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Abstract: In this work, a dataset of more than 200 nitroaromatic compounds is used to develop
Quantitative Structure–Activity Relationship (QSAR) models for the estimation of in vivo toxicity
based on 50% lethal dose to rats (LD50). An initial set of 4885 molecular descriptors was generated
and applied to build Support Vector Regression (SVR) models. The best two SVR models, SVR_A and
SVR_B, were selected to build an Ensemble Model by means of Multiple Linear Regression (MLR).
The obtained Ensemble Model showed improved performance over the base SVR models in the
training set (R2 = 0.88), validation set (R2 = 0.95), and true external test set (R2 = 0.92). The models
were also internally validated by 5-fold cross-validation and Y-scrambling experiments, showing
that the models have high levels of goodness-of-fit, robustness and predictivity. The contribution
of descriptors to the toxicity in the models was assessed using the Accumulated Local Effect (ALE)
technique. The proposed approach provides an important tool to assess toxicity of nitroaromatic
compounds, based on the ensemble QSAR model and the structural relationship to toxicity by
analyzed contribution of the involved descriptors.

Keywords: toxicity; nitroaromatic compounds; QSAR; QSTR; machine learning; Accumulated Local
Effect; support vector machine; ensemble model

1. Introduction

Nitroaromatic compounds (NACs) belong to the largest group of industrial chemicals
that exhibit various aspects of toxicity such as immunotoxicity, skin sensitization, germ cell
degeneration, mutagenicity, and carcinogenicity [1,2]. Pesticides, explosives, drugs, cosmet-
ics, herbicides, antioxidants, gasoline additives and corrosion inhibitors are good examples
of the use of NACs in industry [3–5]. These compounds are almost exclusively released to
the environment from industrial activities and anthropogenic sources. Studies focusing
on this discovered that NACs are widely distributed in the biosphere and cause serious
pollution in water, soil, atmosphere as well as food via absorption and bioaccumulation in
the food chain [3,6]. The main toxicity behavior of NACs is described as uncoupling agents
in oxidative phosphorylation [7,8]. Other toxic effects were reported for NACs in relation to
the formation of various types of high-level contaminants and hazardous compounds such
as nitropyrene, nitronaphthalenes, nitrofluorenes, 3-nitrobenzanthrone, nitroanthracenes
and nitrophenanthrenes [9,10].

Quantitative Structure–Activity Relationship (QSAR) is used for the last three decades
as a reliable tool for a multifaceted study of the toxicity of chemicals from various as-
pects [10–15]. In general, QSAR modeling attempts to link structure of compounds with
their biological activities, physiochemical and toxicological properties to provide reliable
predictive information based on experimental data [16,17].
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In recent years, NACs are still of great interest to various research groups that mainly
focused on environmental toxicology [18–22]. Many of these studies relate to the use of
QSAR techniques to investigate the aquatic toxicity of NACs [15,23,24]. On the other hand,
there are only a few papers dealing with the oral toxicity of NACs to animal level [9,11,25].

In 2008, Kuzmin et al., [26] published a QSAR model based on the simple represen-
tation of molecular structure (SiRMS) approach. In this study, a dataset of 28 NACs was
used to generate the 1D−2D indices for predicting in vivo oral acute toxicity (rats) in terms
of LD50. The partial least square 2D QSARs showed reasonable performance values with
R2 = 0.96–0.98 for the training set and R2 = 0.89–0.92 for the test set. These authors also
showed that hydrophobicity, electrostatic and Van der Waals interactions, and the addition
of hydroxyl (-OH) and fluorine (H2F and CH2F) groups contribute to the enhancement
of toxicity, while the introduction of methyl groups leads to a decrease in toxicity. A non-
additive effect was also found, as the toxicity of trinitroaromatic compounds did not show
higher values than the toxicity of dinitroaromatic compounds [26].

Another study was carried out by Gooch et al. [27], who reported for the first time an
extended dataset of 90 NACs using the same endpoint, i.e., the 50% lethal dose concentra-
tion for rats (LD50). Several QSAR models were developed based on different classes of
molecular descriptors including quantum chemical and topological molecular descriptors
computed by DRAGON [28], PaDEL [29] and HiT-QSAR [30] software. The resulting best
QSAR model was a combination of the unique indices from the different software, and
gave reasonable results for the training (R2 = 0.81), internal validation (Q2 = 0.75) and test
(R2 = 0.72) sets. It is also important to remark that the authors reveal some structural rela-
tionships in terms of functional groups related to toxicity. This is the case for compounds
with additional hydroxyl (-OH) and methyl (CH3) groups showing the highest toxicity. The
presence of -PO4 and -SO4 groups increases toxicity, while the presence of -NH2 groups
can drastically reduce toxicity [27].

Later in 2020, Mondal et al. [25] used specific substructures generated by Monte
Carlo method to develop QSAR models using SMILES and graph-based descriptors in
a dataset of 90 NACs. This dataset is the same as previously described for the study by
Gooch et al. [27]. In that work, the QSAR model shows lower values for the statistical
parameters (R2

train = 0.719, Q2
train = 0.695; R2

test = 0.739). Despite these values, the study
shows interesting structural relationships to toxicity through the use of the substructures
mentioned above. For example, the presence of a heteroatom with 7 out of 14 double
bonded oxygens, double bonded oxygen and sp2 with double bond increases toxicity.
On the other hand, the presence of some substructures such as sp3 with branching, het-
eroaromatic nitrogen, and the presence of oxygen and carbon and NH2 groups reduces
the toxicity in NACs. More details on the analysis of substructures are provided in the
original literature [25].

In a similar way, Keshavarz et al. [31] used the same dataset of 90 NACs to perform a
QSAR study based on constitutional descriptors such as sulphur, oxygen and molecular frag-
ments. The best MLR model showed reasonable statistical parameters in the training (R2 = 0.858)
and test (R2 = 0.857) set. The authors obtained an equation with five parameters for toxic-
ity (−logLD50(M) = 1.599 + 0.4293*nNO2− 0.4165*nS + 1.771*nP + 1.313*Tox+− 2.110*Tox−).
Three simple descriptors appear in this equation, two of which contribute positively to
toxicity: nNO2, a descriptor related to the number of nitro groups, and nP, the number of
phosphorus atoms. The descriptor nP, which accounts for the number of sulphur atoms,
contributes negatively to toxicity. In addition, the equation contains two other adjustable
parameters, Tox+ and Tox−, whose interpretation in relation to the toxicity of NAC is more
difficult and therefore affects the interpretation of the mechanism of the other constitutional
descriptors in the equation [31].

More recently, Hao et al. [9] performed QSAR modeling of acute oral toxicity data
in rats (LD50), using a dataset of 128 NACs. In this study, seven simple 2D molecular
descriptors were selected for the QSAR model after applying the GA-MLR variable selection
methods. They reported a squared correlation coefficient R2 of 0.748 for the training set
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(n = 101) and 0.759 for the external test set (n = 27). The most important descriptors were
P_VSA_s_1, B06[C-F] and F09[C-N] which were positively related to toxicity, indicating
that the higher values of these descriptors contributed to higher toxicity. These descriptors
are related to the van der Waals surface area (P_VSA_s_1), the presence of C-F bonds at
topological distance 6 (B06[C-F]), and the high frequency of C-N bonds at topological
distance 9 (F09[C-N]) [9].

Although all of these previous papers report on the QSAR studies of the in vivo
toxicity of NACs, they have certain limitations. First, they have moderate predictive
power. Second, the limited size of the published datasets restricts the chemical space of
the QSAR models for accurate predictions of the NACs toxicity. Finally, the influence of
descriptors in non-linear models can hardly be investigated in sufficient detail. In this
work, a QSAR model was developed for more than 200 NACs using acute oral toxicity
of LD50 concentration for rats, which showed high predictive performance. The final
model (ensemble model) combines the result of two Support Vector Regressions (SVR)
and predicts the −logLD50 value of a given NAC with high accuracy. In addition, the
Accumulated Local Effect (ALE) approach was used to better understand the mechanistic
relationship between the descriptors involved in the models and toxicity (−log LD50) [32].
To the best of our knowledge, this is the first study to use ALE method to explain the
mechanistic interpretation of a non-linear QSAR model.

2. Materials and Methods
2.1. Experimental Data Collection

Initially, 204 nitroaromatic compounds (NACs) with a wide range of toxicity values
based on the same experimental assay were collected from the ChemIDplus [33] and
PubChem [34] databases. The complete dataset can be found in the supplementary material
(Table S1). All molecules were optimized by the HyperChem software [35] using the
molecular mechanics method MM+. The optimization algorithm was the Polak-Ribiere
(Conjugate gradient) with the termination condition RMS gradient of 0.1 kcal/(Å mol).
The dataset endpoint, −logLD50, was calculated by converting all LD50 values to molar
values (mol/kg) and mapping them to a negative logarithm scale. For validation purposes
the dataset was split into a training set and a test set, where the training set was used for
model generation. Additionally, a set of seven NACs was collected for additional external
evaluation of the model performance as a true external test set. These data can be found in
Table S2.

2.2. Generation of Descriptors

To generate a set of descriptors, Dragon 6.0 software [28] was used. This version of
Dragon provides 4885 various molecular descriptors from 0D to 3D containing 20 different
molecular descriptor blocks, including topological indices, constitutional, connectivity,
3D matrix-based descriptors. Highly correlated descriptors (R > 0.9), constant and near
constant (std < 0.1) were removed during preprocessing. All these steps were performed
using Python (version 3.7.6). After eliminating correlated, constant and near constant
descriptors, about 870 descriptors per NAC were used for further analysis. Because
of the large differences in the scales, it can be seen that descriptors with larger range
outweigh those with smaller range [12]. In this context the standard scale normalization
was used as implemented in the Scikit-learn package [36] which uses the following equation
(Equation (1)) to normalize the data according to their mean and standard deviation:

xij =
Xij − X j√
∑n

1(Xij−X j)
2

n−1

(1)

where n is the number of compounds, X j is the mean values of the jth descriptor, xij and Xij

are the normalized and original values of the jth descriptor of the ith compound.
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2.3. QSAR Modeling and Validation

All developed QSAR models were subjected to statistical analysis evaluating the
squared correlation coefficient (R2), Root Means Square Error (RMSE) and Mean Absolute
Error (MAE). As a result, for each created model, the following equations were used to
determine the squared correlation coefficient R2 (Equation (2)), the Root Mean Square Error
(Equation (3)), the Mean Absolute Error (Equation (4)) to evaluate the goodness of fit and
the Concordance Correlation Coefficient (CCC, Equation (6))

R2 = 1− ∑n
i=1 (y

obs
i − ypred

i )
2

∑n
i=1 (y

obs
i − ỹobs)

2 (2)

RMSE =

√
∑n

i=1 (y
obs
i − ypred

i )
2

n
(3)

MAE =
1
n

n

∑
i=1
|yobs

i − ypred
i | (4)

where yobs
i and ypred

i are observed and predicted values for ith compound, accordingly,
and ỹobs is the mean of observed values. We estimated the Mean Absolute Error of cross-
validation MAECV in each example to assess model stability according to Equation (5). In
Equation (6), yobs and ypred are the mean values for observed and predicted values.

MAECV =
1
n

n

∑
i=1
|yobs

i − ypredcv
i | (5)

CCC =
2 ∑n

i=1(y
obs
i − yobs)(ypred

i − ypred)

∑n
i=1 (y

obs
i − yobs)

2
+ ∑n

i=1 (y
pred
i − ypred)

2
+ n(yobs − ypred)

2
(6)

According to the OECD (Organization for Economic Co-Operation and Development)
principal N0.4 for developing QSAR models “appropriate measures of goodness-of–fit,
robustness and predictivity” [37], there are more criteria that must be considered to facilitate
assessing a QSAR model for regulatory purposes. The model’s external predictability was
evaluated with using the metrics Q2

F1, Q2
F2, r2

m, k, k′ [38–41]. Here k, k′ are the slopes of
the regression lines and should to be close to 1 [40]. The parameter r2

m is calculated from
the experimental values on the ordinate axis [38], and according to Roy et al. it should
be >0.5 [39,41].

We selected the best model based on the above parameters for both the training set
and the test set to avoid overfitting. It is worth noting that selecting a smaller number
of descriptors in the model was also considered an important parameter to reduce the
complexity of the model and the computational cost. To confirm that the selected model is
not close to random, the Y-scrambling test [42] was performed. In this method, the target
variable is randomly shuffled to produce a dummy dataset. Therefore, there should be no
correlation between the selected descriptors and the new target variable. As a result, the
performance of the scrambled models should drop significantly [43]. The performance of
the models is measured by their R2.

Support Vector Regression and Ensemble Model

For the construction and subsequent evaluation of QSAR models, the data were
randomly divided into training and test sets in a ratio of 9:1. This ratio was chosen after
experimenting with different training/test split ratios (3:1, 4:1, . . . , 9:1), and resulted in
the best model performance and the least number of descriptors. In the preliminary phase,
six structures were identified as outliers and removed from the training set. In the current
study, the correlation between activity and structural descriptors was developed using
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the Genetic Algorithm (GA) for variable selection and Support Vector Regression (SVR)
methods. As a result, GA-SVR was used for a preliminary model selection. The GA variable
selection started with a population of 150 random models and 2000 iterations for evolution,
with the mutation probability set to 20%. Some researchers have advocated combining
learners in different methods, and their results have shown that they perform better than a
single candidate learner [12,44]. In this context, after developing SVR models, two SVRs
that had the best statistical parameters and robustness were used to create a hierarchical
ensemble and develop a QSAR model which has substantially better performance than any
single one in the hierarchy—as demonstrated previously [45]. According to the same study,
a MLR model was used to refine the output of the baseline SVRs and build the ensemble
model. The hierarchy of this method is shown in Figure 1.
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The SVR parameters, such as the optimization parameters C and gamma, were opti-
mized using a grid search technique. The runtime parameters for SVR and MLR models
are listed in Table 1. More information about these parameters can be found in Scikit-learn
library documentation [34]

Table 1. Runtime parameters for SVR and MLR models.

Method/Model Runtime Parameters

SVR_A and SVR_B Kernel = ’rbf’, degree = 3, gamma = ’auto’, coef 0 = 0.0, tol = 0.001, C = 5.0,
epsilon = 0.1, shrinking = Ture, cache_size = 200, verbose = False, max_iter =−1

MLR Fir_intercept = True, normalize = ’False’, copy_X = True, n_jobs = −1,
positive = False

2.4. Analysis of Descriptors in Models

Interpreting non-linear methods/models has always been a major challenge. However,
there are several techniques to make supervised machine learning models interpretable [46].
In this work, the Accumulated Local Effect (ALE) [32] was used to investigate the effect of
each descriptor on the target variable. ALE is a novel alternative to the previous Partial
Dependence Plot (PDP) that overcomes the problem of explaining correlated descriptors.
Moreover, the ALE method is much less computationally demanding than PDP [32].
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3. Results
3.1. Distribution of Molecular Weights and Toxicity

The distribution of the chemical space of the dataset is crucial for predictive perfor-
mance [47] of a model. In this work, the chemical space was defined using the molecular
weight (MW) [9] and −logLD50 for all three data sets. As can be seen in Figure 2, the
training data are heterogeneously distributed. It can be observed that the compounds
in both the external and the true external test sets share the same chemical space as the
training data.
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3.2. Ensemble Model

After initial pre-processing steps, 870 descriptors were extracted. Using these descrip-
tors, several SVR-QSAR models were developed and then two SVR models with the best
statistical parameters were selected. These two SVR models are named SVR_A and SVR_B
and have 11 and 8 descriptors, respectively. The ensemble was created by applying MLR to
the results obtained from the SVR models to refine the prediction. The statistical parameters
for the selected models and ensemble are presented in Table 2. Statistically, our ensemble
model performed better than each individual model on the training, test and external test
sets, as shown by the parameters in Table 2.

Table 2. Statistical parameters of SVR_A and SVR_B models.

Parameters Regression Model Ensemble Model

SVR_A SVR_B

No. of descriptors 11 8 _
R2 (training) 0.83 0.81 0.88
RMSE (training) 0.111 0.127 0.093
MAE (training) 0.221 0.226 0.199
MAECV(5-Fold) 0.484 0.486 0.480
R2 (test) 0.92 0.85 0.95
RMSE (test) 0.056 0.096 0.041
MAE (test) 0.191 0.250 0.155
CCC (test) 0.968 0.946 0.978
R2 (external test) 0.74 0.88 0.92



Toxics 2022, 10, 746 7 of 14

Table 2. Cont.

Parameters Regression Model Ensemble Model

SVR_A SVR_B

RMSE (external test) 0.132 0.123 0.061
MAE (external test) 0.320 0.319 0.202
CCC (external test) 0.898 0.931 0.961
Q2

F1 0.945 0.906 0.960
Q2

F2 0.943 0.903 0.958
r2

m 0.510 0.536 0.560
k 0.955 0.981 0.975
k′ 1.041 1.007 1.021

SVR_A and SVR_B are performed approximately the same for the training set, but at
the same time, SVR_A has a better performance for the test set with R2 = 0.92. This can
be seen from the fact that the residual errors are smaller than those of SVR_B. In contrast,
SVR_B showed better performance on the external test set. When the ensemble model was
applied to the external test set, better performance results were obtained, indicating that
this model has high predictive power and is well trained. Figure 3 shows the predicted
versus experimental −logLD50 for the training set (Figure 3A), the test set (Figure 3B) and
the true external validation set (Figure 3C). In each scatter plot, the black solid line shows
the associated regression line to the data points that confirm these performance results for
the ensemble model.
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A similar improvement in performance was obtained by applying the ensemble model
in another work, where a QSAR modelling of intrinsic solubility of chemicals was studied,
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which was published in a recent paper by Lovrić et al. [48]. An RMSE (test) of 0.67 log units
and an R2 (test) of 0.81 (n = 166) were obtained by the ensemble model constructed as a
simple average of the predictions of the two best ML models. These individual models
yielded RMSE (test) values of 0.70 and 0.72, i.e., R2 (test) values of 0.80 and 0.78, respectively.
The quality of the models in mentioned study is expressed by the parameters that measure
an agreement (R2), but also by the parameters that estimate the standard error of the
estimate or prediction (RMSE and MAE) as the basic model validation measure. It worth
noting that for all models and for all sets (training set, test set and external test set), higher
R2 values were always associated with lower RMSE values, indicating their consistency
and stability. This is a desirable predictive property of the model, especially for external
data sets, as Lučić et al. have shown with examples (in Table 2 [49]) that with very small
changes in external dataset it is possible for the R2 to increase even in situations where
RMSE decreases—in a case where an extremely bad prediction with error being greater
than 2*RMSE was obtained in one additional example.

In current study the model showed a very good performance and validation values.
For example, Figure 4 shows the scatter plot of the y-scrambling diagram of the two basic
SVR models with 500 iterations. It can be seen that the original model is very robust since
all random data sets do not yield acceptable R2, confirming that the model is not the result
of chance correlation.
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The descriptors that were selected by the GA technique and used in each SVR model
can be found in Table 3.

Table 3. Descriptors involved in each SVR model and the corresponding definition.

Descriptor SVR_A SVR_B Definition and Scope Descriptor Type

AVS_B(e) X X
average vertex sum from
Burden matrix weighted by
Sanderson electronegativity

2D matrix-based descriptors

HATS7s X X
leverage-weighted
autocorrelation of lag
7/weighted by I-state

GETAWAY descriptors

Eta_sh_y X X Eta y shape index ETA indices

GATS2v X
Geary autocorrelation of lag
2 weighted by van der
Waals volume

2D autocorrelations

GATS8m X Geary autocorrelation of lag
8 weighted by mass 2D autocorrelations

P_VSA_LogP_3 X P_VSA-like on LogP, bin 3 P_VSA-like descriptors
nHM X number of heavy atoms Constitutional indices

RDF060s X
Radial Distribution
Function—060/weighted
by I-state

RDF descriptors
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Table 3. Cont.

Descriptor SVR_A SVR_B Definition and Scope Descriptor Type

Dm X D total accessibility
index/weighted by mass WHIM descriptors

H8u X H autocorrelation of
lag 8/unweighted GETAWAY descriptors

O-059 X Al-O-Al Atom-centred fragments

B09[C-C] X Presence/absence of C—C at
topological distance 9 2D Atom Pairs

SpMax3_Bh(m) X
largest eigenvalue n. 3 of
Burden matrix weighted
by mass

Burden eigenvalues

CATS2D_05_NL X CATS2D
Negative-Lipophilic at lag 05 CATS 2D

Eig02_EA(dm) X
eigenvalue n. 2 from edge
adjacency mat. weighted by
dipole moment

Edge adjacency indices

C-043 X X–CR.X Atom-centred fragments

As can be seen in Table 3, SVR_A and SVR_B have three descriptors in common. The
first is AVS_B(e), the average vertex sum from the Burden matrix weighted by Sanderson’s
electronegativity, implying that electronegativity may play a crucial role in toxicity. The
second common descriptor for the two models is the leverage-weighted autocorrelation
of lag 7/weighted by I-state (HATS7s), another molecular descriptor related to electronic
effects, and the third is Eta_sh_y (Eta and shape index), a shape-related descriptor.

From these molecular descriptors, which are unique to each model, it can be seen
that SVR_A has more volume- and shape-related descriptors such as GATS2v, a molecular
descriptor weighted by van der Waals volume, and RDF060s which uses a radial distribu-
tion function. In the case of SVR_B, there are three descriptors related to the mass of the
molecules: GAS8m (Geary autocorrelation of lag 8 weighted by mass), the nHM descriptor
that considers the heavy atoms, and SpMax3_Bh(m), another molecular descriptor with a
matrix weighted by mass. It should be emphasized that although both SVR_A and SVR_B
include mass-, volume-, and electronic-related molecular descriptors as main features for
describing toxicity, a topological descriptor such as B09[C-C] (presence/absence of C-C
at topological distance 9) helps to describe the influence of large chains on the toxicity
of molecules. Figures 5 and 6 show the result of the method ALE for the models SVR_A
and SVR_B.

As can be seen in the case of the SVR_A model (Figure 5), the descriptors AVS_B(e),
CATS2D_05_NL and B09[C-C] have no remarkable influence on toxicity. With the increase
of smaller values of the P_VSA_LogP_3 descriptor, the toxicity values increase, but for
descriptor values above 0.5, the average predictions decrease, and for values above 1.5, the
descriptor does not have much influence on the predictions. The following three descrip-
tors GATS2v, RDF060s and O-059 show a strong positive effect on toxicity meaning that
increasing value of these descriptors will increase the toxicity. In the case of GATS2v and
RDF060s descriptors these effects are related to surface distributions of positive charges,
negative charges, H-bond donors, H-bond acceptors, and regions of high polarizability,
which indirectly increase the lipophilicity and hence the toxicity. The molecular descriptor
O-059 is related to the nitro-group properties by contributing to reduce the electron density
of the aromatic rings, which means that the nitro-compounds with substructures containing
oxygens show strong electron-withdrawing effect [50]. These make nitroaromatic com-
pounds more capable to attack nucleophiles at aromatic ring carbons, and hence increasing
the toxicity [51].

An interesting case is descriptor Dm where toxicity values decrease with increasing
values of up to Dm = 2, where toxicity starts to increase with higher values of Dm.
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HATS7s is a unique case because it shows 3 different zones in the ALE plot. The first
trend shows a decrease in toxicity with increasing values of the descriptor (HATS7s), in the
second trend line of the graph a strong effect is observed with a high increase in toxicity
values with the increase in descriptor values and in the last trend, when the HATS7s value
is above 3, the higher the descriptor values the lower the prediction. This is in accordance
with electronic effects that increase toxicity by increasing the ability of nitrocompounds to
act as electrophilic agents.

For the two remaining descriptors in the SVR_A model, Eta_sh_y and C-043, a strong
negative effect on toxicity is observed when their values were increased.

The ALE plot of the SVR_B model also shows interesting results that provide some
clues for interpreting the factors that influence toxicity. Prior to this method, factors were
analyzed only by considering the values of regression coefficients [52–55]. As described
above for the previous model, there are some descriptors that have no influence on toxicity.
In the case of the SVR_B model, Eig02_EA(dm) has no significant influence on the toxicity
predictions. The descriptors Eta_sh_y and nHM have a negative influence on toxicity.
However, this trend is interrupted by a slight increase in toxicity values for the highest
values of these descriptors. The descriptor Eta_sh_y is related to the van der Waals surface
area which is indirectly related to lipophilicity—the higher this factor, the greater the
toxicity [9]. The nHM descriptor denotes the number of heavy atoms with principal
quantum number L larger than 2, which corresponds to a molecular size that is indirectly
associated with lipophilicity and increase in lipophilicity may lead to increase in the toxicity
of the nitrocompounds.



Toxics 2022, 10, 746 11 of 14Toxics 2022, 10, x FOR PEER REVIEW 11 of 15 
 

 

 
Figure 6. Descriptors weights represented by ALE plot for the SVR_B model. 

As can be seen in the case of the SVR_A model (Figure 5), the descriptors AVS_B(e), 
CATS2D_05_NL and B09[C-C] have no remarkable influence on toxicity. With the in-
crease of smaller values of the P_VSA_LogP_3 descriptor, the toxicity values increase, but 
for descriptor values above 0.5, the average predictions decrease, and for values above 
1.5, the descriptor does not have much influence on the predictions. The following three 
descriptors GATS2v, RDF060s and O-059 show a strong positive effect on toxicity mean-
ing that increasing value of these descriptors will increase the toxicity. In the case of 
GATS2v and RDF060s descriptors these effects are related to surface distributions of pos-
itive charges, negative charges, H-bond donors, H-bond acceptors, and regions of high 
polarizability, which indirectly increase the lipophilicity and hence the toxicity. The mo-
lecular descriptor O-059 is related to the nitro-group properties by contributing to reduce 
the electron density of the aromatic rings, which means that the nitro-compounds with 
substructures containing oxygens show strong electron-withdrawing effect [50]. These 
make nitroaromatic compounds more capable to attack nucleophiles at aromatic ring car-
bons, and hence increasing the toxicity [51]. 

An interesting case is descriptor Dm where toxicity values decrease with increasing 
values of up to Dm = 2, where toxicity starts to increase with higher values of Dm.  

Figure 6. Descriptors weights represented by ALE plot for the SVR_B model.

Increasing the value of the descriptor SpMax3_Bh(m) has no significant effect on
toxicity until it reaches value above zero, where it begins to show a positive correlation with
toxicity. This Burden descriptor [56] is related to surface distribution of positive charges,
negative charges, H-bond donors, H-bond acceptors, and regions of high polarizability,
which indirectly increase the lipophilicity and thus toxicity. A completely different behavior
is shown by the H8u descriptor, where an increase in toxicity is observed at the lowest
values of the descriptor, but then starts to decrease from 0.5 to about 2.5. for the values
above 2.5 there is no significant effect on toxicity. The lower values of the descriptor
GATS8m do not affect toxicity, but for the descriptor values above 1, the toxicity values
decrease showing a negative correlation with the higher values of the descriptor. Finally,
there are two descriptors common to both the SVR_A and SVR_B models where notable
patterns can be observed. First, as already discussed for the SVR_A model, the descriptor
AVS_B(e) shows no effect on toxicity. However, for the SVR_B model, the same descriptor
shows a strong positive effect on toxicity, i.e., the higher the descriptor values, the higher
the toxicity in line with the same expected effect of SpMax3_Bh(m) descriptor, the other
Burden descriptor included in the SVR_B model. The second common descriptor for both
SVR models, HATS7s, shows the same pattern for both models with three different zones:
decrease in toxicity in the first zone, increase in toxicity in the second zone and decrease in
toxicity values in the third zone with the higher values of the descriptor. These relationship-
related interpretations of the ALE plots could provide evidence for the development of
less toxic compounds based on ALE plot intervals of the descriptors where lower toxicity
is observed.
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4. Conclusions

In this work, an ensemble QSAR model comprising two SVRs models is developed
that predicts the in vivo toxicity of nitroaromatic compounds. The models were tested by a
number of testing methods [38] and all statistical parameters of this model show that the
model is robust and accurate, with R2 = 0.88 for the training set and R2 = 0.95 for the test
set. Additionally, the contribution of each descriptor to toxicity was discussed using the
Accumulated Local Effect (ALE) approach. This novel approach worked very well in this
study as it was able to show the intervals of the linear relationship between the descriptors
and toxicity for non-linear models such as Support Vector Regression. The developed
ensemble QSAR model has eight descriptors showing strong positive effects on toxicity,
while five descriptors show negligible effects, and three descriptors show a negative effects.
It is important to emphasize that HATS7s is a common descriptor for SVR_A and SVR_B.
The ALE plot of both models shows the same pattern for this descriptor. The obtained
results describe the structural relationship between toxicity and molecular descriptors in
developed non-linear models that could be helpful in assessment of the toxicity of existing
nitroaromatic compounds and development of less toxic analogues. Moreover, the applied
ALE approach might provide some mechanistic explanations to better describe the effects
of the molecular descriptors in supervised black-box machine learning models.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/toxics10120746/s1, Table S1: Data set collected for further use in
developing the ensemble QSAR model; Table S2: True external test set for evaluating the ensemble
QSAR model.
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