Figure 7. Visual results of our proposed model on public dataset on 3D rendered medium view CBCT
scans. Sub-figures (a,b) show results from two different samples. The first and second row of each
sub-figure represent the ground truth and predicted results, respectively.

5. Conclusions

This paper proposes a novel dual-stage deep learning-based scheme for automatic
detection of the mandibular canal. We first enhanced the CBCT scans by employing a
novel histogram-based dynamic windowing scheme, which improves the visibility of
mandibular canals. After enhancement, we designed a 3D deeply supervised attention
UNet architecture for localizing the mandibular canals within the volumes of interest (VOIs).
Finally, each VOI is fed to Multi-Scale input Residual UNet (MSiR-UNet) architecture to
segment the mandibular canals accurately. The proposed method has been rigorously
evaluated on our dataset as well as on the public dataset. An extensive quantitative
and qualitative/visual analysis has been performed. The results demonstrate that our
framework performs consistently on scans with different types of field of view, i.e., medium
and large views. Furthermore, our framework achieves clinically acceptable performance
on both datasets, which makes it suitable for real-time clinical application. Future work
includes reducing the number of stages of our approach as this method requires training
multiple models, leading to high computation costs and time.
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