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Abstract: Diabetic kidney disease (DKD) is a major complication of diabetes mellitus (DM) and the
leading cause of end-stage kidney disease (ESKD) worldwide. A significant number of drugs have
been clinically investigated for the treatment of DKD. However, a large proportion of patients still
develop end-stage kidney disease unstoppably. As a result, new effective therapies are urgently
needed to slow down the progression of DKD. Recently, there is increasing evidence that targeted drug
delivery strategies such as large molecule carriers, small molecule prodrugs, and nanoparticles can
improve drug efficacy and reduce adverse side effects. There is no doubt that targeted drug delivery
strategies have epoch-making significance and great application prospects for the treatment of DKD.
In addition, the proximal tubule plays a very critical role in the progression of DKD. Consequently,
the purpose of this paper is to summarize the current understanding of proximal tubule cell-targeted
therapy, screen for optimal targeting strategies, and find new therapeutic approaches for the treatment
of DKD.

Keywords: diabetic nephropathies; drug delivery systems; kidney tubules; proximal; molecular
targeted therapy; diabetes mellitus

1. Introduction

Diabetic kidney disease (DKD) is one of the main complications of diabetes mellitus
(DM) and is also the main cause of end-stage kidney disease (ESKD). The prevalence of
ESKD in the general adult population in mainland China is 10.8%. With the rapid devel-
opment of the world economy and the increasingly serious aging of the population, the
incidence of ESKD is increasing year by year [1,2]. At present, there are approximately
100 million DKD patients in the world, resulting in huge medical costs and a huge eco-
nomic burden [3]. The main treatment methods for DKD are blood pressure control and
blood glucose control, and commonly used drugs include angiotensin-converting enzyme
inhibitors (ACEI), angiotensin II receptor blockers (ARB), mineralocorticoid receptor antag-
onists (MRAs), dipeptidyl peptidase 4(DPP-4) inhibitor glucagon-like peptide-1 (GLP-1)
receptor agonist, and sodium glucose cotransporter 2(SGLT2) inhibition [4–9]. In addition,
in recent years, papers have reported new drugs for the treatment of DKD, such as: luteolin
attenuates, protein arginine methyltranferase-1, stanniocalcin-1 (STC-1), adiponectin, and
microRNA-122-5p [10–14]. However, these drugs make it difficult for them to control the
progression of DKD due to their side effects or difficulties in achieving effective accumula-
tion in the kidney. In such cases, many patients inevitably develop ESKD. Therefore, new
therapeutic methods are urgently needed to be developed and applied to DKD.

Targeted drug delivery therapy refers to the use of the specific carrier to wrap active
pharmaceutical ingredients [15] that can be transported to designated organs or cells via the
carrier. In this way, its local drug concentration can be greatly increased and its side effects
can be deeply reduced. Targeted drug delivery therapy is a new treatment method that has
been widely used in various tumors, such as urothelial carcinoma, breast cancer, non-small
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cell lung cancer, and so on [16–18]. The study of kidney-targeted drug delivery began in
1990, and the concept was comprehensively proposed by Haas in 2002 [19]. During these
two decades, various studies on kidney-targeted drug delivery have been published. It is
well known that the kidney consists of basic renal units, which are composed of glomeruli
and tubules, and the main pathological changes in DKD are glomerulosclerosis, tubular
dysfunction, and tubulointerstitial fibrosis [20–22]. Therefore, the targeted treatment of
DKD to glomeruli and tubules is of great significance. In current studies, the main focus
is on glomerular podocytes, glomerular mesangial cells, and proximal tubular cells [23].
The purpose of this paper is to provide a comprehensive and important update on the
development of drug delivery strategies for this target in proximal tubular epithelial cells,
to summarize the rationale of its targeting and the associated drug carriers, in order to find
new methods for the treatment of DKD.

2. Renal Proximal Tubular Cells

Targeted drug delivery to proximal tubular cells not only significantly enhances the
efficiency of drug effects but also extremely reduces the negative side effects caused by
drug action to other sites. This provides a new idea for the treatment of pathological
changes such as tubulointerstitial fibrosis caused by DKD. In order to understand the
targeted drug delivery to proximal tubular cells, we must first understand the physiological
characteristics of the proximal tubule, its relationship with DKD, and its mechanism of
drug uptake.

2.1. Physiological Characteristics of Proximal Tubule Cells

The kidney consists of basic renal units, which are composed of glomeruli and tubules.
The renal tubule consists of a single layer of epithelial cells arranged on the proximal
tubule, distal tubule, and collecting duct, which undertakes the exchange of substances
between blood and urine. Therefore, the main physiological functions of renal tubules are
reabsorption and secretion [24]. The proximal tubule plays a primary role in reabsorption,
participating in the reabsorption of approximately two-thirds of the filtrate and recovering
many compounds from the urine [25]. In addition, proximal tubules also have a potent
secretory role, especially activated proximal tubular epithelial cells, which can promote
the formation and development of tubulointerstitial lesions, reduced renal function, inter-
stitial inflammation, and fibrosis through chemotaxis, antigen presentation, and cytokine
autocrine and paracrine patterns [26,27]. This is very closely related to the development
of DKD.

2.2. Relationship with DKD Progression

Currently, the most significant research on diabetes kidney disease has been focused on
the glomerulus-centered research model. The pathological changes of the glomerulus, such
as glomerular basement membrane thickening, mesangial expansion, increased resistance
of endothelial cell fenestrations and podocyte injury [28–31], are the main pathological
changes of DKD and are closely related to proteinuria, which is the signature of DKD.
However, it has been shown that some patients with advanced disease show neither sub-
stantial glomerulopathy nor proteinuria but demonstrate a decline in traditional indicators
of renal function (such as the presence of microalbuminuria or a decrease in glomerular
filtration rate) [32]. Thus, structural and functional alterations of the renal tubules have an
irreplaceable role in the progression of DKD. Renal tubular injury, mostly in the proximal
tubule, is associated with abnormal activation of the AGEs-RAGE signaling pathway and
is closely related to tubulointerstitial fibrosis, interstitial inflammation, and decreased renal
function [33]. The mechanism that causes its injury is that due to the dependence of the
proximal tubule itself on high energy and aerobic metabolism, when ischemic injury occurs
in diabetic patients, increased consumption, impaired utilization, and reduced delivery of
oxygen lead to apoptosis and fibrosis in the renal unit of the proximal tubule [34].
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2.3. Mechanism of Proximal Tubule Uptake of Drugs

Although the renal tubules consist of proximal tubules, distal tubules, and collecting
ducts, most tubule-targeting systems are aimed at the proximal tubules [35]. According to
the anatomy of the kidney, drugs have to travel from the blood circulation to the proximal
tubular cells, and there are two anatomical barriers between them, glomerular filtration
barriers and basolateral barriers [36]. The glomerular filtration barrier is a highly specialized
capillary wall that consists of three parts, including endothelial cells, podocytes, and
basement membrane [37]. First, glomerular endothelial cells have the function of window
opening, and the diameter of their window opening is approximately 70–100 nm [38]. There
is an endothelial surface layer consisting of a membrane-bound layer of proteoglycans,
glycosaminoglycans, and salivary proteins, a glycocalyx, and a loosely attached endothelial
cell shell. Since salivary proteins, sulfated glycosaminoglycans, and hyaluronic acid in the
endothelial surface layer are negatively charged, positively charged carriers pass through
more easily [39]. Second, the glomerular basement membrane is composed of laminins,
collagen IV, nidogens, and the heparan sulfate proteoglycans agrin, perlecan, and collagen
XVIII. GBM is negatively charged due to the presence of negatively charged heparan
sulfate proteoglycans agrin, which facilitates the passage of positively charged carriers [40].
Third, the podocyte is the terminally differentiated epithelial cell of the glomerulus, and
its structure is traditionally divided into three distinct subcellular compartments: the cell
body, the microtubule-driven membrane-extended primary process, and the actin-driven
membrane-extended peduncle [41,42]. Adjacent podocyte cross each other at their foot
processes, which are also called the slit diaphragm. The size of these slit diaphragms
determines the size of the carrier that can pass through, with a passable carrier diameter
of approximately 5–7 nm [43]. The basolateral barrier consists of the periportal capillary
endothelium and the tubular mesenchyme between the capillaries and the proximal tubular
cells. In order to cross this barrier, it first depends on the windowing of the peritubular
capillary endothelium, which has a diameter of approximately 60–70 nm [44]. These
opening windows are covered by a septum of approximately 3–5 nm thickness, which is
composed of radial fibrils. The pore size to pass through these fibers is approximately
5.0–5.5 nm [45–47]. The surface layer of peritubular capillary endothelial cells contains
negatively charged heparan sulfate so that positively charged drug carriers pass through
more easily than negatively charged ones [48,49].

As the above description shows, it is easy to know that positively charged drugs with
sizes smaller than 5–7 nm can reach proximal tubule cells from the bloodstream relatively
easily and smoothly through the anatomical barrier. However, there are two ways that the
drugs are taken up by the proximal tubule, one is the transporter protein, and the other is
the receptor-mediated endocytosis [50]. The SLC subgroup is the uptake of drugs following
chemical gradient-mediated passive transport. The ABC family is the uptake of drugs
relying on ATP-depleted active transport [51,52]. Although there are so many transporter
proteins, the feasibility of choosing them as transporters for targeted drug uptake is not
high. First, as they are mainly involved in the uptake of small endogenous molecules and
small molecules, targeted drugs with carriers may be too large for them. Second, the drug
that is transported in by a transporter protein on one side of the proximal tubule may be
quickly transported out again by the same or a different transporter protein on the other
side. This may make it difficult to achieve effective drug concentrations in the proximal
tubule. Finally, these transport proteins are widely distributed not only in the kidney but
also in other organs [53,54]. This is the most limiting point for its application, because the
most important thing for our targeted therapy is to increase the concentration of the drug
in the kidney and reduce its side effects in other sites.

Consequently, we have to focus on receptor-mediated endocytosis (Figure 1). There
are four receptors associated with targeted therapy, namely: megalin, cubilin, amnion-
less(AMN), and folate receptors [35]. Megalin and cubilin are present in the parietal
membrane of proximal tubule epithelial cells, and it was shown that megalin cooperates
with cubilin to facilitate the reabsorption of almost all filtered plasma proteins [55,56].
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Megalin, as a multispecific clearance receptor, has a large extracellular structural domain, a
single transmembrane structural domain, and a small cytoplasmic structural domain. In
contrast, cubilin has only one extracellular structural domain and lacks the transmembrane
and cytoplasmic structural domains, and it must interact with other membrane proteins
for endocytosis. AMN has an extracellular structural domain, transmembrane structural
domain, and cytoplasmic structural domain, and its main role is to assist the endocytosis
of cubilin [57,58]. Based on differences in cellular ultrastructure, the proximal tubule is
anatomically divided into three distinct segments S1 to S3, and it was shown that the s1
segment is highly specialized for receptor-mediated endocytosis [59,60]. Therefore, it is
not difficult to conclude that the s1 fragment is the primary location where our targeted
therapeutic drug is taken up by the proximal tubule. Megalin and cubilin combine and
mediate endocytosis of a large and highly diverse set of ligands, including plasma proteins,
peptides, enzymes, vitamin-binding proteins, hormones, and hormone-binding proteins,
as well as drugs and toxins. Even though these two receptors have a wide range of ligands,
their interaction with the ligands is specific [61]. As for the folate receptor (FR), its main
role is to reabsorb folate from the renal tubular lumen. Among the four folate receptor
subtypes identified in humans, the membrane-associated folate receptors FRα and FRβ
were detected only in proximal renal tubule cells, which have a high specificity. In addition,
folate receptors are overexpressed in a variety of malignant tissues and have been used
for tumor-targeted delivery of anticancer drugs [62,63]. In summary, receptor-mediated
endocytosis will be an important mechanism for our proximal tubule-targeted therapy.

(A) Ligand–receptor binding: Cubilin, due to its lack of transmembrane and cytoplasmic
structural domains, must form a dual receptor complex with megelin or amnionless
(AMN) for endocytosis to occur. Different ligands bind to the corresponding receptors
with different affinities.

(B) Vesicle transport: After receptor–ligand binding, lattice proteins wrap the vesicles
and transport them to the corresponding organelles (e.g., lysosomes) for further
processing.

(C) Receptor recycling: After vesicle release of ligand, the receptor is recycled to the cell
membrane by the apical tubules (DATs).
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3. Targeted Drug Delivery Strategy

As previously discussed, the glomerular filtration barrier requires drugs smaller than
5–7 nm in diameter and positively charged to cross the barrier and reach the proximal
tubule. Carriers that can be used as proximal tubule cell-targeted therapeutics include
common proteins and peptides, polymers, small molecule prodrugs, and nanoparticles. I
will summarize and discuss the applications and feasibility of these carriers in detail in the
following sections.
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3.1. Protein-Based and Peptide-Based Carriers

Low molecular weight proteins are the most widely researched carriers, which reach re-
nal tubular cells via receptor-mediated endocytosis. The most popular of the low-molecular-
weight proteins is lysozyme, with a molecular weight of approximately 14 kDa, which
freely passes through the glomerular basement membrane and is endocytosed into proxi-
mal tubular cells expressing the giant protein receptor. Haas et al. [64] used lysozyme as a
carrier to wrap naproxen targeted to the proximal tubule, resulting in a significant increase
in naproxen accumulation in the kidney of approximately 70-fold. Dolman et al. [65] linked
sunitinib analogs to lysozyme via a platinum-based linker to target them to the proximal
tubule. The area of subcurvilinear renal drug levels was increased by 28-fold compared to
equimolar doses of sunitinib malate, and its toxicity was substantially reduced. In spite of
the fact that lysozyme is widely studied, the carrier itself can cause adverse effects such as
systemic blood pressure and adverse effects on renal function [66]. In addition to lysozyme,
another low molecular weight protein is the human serum protein fragment. Vegt et al. [67]
first suggested in 2008 that the serum albumin fragment could be targeted to the kidney.
Z.-x. Yuan et al. [68] used human serum albumin as the starting material, cleaved it into
albumin fragments, and separated and purified the degradation products using Superdex
75 and CM-Sepharose FF to obtain three peptide fragments with specific sequences (PF-
A1–123, PF-A124–298, and PF-A299–585). By studying their nephrotoxicity and cellular uptake,
it was concluded that the human serum protein fragments not only showed good targeting
(with PF-A299–585 being the best) but also no nephrotoxicity despite concentrations up to
5.00 mg/mL. Furthermore, in their next study [69], they applied PF-A299–585 as a vector to
carry the Chinese herbal medicine rehmannia methylestradiol, which successfully targeted
the kidney and alleviated the symptoms in a rodent model of membranous nephropathy.
This certainly indicates that human serum protein fragment is an effective targeting carrier.
Moreover, other proteins that can be reabsorbed by renal tubules, such as streptavidin [70]
and somatostatin [71], also have some potential to become proximal tubule carriers. Thus,
low molecular weight proteins have a bright and wide application prospect as targeting
carriers for proximal tubule cells.

3.2. Polymeric Carriers

A number of studies have demonstrated that polymers can be used as carriers for prox-
imal tubule targeting. The ability of polymers to accumulate in the renal tubules depends
primarily on the type of anionic group, the copolymer monomer content, and the molecular
weight of the final polymer. For example, low molecular weight polyvinylpyrrolidone
(PVP) is excreted in the urine and does not accumulate in the kidney. However, anionized
polyvinylpyrrolidones can remain in the kidney and carboxylated PVP exhibits higher
renal accumulation than sulfonated PVPs. Kodeira et al. [72] found that carboxylated
PVP accumulated in the kidney at 30% of the injected dose 3 h after administration, and
most carboxylated PVP accumulated in the proximal tubule. On the basis of PVP, another
PVP copolymer, poly (vinylpyrrolidone-co-dimethyl maleic anhydride) co-polymer (PVD),
which has a higher renal accumulation, was investigated. Kamada et al. [73] found that
approximately 80% of the 10-kDa PVD selectively accumulated in the kidney 4 h after
intravenous administration of PVD to mice. Moreover, approximately 40% remained in the
kidney 96 h after treatment. Yamamoto et al. [74], who used PVD as a carrier for the protein
drug superoxide dismutase (SOD), showed that approximately six times more L-PVD-SOD
than natural SOD was distributed to the kidney 3 h after intravenous injection.

Another targeting carrier that has been extensively studied is acetylated low molecular
weight chitosan (LMWC). Using fluorescence imaging, Z.-X. Yuan et al. [75] found that
random 50% N-acetylated low molecular weight chitosan (LMWC) selectively accumulated
in the kidney, especially in the proximal tubule, and used LMWC as a carrier to piggyback
on prednisolone and showed that the binding with a molecular weight of 19 kD had the
highest accumulation rate in the kidney, and the total amount in the kidney was 13 times
higher than that in the control prednisolone group D.-W. Wang et al. [76] constructed
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stepwise targeted chitosan triphenylphosphine-low molecular weight chitosan-curcumin
(TPP-LMWC-CUR, TLC) and TLC in kidney tissue, causing rapid preferential distribution
followed by specific internalization by renal tubular epithelial cells via interaction of the
megalin with LMWC. LMWC is now well established for the targeted treatment of AKI
and hyperuricemic kidney stones [76,77]; therefore, LMWC should have great potential as
a vehicle for the treatment of DKD.

A recently emerging research trend is the use of various amino-acid-modified polyamide
amine dendrimers as targeting carriers, which have been extensively investigated in tumors
as well as osteoporosis [78,79]. Matsuura et al. [80] used L-serine (Ser)-modified polyamide
amine dendrimers (PAMAM) as effective kidney-targeting drug carriers and showed
that 3 h after intravenous injection, approximately in contrast, unmodified PAMAM, L-
threonine-modified PAMAM, and L-tyrosine-modified PAMAM resulted in 28%, 35%,
and 31% renal accumulation, respectively. The results suggest that Ser modification is a
promising approach for renal targeting using macromolecular drug carriers.

Other carriers with proximal tubule targeting potential have been reported in the
literature. For example, poly(N-(2-hydroxypropyl) methacrylamide) (pHPMA), which
was applied for targeted tumor therapy, is currently being used [81,82]. In a study of the
distribution of pHPMA in tumor-bearing mice, Kissel et al. [83] found a 33-fold higher
concentration of biotin-pHPMA than HPMA in proximal tubular cells of both kidneys by
day 7 after intravenous injection. This suggests that biotinylated pHPMA has the potential
to target the kidney. However, its application is limited by the non-degradable nature of its
backbone [84].

Similarly, poly-l-glutamic acid (PG) is widely used as a carrier for the delivery of anti-
cancer chemotherapeutic drugs [85,86]. H.-J. Chai et al. [87] administered 3H-deoxycytidine-
labeled PG and 3H-deoxycytidine intravenously to normal and streptozotocin-induced
diabetic rats. The results showed that in normal rats, the renal accumulation was 7- or
15-fold higher in the group injected with PG carrier conjugates than in the non-injected
group at 24 h after injection. In the kidneys of diabetic rats, the PG conjugate injected
group was 8-fold higher than the control group. Additionally, after 24 h of injection, PG
can be selectively deposited in the renal tubular epithelium. This study demonstrates the
favorable accumulation properties of PG in normal and oxidative stress-induced kidneys
with the potential for proximal tubule-targeted drug carriers. With the advancement of
technology, more and more polymers are being invented, and polymer carriers have strong
application prospects.

3.3. Small-Molecule Prodrugs

Prodrugs are simple chemical derivatives that require one or two enzymatic or chemi-
cal transformations to produce an active drug [88]. Large molecule drugs such as proteins
often encounter significant barriers to penetration, so small molecule prodrugs are ur-
gently needed. Folic acid, a carrier that has long been widely used in tumor-targeted
therapy [89–91], works on the principle that tumor cells express folate receptors. Normal
renal proximal tubules also express several folate receptors, so folic acid can be used to
target drugs to proximal renal tubular cells [92]. When Trump et al. [93] labeled folic
acid conjugates with radionuclides to observe their distribution at the tumor site, they
unexpectedly found a high initial uptake of radionuclides in the proximal tubules of the
kidney (17% ID/g at five minutes), which increased to 48% ID/g after 4 h. A noteworthy
point is that folate receptors are expressed not only in proximal tubules but also in activated
macrophages/monocytes and in organs other than the kidney (e.g., liver) [94]. Therefore,
folic acid is controversial as a carrier for proximal-tubule-targeted therapy. Hyaluronic
acid (HA) is also a small molecule prodrug, and Hu et al. [95] developed an HA-curcumin
(HA-CUR) polymeric prodrug targeting proximal tubular epithelial cells. The biodistri-
bution results showed a 13.9-fold increase in the accumulation of HA-CUR in the kidney
compared to free CUR. This indicates that HA has a high prospect for proximal tubule
targeting applications. There is also a small molecule prodrug called glycosylated small
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molecule prodrug. Lin et al. [96] designed carbamate-glucosamine conjugate (PCG), a
combination of 2-aminoglucose and prednisolone, to ascertain the renal targeting ability
of 2-aminoglucose. The results were poor tissue-specific localization of prednisolone and
selective accumulation of PCG in the kidney with an 8.1-fold increase in drug concentration
in the kidney 60 min after intravenous administration. The specific structural modification
of the parent drug is key to the development of renal-targeted prodrugs [97].

3.4. Nanoparticles

Nanoparticles are a popular research topic nowadays. Nanoparticles are defined
as particles less than 100 nm in diameter. Nanoparticles include: nanoliposomes, solid
lipid nanoparticles, inorganic nanoparticles, organic nanoparticles, and micelles [98,99].
Because of their distinctive physical properties, such as surface effect and volume, in the
past few years, nanoparticles have been successfully applied in many fields of medicine,
such as cancer, diabetes, osteoarthritis, etc. [100–102]. The kidney has always been an
important area for nanoparticle applications as well, not only because of the important
role of the kidney in physiology but also because of the important role of the kidney in the
filtration and excretion of nanoparticles [103]. Therefore, targeting nanoparticles to the renal
tubules for the treatment of diabetic nephropathy is also very prospective. Whether the
nanoparticles can reach the specified cellular destination depends on the size, homogeneity,
surface potential, and drug loading of nanoparticles [104]. In the following, we detail the
studies concerning these nanoparticles targeting the renal tubules.

First, nanoliposomes are an ideal and safe form of drug delivery with a characteristic
lipid bilayer similar to the cytoplasmic membrane. They can incorporate a wide range of
drug candidates in their hydrophilic and hydrophobic compartments [105]. Nanoliposomes
can be administered by a variety of routes, including intravenous, transdermal, subcuta-
neous, or inhalation [106]. Nanoliposomes already have applications in Alzheimer’s dis-
ease, osteoporosis, and cancer, as well as promising applications in the treatment of kidney
disease [107–109]. In a study by C. Huang et al. [110] they have prepared calycosin-loaded
nanoliposomes for the treatment of diabetic nephropathy. The particle size, zeta potential,
drug loading, and entrapment efficiency of this microparticle were 80 nm, −20.53 ± 3.57,
7.48 ± 1.19%, and 88.37 ± 2.28%, respectively. They used calycosin, an antioxidant, that
plays a key role in reducing oxidative stress damage in kidney cells. As we mentioned
before, oxidative stress is a key mechanism for tubular damage in diabetic nephropathy.
They found that calycosin-loaded nanoliposomes not only reduced the first-pass effect
of calycosin to improve its oral absorption but also prolonged its mean bioavailability to
provide a slow release.

Second, the concept of solid lipid nanoparticles was first introduced in the early
1990s and has developed rapidly during the last three decades [111]. Solid lipid nanopar-
ticles were investigated intensively as drug delivery systems for a number of delivery
pathways, such as oral, parenteral, dermal, and topical delivery [112,113]. In contrast
to nanoliposomes, solid lipid nanoparticles are devoid of cavities made up of bilayers.
Ahangarpour et al. [114–116] utilized solid lipid nanoparticles of myricitrin, which has
poor bioavailability, to successfully improve oxidative stress in proximal tubules induced by
hyperglycemia. The microparticles they designed were spherical in shape with an average
particle size, zeta potential, encapsulation efficiency, and encapsulation capacity of 76.1 nm,
−5.51 mV, 56.2%, and 5.62% respectively. It is definitely exciting news for us to target proxi-
mal tubule cells for the treatment of DKD. In addition, in a work by M. H. Asfour et al. [117],
they ingeniously designed all-trans retinoic acid loaded chitosan/tripolyphosphate lipid
hybrid nanoparticles to treat DKD. This is a chitosan-coated solid lipid nanoparticle en-
capsulated with all-trans retinoic acid, which can greatly increase the oral availability
of the drug. All-trans retinoic acid can protect renal tubules in the progression of DKD
by inhibiting fibrosis [118]. They have produced spherical microparticles with a size of
338.26 nm and an encapsulation efficiency of 94.19%. Furthermore, when designing the
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solid nanoparticles, they have applied the characteristic surface effect of nanoparticles to
increase the surface area and solubility of the drug.

Third, as for organic nanoparticles, Liu et al. [119] wrapped Chinese medicine monomer
Gypenoside (Gyp) XLIX with polymeric nanoparticles to form polylactic acid-co-glycoside
(PLGA)-Gyp XLIX nanoparticles. Particle size, zeta potential, encapsulation rate, and drug
loading capacity of the microparticles, which they prepared by applying nanoprecipitation
and nano-self-assembly methods, were 128 ± 5.89 nm, −35.6 ± 3.18 mV, 82.4 ± 5.36%,
and 9.04 ± 0.76%, respectively. The microparticles they prepared targeted the kidney and
effectively inhibited tubular fibrosis and tubular necrosis, which are pathological changes
found in DKD. Oroojalian et al. [120] used polymyxin-polyetherimide/DNA nanoparticles
formulated with polymyxin B to successfully target proximal tubule cells expressing the
megalin and demonstrated that it has higher transfection efficiency and lower cytotoxicity
than unmodified PEIs/DNA nanoparticles. The microparticles sizes and zeta potentials
prepared were 143–180 nm and 16.4 ± 1.87 to 23.43 ± 1.25 mV, correspondingly.

Fourth, inorganic nanoparticles, such as Fe3O4 magnetic nanoparticles, attenuated
renal tubular injury and effectively inhibited tubular fibrosis with Fe3O4 magnetic albumin
nanoparticles in a study by Liu et al. [121]. The hydrodynamic size and zeta potential
of these microparticles were 102 nm and −18.6 mV, respectively. The intelligent use of
albumin-coated iron particles effectively prolonged the in vivo circulation time of the
particles and reduced off-target side effects [122].

Finally, Micelles are nanoparticles in the size range of 10–100 nm formed by the
polymerization of monomers consisting of a hydrophilic head group and a hydrophobic
tail group. J. Wang et al. [123] used micelles linked to kidney-targeting peptide (Lys-Lys-
Glu-Glu-Glu)3-Lys) to successfully target the megalin on renal tubular epithelial cells.
The average diameter of these particles was 15.0 ± 0.0 nm with the zeta potential of
−7.8 ± 0.5 mV.

On the other hand, mesoscale nanoparticles refer to the larger gamut of nanoparticles
above 100 nm in diameter. In the study by Williams et al. [124,125], they prepared a type
of mesoscale nanoparticles with a diameter of approximately 400 nm that were formed
from poly (lactic-co-glycolic acid) conjugated to polyethylene glycol, and observed that the
nanoparticles could selectively and stably localize to the renal proximal tubular epithelial
cells in experimental animals by the fluorescent tracer method. This microparticle size and
surface charge were 347.6 ± 21.0 nm and −19.0 ± 0.3 mV, respectively. Their studies found
that surface PEGylation facilitated particle localization to the kidney, long-term degradation,
and controlled payload release. Moreover, they found that their localization efficiency in the
kidney was 26–94 times higher than that in other organs, and they specifically targeted the
renal tubules, and they had no inhibitory effect on renal function and no systemic toxicity.
This carrier particle has already been successfully applied to encapsulate the selective TLR9
antagonist ODN2088 renal tubular targeting to treat tubular necrosis, inflammation, and
apoptosis. This certainly encourages its application for therapeutic studies in DKD [126].

In addition, nanomaterials are not only nanoparticles but also nanotubes, nanocap-
sules, nanofibers and nanofilms. The tunneling nanotube is a channel that connects cells
over long distances and has a diameter of 20–500 nm. The tunneling nanotube-TNFAIP2/M-
sec system is used to treat autophagy of podocytes in DKD [127]. From this, we can look
forward to future studies to discover whether new proteins present in the renal tubules
are involved in the formation of tunneling nanotubes for the targeted treatment of DKD.
Nanocapsules are also a common nanomaterial that has great potential in the therapy
of DKD. In a study by M. Yu et al. [128], they used reactive-oxygen-species-responsive
nanocapsules wrapped around adropin to effectively control blood glucose and lipid levels
in DKD mice, inhibit the production of reactive oxygen species, and alleviate oxidative
stress in DKD.
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4. Conclusions and Future Perspectives

Drug targeting to proximal renal tubular cells is an increasingly sophisticated tech-
nique with great potential for development. The proximal tubular cell is a very promising
targeting cell because it can transport and accumulate carriers into proximal tubular cells
via receptor-mediated endocytosis to achieve appropriate drug concentrations and reduce
drug side effects. We summarize four types of carriers that can target proximal tubule
cells, including protein- and peptide-based carriers, polymeric carriers, small-molecule pro-
drugs, and nanoparticles. (Table 1) Among them, nanoparticles may be the most promising
carriers for future clinical practice. Compared with the other three carriers, it has lower
nephrotoxicity than protein and peptide carriers, better properties than polymer carriers
with almost no renal excretion, and better targeting efficiency and retention than small
molecule pre-drugs. Nanoparticles have their own unique nano-effects, such as surface
effects that can greatly increase the surface area of the encapsulated drug to increase its
absorbability. At present, the point that needs to be overcome for nanoparticle carriers is
whether mass production and more precise targeting can be achieved. Nanotechnology
is developing rapidly today, with technologies such as nanoenzymes, atomic force micro-
scopes, and nanochips making a splash in various fields. We believe that with the future
expansion of the field of nanotechnology, it is hopeful that nanoparticles with the ability to
mass-produce and precisely target proximal renal tubular cells will be developed to slow
down the progression of DKD and cur more and more patients with DKD.

Table 1. Drug carriers targeting proximal tubule cells.

Carriers Applications Limitations

Protein-based and peptide-based carriers

Lysozyme

Systemic hypotension and nephrotoxicityAlbumin fragment
Streptavidin
Somatostatin

Polymeric carriers

PVP

Inferior biodegradability

PVD
LMWC

PAMAM
pHPMA

PG

Small-molecule prodrugs
Folic acid Low targeting efficiency, retentiveness, and

poor cell permeabilityHyaluronic acid
PCG

Nanoparticles

Nanoliposomes

Difficulty in mass production and lack
of technology

Solid lipid nanoparticles
Organic nanoparticles

Inorganic nanoparticles
Micelles
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